Today: - NP-Completeness

COSC 581, Algorithms
 April 15, 2014

Reading Assignments

- Today's class:
- Chapter 34

NP-Completeness

- So far we've seen a lot of good news!
- Such-and-such a problem can be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
- Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!

Why should we care?

- Knowing that they are hard lets you stop beating your head against a wall trying to solve them...
- Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
- Solve approximately: come up with a solution that you can prove that is close to right.
- Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Optimization \& Decision Problems

- Decision problems
- Given an input and a question regarding a problem, determine if the answer is yes or no
- Optimization problems
- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
- E.g.: Shortest path: G = unweighted directed graph
- Find a path between u and v that uses the fewest edges
- Does a path exist from u to v consisting of at most κ, edges?

Algorithmic vs Problem Complexity

- The algorithmic complexity of a computation is some measure of how difficult is to perform the computation (i.e., specific to an algorithm)
- The complexity of a computational problem or task is the complexity of the algorithm with the lowest order of growth of complexity for solving that problem or performing that task.
- e.g., the problem of searching an ordered list has at most Ig n time complexity.
- Computational Complexity: deals with classifying problems by how hard they are.

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
- Worst-case running time is $O\left(n^{k}\right)$, for some constant k
- Examples of polynomial time:
$-O\left(n^{2}\right), O\left(n^{3}\right), O(1), O(n \lg n)$
- Examples of non-polynomial time:
$-\mathrm{O}\left(2^{n}\right), \mathrm{O}\left(n^{n}\right), \mathrm{O}(n!)$

Tractable/Intractable Problems

- Problems in P are also called tractable
- Problems not in P are intractable or unsolvable
- Can be solved in reasonable time only for small inputs
- Or, can not be solved at all
- Are non-polynomial algorithms always worst than polynomial algorithms?
- $n^{1,000,000}$ is technically tractable, but really impossible
- $n^{\log \log \log n}$ is technically intractable, but easy

Example of Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable by any algorithm.
- The most famous of them is the halting problem
- Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"

Examples of Intractable Problems

Hamiltonian Paths
Optimization Problem: Given a graph, find a path that passes through every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path ?

Traveling Salesman
Optimization Problem: Find a minimum weight Hamiltonian Path
Decision Problem: Given a graph and an integer k, is there a Hamiltonian Path with a total weight at most k ?

Intractable Problems

- Can be classified in various categories based on their degree of difficulty, e.g.,
- NP
- NP-complete
- NP-hard
- Let's define NP algorithms and NP problems ...

Nondeterministic and NP Algorithms

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic ("guessing") stage:
generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
2) Deterministic ("verification") stage:
take the certificate and the instance to the problem and returns YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial)
verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by NP algorithms
- i.e., verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

E.g.: Hamiltonian Cycle

- Given: a directed graph $G=(V, E)$, determine a simple cycle that contains each vertex in V
- Each vertex can only be visited
- Certificate:
- Sequence: $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{|\mathrm{v}|}\right\rangle$

hamiltonian

not
hamiltonian

Is $P=N P ?$

- Any problem in P is also in NP:

$$
P \subseteq N P
$$

- The big (and open question) is whether $N P \subseteq P$ or $P=N P$
- i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

NP-Completeness (informally)

- NP-complete problems are defined as the hardest
 problems in NP
- Most practical problems turn out to be either P or NP-complete.
- Study NP-complete problems ...

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write " $\mathrm{A} \leq \mathrm{B}$ ")
if we can solve A using the algorithm that solves B.
- Idea: transform the inputs of A to inputs of B

Problem A

Polynomial Reductions

- Given two problems A, B, we say that A is polynomially reducible to $B\left(A \leq_{p} B\right)$ if:

1. There exists a function f that converts the input of A
to inputs of B in polynomial time
2. $A(i)=Y E S \Leftrightarrow B(f(i))=Y E S$

NP-Completeness (formally)

- A problem B is NP-complete if:
(1) $B \in N P$
(2) $A \leq_{p} B$ for all $A \in N P$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Implications of Reduction

- If $A \leq_{p} B$ and $B \in P$, then $A \in P$
- if $A \leq_{p} B$ and $A \notin P$, then $B \notin P$

Proving Polynomial Time

1. Use a polynomial time reduction algorithm to transform A into B
2. Run a known polynomial time algorithm for B
3. Use the answer for B as the answer for A

Proving NP-Completeness In Practice

- Prove that the problem B is in NP
- A randomly generated string can be checked in polynomial time to determine if it represents a solution
- Show that one known NP-Complete problem can be transformed to B in polynomial time
- No need to check that all NP-Complete problems are reducible to B

Revisit "Is P = NP?"

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then $P=N P$.

P \& NP-Complete Problems

- Shortest simple path
- Given a graph $G=(V, E)$ find a shortest path from a source to all other vertices
- Polynomial solution: O(VE)
- Longest simple path
- Given a graph $G=(V, E)$ find a longest path from a source to all other vertices
- NP-complete

P \& NP-Complete Problems

- Euler tour
$-G=(V, E)$ a connected, directed graph find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution $O(E)$
- Hamiltonian cycle
$-G=(V, E)$ a connected, directed graph find a cycle that visits each vertex of G exactly once
- NP-complete

Once one problem (SAT) shown to be NP-Complete, can show many others...

Example reductions (From CLRS, Ch. 34):

NP-Complete Problem: Circuit-SAT

- Circuit-SAT problem: Given a boolean combinational circuit, determine if there is a satisfying assignment to inputs such that the circuit's output is 1.

Example circuit with satisfying assignment

Example Circuit-SAT

- Is this circuit satisfiable?

Reductions in CLRS...

NP-Complete Problem: Satisfiability (SAT)

- Satisfiability problem: Given a logical expression Φ, find an assignment of values (F, T) to variables x_{i} that causes Φ to evaluate to T :

$$
\Phi=x_{1} \vee \neg x_{2} \wedge x_{3} \vee \neg x_{4}
$$

- SAT was the historically first problem shown to be NP-complete
- Proof required showing property 2 of the NP-completeness definition:

A problem B is NP-complete if:
(1) $B \in N P$
(2) $A \leq_{p} B$ for all $A \in N P$

- Required creativity!

Reductions in CLRS...

NP-Complete Problem: CNF Satisfiability

- CNF is a special case of SAT Φ is in "Conjuctive Normal Form" (CNF)
- "AND" of expressions (i.e., clauses)
- Each clause contains only "OR"s of the variables and their complements

$$
\text { E.g.: } \Phi=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right)
$$

NP-Complete Problem: 3-CNF Satisfiability

A subcase of CNF problem:

- Contains three clauses
- E.g.:

$$
\begin{gathered}
\Phi=\left(x_{1} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge \\
\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
\end{gathered}
$$

- 3-CNF is NP-Complete
- Interestingly enough, 2-CNF is in P!

Reductions in CLRS...

NP-Complete Problem: Clique

Clique Problem:

- Undirected graph G $=(\mathrm{V}, \mathrm{E})$
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

Clique $(\mathrm{G}, 3)=\mathrm{YES}$
Clique $(\mathrm{G}, 4)=$ NO

Clique Verifier

- Given: an undirected graph $G=(V, E)$
- Problem: Does G have a clique of size k?
- Certificate:
- A set of k nodes

- Verifier:
- Verify that for all pairs of vertices in this set there exists an edge in E

Clique example

- What is the maximum clique here?

Reductions in CLRS...

Vertex Cover Example

-What is the minimum vertex cover here?

NP-Complete Problem: Vertex Cover

Vertex Cover Problem:

- Undirected graph $G=(V, E)$
- Vertex cover: a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that each edge in the graph is covered by some vertex in V^{\prime} (i.e., if $(u, v) \in E$, then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both.)
- Size of a VC: number of vertices it contains

Optimization problem:

- Find a VC of maximum size

Decision problem:

- Does G have a VC of size k?

Reductions in CLRS...

NP-Complete Problem: Subset Sum

Subset Sum Problem:

- Given finite set S of positive integers and integer target $\mathrm{t}>0$.
- Is there a subset $S^{\prime} \subseteq \mathrm{S}$ such that $t=\sum_{s \in S^{\prime}} S$

Example:

```
S = {1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993)
T = 138457
Answer is yes, for S' = {1, 2, 7, 98, 343,686, 2409, 17206, 117705}
```


Reading Assignments

- Next class:
- Chapter 34.3
- Looking more deeply at reductions

