
Today:  
− NP-Completeness 

COSC 581, Algorithms 
April 15, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 34 

 
 



NP-Completeness 

• So far we’ve seen a lot of good news! 
– Such-and-such a problem can be solved quickly 

(i.e., in close to linear time, or at least a time that 
is some small polynomial function of the input 
size) 

• NP-completeness is a form of bad news! 
– Evidence that many important problems can not 

be solved quickly. 
• NP-complete problems really come up all the 

time! 
 



Why should we care? 

• Knowing that they are hard lets you stop beating 
your head against a wall trying to solve them… 
– Use a heuristic: come up with a method for solving a 

reasonable fraction of the common cases. 
– Solve approximately: come up with a solution that 

you can prove that is close to right. 
– Use an exponential time solution: if you really have 

to solve the problem exactly and stop worrying about 
finding a better solution. 



Optimization & Decision Problems 
• Decision problems 

– Given an input and a question regarding a 
problem, determine if the answer is yes or no 

• Optimization problems 
– Find a solution with the “best” value 

• Optimization problems can be cast as decision 
problems that are easier to study 
– E.g.: Shortest path: G = unweighted directed graph 

• Find a path between u and v that uses the fewest edges 
• Does a path exist from u to v consisting of at most k edges? 



Algorithmic vs Problem Complexity 

• The algorithmic complexity of a computation is 
some measure of how difficult is to perform the 
computation (i.e., specific to an algorithm) 

• The complexity of a computational problem or 
task is the complexity of the algorithm with the 
lowest order of growth of complexity for solving 
that problem or performing that task. 
– e.g., the problem of searching an ordered list has at 

most lg n time complexity.   
• Computational Complexity: deals with classifying 

problems by how hard they are. 
 



Class of “P” Problems 
• Class P consists of (decision) problems that are 

solvable in polynomial time 

• Polynomial-time algorithms 

– Worst-case running time is O(nk), for some constant k 

• Examples of polynomial time:  
– O(n2), O(n3), O(1), O(n lg n)  

• Examples of non-polynomial time:  
– O(2n), O(nn), O(n!) 

 



Tractable/Intractable Problems 
• Problems in P are also called tractable 

• Problems not in P are intractable or unsolvable 
– Can be solved in reasonable time only for small inputs 

– Or, can not be solved at all  

• Are non-polynomial algorithms always worst than 
polynomial algorithms? 
 - n1,000,000 is technically tractable, but really impossible   

- nlog log log n is technically intractable, but easy 



Example of Unsolvable Problem 

• Turing discovered in the 1930’s that there are 
problems unsolvable by any algorithm. 

• The most famous of them is the halting 
problem 
–  Given an arbitrary algorithm and its input, will 

that algorithm eventually halt, or will it continue 
forever in an “infinite loop?” 



Examples of Intractable Problems 



Intractable Problems 

• Can be classified in various categories based 
on their degree of difficulty, e.g., 
– NP 
– NP-complete 
– NP-hard 

• Let’s define NP algorithms and NP problems … 



Nondeterministic and NP Algorithms 

Nondeterministic algorithm = two stage procedure: 

1) Nondeterministic (“guessing”) stage:  
 generate randomly an arbitrary string that can be 

thought of as a candidate solution (“certificate”) 

2) Deterministic (“verification”) stage: 
 take the certificate and the instance to the problem 

and returns YES if the certificate represents a solution 

NP algorithms (Nondeterministic polynomial) 
 verification stage is polynomial 



Class of “NP” Problems 
• Class NP consists of problems that could be 

solved by NP algorithms  

– i.e., verifiable in polynomial time 

• If we were given a “certificate” of a solution, 
we could verify that the certificate is correct in 
time polynomial to the size of the input 

• Warning: NP does not mean “non-polynomial” 



E.g.: Hamiltonian Cycle 

• Given: a directed graph G = (V, E), determine a 
simple cycle that contains each vertex in V 
– Each vertex can only be visited once 

• Certificate: 
– Sequence: 〈v1, v2, v3, …, v|V|〉 

hamiltonian 

not  
hamiltonian 



Is P = NP? 

• Any problem in P is also in NP:  

    P ⊆ NP 

• The big (and open question) is whether NP ⊆ P or P = NP 

– i.e., if it is always easy to check a solution, should it also be 
easy to find a solution? 

• Most computer scientists believe that this is false but we 
do not have a proof … 

P 

NP 



NP-Completeness (informally) 

• NP-complete problems are   

   defined as the hardest  

   problems in NP 

• Most practical problems turn out to be either P or 

NP-complete. 

• Study NP-complete problems … 

P 

NP 

NP-complete 



Reductions 

• Reduction is a way of saying that one problem is 
“easier” than another. 

• We say that problem A is easier than problem B,   
            (i.e., we write “A ≤ B”)  

     if we can solve A using the algorithm that solves B. 
• Idea: transform the inputs of A to inputs of B 

 
 
 

f Problem B 
α β yes 

no 

yes 

no 

Problem A 



Polynomial Reductions 

• Given two problems A, B, we say that A is 

polynomially reducible to B (A ≤p B) if: 

1. There exists a function f  that converts the input of A 

to inputs of B in polynomial time 

2. A(i) = YES ⇔ B(f(i)) = YES 



NP-Completeness (formally) 

• A problem B is NP-complete if: 

  (1) B ∈ NP 

  (2) A ≤p B for all A ∈ NP 

• If B satisfies only property (2) we say that B is NP-hard 

• No polynomial time algorithm has been discovered for an NP-Complete 

problem 

• No one has ever proven that no polynomial time algorithm can exist for 

any NP-Complete problem 

P 

NP 

NP-complete 



Implications of Reduction 

  
     - If A ≤p B and B ∈ P, then A ∈ P 

     - if A ≤p B and A ∉ P, then B ∉ P 

    

 
 
 

f Problem B 
α β yes 

no 

yes 

no 

Problem A 



Proving Polynomial Time 

1. Use a polynomial time reduction algorithm to  

      transform A into B 

2. Run a known polynomial time algorithm for B 

3. Use the answer for B as the answer for A 

 
 
 

Polynomial time algorithm to decide A 

f Polynomial time  
algorithm to decide B 

α β yes 

no 

yes 

no 



Proving NP-Completeness In Practice 

• Prove that the problem B is in NP 
– A randomly generated string can be checked in 

polynomial time to determine if it represents a 
solution 

• Show that one known NP-Complete problem can 
be transformed to B in polynomial time 
– No need to check that all NP-Complete problems are 

reducible to B 

 



Revisit “Is P = NP?” 

 

 

 

Theorem: If any NP-Complete problem can be 

solved in polynomial time ⇒ then P = NP. 

P 

NP 

NP-complete 



P & NP-Complete Problems 

• Shortest simple path 

– Given a graph G = (V, E) find a shortest path from a source 
to all other vertices 

– Polynomial solution: O(VE) 

• Longest simple path 

– Given a graph G = (V, E) find a longest path from a source 
to all other vertices 

– NP-complete 



P & NP-Complete Problems 

• Euler tour 
– G = (V, E) a connected, directed graph find a cycle that 

traverses each edge of G exactly once (may visit a vertex 
multiple times)  

– Polynomial solution O(E) 

• Hamiltonian cycle 
– G = (V, E) a connected, directed graph find a cycle that 

visits each vertex of G exactly once 
– NP-complete 



Once one problem (SAT) shown to be  
NP-Complete, can show many others… 

Example reductions (From CLRS, Ch. 34): 



NP-Complete Problem: 
Circuit-SAT 

• Circuit-SAT problem:  Given a boolean combinational 
circuit, determine if there is a satisfying assignment 
to inputs such that the circuit’s output is 1. 

Example circuit with satisfying assignment 



Example Circuit-SAT 

• Is this circuit satisfiable? 



Reductions in CLRS… 



NP-Complete Problem: 
Satisfiability (SAT) 

• Satisfiability problem: Given a logical expression Φ, find an assignment 
of values (F, T) to variables xi that causes Φ to evaluate to T: 
 

  Φ = x1 ∨ ¬ x2 ∧ x3 ∨ ¬ x4 
 

• SAT was the historically first problem shown to be NP-complete 
 

• Proof required showing property 2 of the NP-completeness definition: 

A problem B is NP-complete if: 

  (1) B ∈ NP 

  (2) A ≤p B for all A ∈ NP 

• Required creativity! 
 

 
 

 



Reductions in CLRS… 



NP-Complete Problem: 
CNF Satisfiability 

• CNF is a special case of SAT  
• Φ is in “Conjuctive Normal Form” (CNF)  

– “AND” of expressions (i.e., clauses) 
– Each clause contains only “OR”s of the variables 

and their complements 
 

     E.g.: Φ = (x1 ∨ x2) ∧ (x1 ∨ ¬ x2) ∧ (¬ x1 ∨ ¬ x2) 
    

clauses 



NP-Complete Problem: 
3-CNF Satisfiability 

 A subcase of CNF problem: 
– Contains three clauses 

• E.g.:  
  Φ = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧   

    (¬x1 ∨ ¬x3 ∨ ¬ x4) 
 

• 3-CNF is NP-Complete 
 

• Interestingly enough, 2-CNF is in P! 



Reductions in CLRS… 



NP-Complete Problem: 
Clique 

 Clique Problem: 
– Undirected graph G = (V, E) 
– Clique: a subset of vertices in V all connected to each 

other by edges in E (i.e., forming a complete graph) 
– Size of a clique: number of vertices it contains 

 Optimization problem: 
– Find a clique of maximum size 

 Decision problem: 
– Does G have a clique of size k? 

Clique(G, 2) = YES 
Clique(G, 3) = NO 

Clique(G, 3) = YES 
Clique(G, 4) = NO 



Clique Verifier 

• Given: an undirected graph G = (V, E) 

• Problem: Does G have a clique of size k? 

• Certificate: 
– A set of k nodes 

• Verifier: 
– Verify that for all pairs of vertices in this set there 

exists an edge in E  



Clique example 

• What is the maximum clique here? 

1 2 

3 

4 5 

6 7 



Reductions in CLRS… 



Vertex Cover Example 

• What is the minimum vertex cover here? 

1 

2 3 4 

5 6 



NP-Complete Problem: 
Vertex Cover 

 Vertex Cover Problem: 
– Undirected graph G = (V, E) 
– Vertex cover: a subset V’ ⊆ V such that each edge in the 

graph is covered by some vertex in V’  (i.e., if (u, v) ∈ E, 
then u ∈ V’ or v ∈ V’ or both.) 

– Size of a VC: number of vertices it contains 

 Optimization problem: 
– Find a VC of maximum size 

 Decision problem: 
– Does G have a VC of size k? 

VC(G, 2) = YES 
VC(G, 1) = NO 



Reductions in CLRS… 



NP-Complete Problem: 
Subset Sum 

 Subset Sum Problem: 
– Given finite set S of positive integers and integer target t > 0.   
– Is there a subset S’ ⊆ S such that 𝑡 =  ∑ 𝑠𝑠∈𝑆′  

 
 
 

Example: 
S = {1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993) 
 
T = 138457 
 
Answer is yes, for S’ = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705} 

  



Reading Assignments 

• Next class:  
– Chapter 34.3  

• Looking more deeply at reductions 

 
 


	Today: �− NP-Completeness
	Reading Assignments
	NP-Completeness
	Why should we care?
	Optimization & Decision Problems
	Algorithmic vs Problem Complexity
	Class of “P” Problems
	Tractable/Intractable Problems
	Example of Unsolvable Problem
	Examples of Intractable Problems
	Intractable Problems
	Nondeterministic and NP Algorithms
	Class of “NP” Problems
	E.g.: Hamiltonian Cycle
	Is P = NP?
	NP-Completeness (informally)
	Reductions
	Polynomial Reductions
	NP-Completeness (formally)
	Implications of Reduction
	Proving Polynomial Time
	Proving NP-Completeness In Practice
	Revisit “Is P = NP?”
	P & NP-Complete Problems
	P & NP-Complete Problems
	Once one problem (SAT) shown to be �NP-Complete, can show many others…
	NP-Complete Problem:�Circuit-SAT
	Example Circuit-SAT
	Reductions in CLRS…
	NP-Complete Problem:�Satisfiability (SAT)
	Reductions in CLRS…
	NP-Complete Problem:�CNF Satisfiability
	NP-Complete Problem:�3-CNF Satisfiability
	Reductions in CLRS…
	NP-Complete Problem:�Clique
	Clique Verifier
	Clique example
	Reductions in CLRS…
	Vertex Cover Example
	NP-Complete Problem:�Vertex Cover
	Reductions in CLRS…
	NP-Complete Problem:�Subset Sum
	Reading Assignments

