Today: – NP-Completeness

COSC 581, Algorithms April 15, 2014

Many of these slides are adapted from several online sources

Reading Assignments

- Today's class:
 - Chapter 34

NP-Completeness

- So far we've seen a lot of good news!
 - Such-and-such a problem can be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
 - Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!

Why should we care?

- Knowing that they are hard lets you stop beating your head against a wall trying to solve them...
 - Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
 - Solve approximately: come up with a solution that you can prove that is close to right.
 - Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Optimization & Decision Problems

- Decision problems
 - Given an input and a question regarding a problem, determine if the answer is yes or no

• Optimization problems

- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
 - *E.g.:* Shortest path: G = unweighted directed graph
 - Find a path between u and v that uses the fewest edges
 - Does a path exist from u to v consisting of at most k edges?

Algorithmic vs Problem Complexity

- The *algorithmic complexity* of a computation is some measure of how *difficult* is to perform the computation (i.e., specific to an algorithm)
- The complexity of a computational problem or task is the complexity of the algorithm with the lowest order of growth of complexity for solving that problem or performing that task.
 - *e.g.,* the problem of searching an ordered list has *at* most lg n time complexity.
- **Computational Complexity**: deals with classifying problems by how hard they are.

Class of "P" Problems

- **Class P** consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
 - Worst-case running time is $O(n^k)$, for some constant k
- Examples of polynomial time:
 O(n²), O(n³), O(1), O(n lg n)
- Examples of non-polynomial time:
 - $O(2^{n}), O(n^{n}), O(n!)$

Tractable/Intractable Problems

- Problems in P are also called **tractable**
- Problems **not** in P are **intractable** or **unsolvable**
 - Can be solved in reasonable time only for small inputs
 - Or, can not be solved at all
- Are non-polynomial algorithms always worst than polynomial algorithms?
 - n^{1,000,000} is technically tractable, but really impossible
 - *n*^{log log log n} is *technically* intractable, but easy

Example of Unsolvable Problem

- Turing discovered in the 1930's that there are problems **unsolvable** by *any* algorithm.
- The most famous of them is the *halting problem*
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an *"infinite loop*?"

Examples of Intractable Problems

Hamiltonian Paths

Optimization Problem: Given a graph, find a path that passes through every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path?

Traveling Salesman

Optimization Problem: Find a minimum weight Hamiltonian Path

Decision Problem: Given a graph and an integer k, is there a Hamiltonian Path with a total weight at most k?

Intractable Problems

• Can be classified in various categories based on their degree of difficulty, e.g.,

– NP

- NP-complete
- NP-hard
- Let's define NP algorithms and NP problems ...

Nondeterministic and NP Algorithms

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic ("guessing") stage:

generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")

2) Deterministic ("verification") stage:

take the certificate and the instance to the problem and returns YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial)

verification stage is polynomial

Class of "NP" Problems

• **Class NP** consists of problems that could be solved by NP algorithms

– i.e., verifiable in polynomial time

- If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input
- <u>Warning</u>: NP does **not** mean "non-polynomial"

E.g.: Hamiltonian Cycle

• **Given:** a directed graph G = (V, E), determine a simple cycle that contains each vertex in V

Each vertex can only be visited once

• Certificate:

– Sequence: $\langle v_1, v_2, v_3, ..., v_{|V|} \rangle$

Is P = NP?

• Any problem in P is also in NP:

 $\mathsf{P} \subseteq \mathsf{NP}$

- The big (and **open question**) is whether $NP \subseteq P$ or P = NP
 - i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

NP-Completeness (informally)

• NP-complete problems are

defined as the hardest

problems in NP

- Most practical problems turn out to be either P or NP-complete.
- Study NP-complete problems ...

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write "A ≤ B")

if we can solve A using the algorithm that solves B.

• Idea: transform the inputs of A to inputs of B

Polynomial Reductions

• Given two problems A, B, we say that A is

polynomially **reducible** to B (A \leq_p B) if:

1. There exists a function f that converts the input of A

to inputs of B in polynomial time

2.
$$A(i) = YES \iff B(f(i)) = YES$$

NP-Completeness (formally)

• A problem B is **NP-complete** if:

(1) B ∈ **NP**

(2) $A \leq_p B$ for all $A \in \mathbf{NP}$

- If B satisfies only property (2) we say that B is **NP-hard**
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Implications of Reduction

- If $A \leq_p B$ and $B \in P$, then $A \in P$
- if $A \leq_{p} B$ and $A \notin P$, then $B \notin P$

Proving Polynomial Time

- Use a **polynomial time** reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

Proving NP-Completeness In Practice

- Prove that the problem B is in NP
 - A randomly generated string can be checked in polynomial time to determine if it represents a solution
- Show that **one known** NP-Complete problem can be transformed to B in polynomial time
 - No need to check that all <u>NP-Complete</u> problems are reducible to B

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then P = NP.

P & NP-Complete Problems

• Shortest simple path

- Given a graph G = (V, E) find a shortest path from a source to all other vertices
- <u>Polynomial solution</u>: O(VE)
- Longest simple path
 - Given a graph G = (V, E) find a longest path from a source to all other vertices
 - <u>NP-complete</u>

P & NP-Complete Problems

• Euler tour

- G = (V, E) a connected, directed graph find a cycle that traverses <u>each edge</u> of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)
- Hamiltonian cycle
 - G = (V, E) a connected, directed graph find a cycle that visits <u>each vertex</u> of G exactly once
 - <u>NP-complete</u>

Once one problem (SAT) shown to be NP-Complete, can show many others...

Example reductions (From CLRS, Ch. 34):

NP-Complete Problem: Circuit-SAT

 Circuit-SAT problem: Given a boolean combinational circuit, determine if there is a satisfying assignment to inputs such that the circuit's output is 1.

Example circuit with satisfying assignment

Example Circuit-SAT

• Is this circuit satisfiable?

Reductions in CLRS...

NP-Complete Problem: Satisfiability (SAT)

• **Satisfiability problem:** Given a logical expression Φ , find an assignment of values (F, T) to variables x_i that causes Φ to evaluate to T:

 $\Phi = \mathbf{x}_1 \lor \neg \mathbf{x}_2 \land \mathbf{x}_3 \lor \neg \mathbf{x}_4$

- SAT was the historically first problem shown to be NP-complete
- Proof required showing property 2 of the NP-completeness definition: A problem B is NP-complete if:

(1) $B \in NP$ (2) $A \leq_{p} B$ for all $A \in NP$

• Required creativity!

Reductions in CLRS...

NP-Complete Problem: CNF Satisfiability

- CNF is a special case of SAT
- Φ is in "Conjuctive Normal Form" (CNF)
 - "AND" of expressions (i.e., clauses)
 - Each clause contains only "OR"s of the variables and their complements

$$\mathcal{E}.g.: \Phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_2) \land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2)$$

NP-Complete Problem: 3-CNF Satisfiability

A subcase of CNF problem:

Contains three clauses

- **3-CNF** is NP-Complete
- Interestingly enough, 2-CNF is in P!

Reductions in CLRS...

NP-Complete Problem: Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

- Find a clique of maximum size

Decision problem:

- Does G have a clique of size k?

Clique Verifier

- **Given**: an undirected graph G = (V, E)
- **Problem**: Does G have a clique of size k?
- Certificate:
 - A set of k nodes
- Verifier:
 - Verify that for all pairs of vertices in this set there exists an edge in E

Clique example

• What is the maximum clique here?

Reductions in CLRS...

Vertex Cover Example

• What is the minimum vertex cover here?

NP-Complete Problem: Vertex Cover

Vertex Cover Problem:

- Undirected graph G = (V, E)
- Vertex cover: a subset $V' \subseteq V$ such that each edge in the graph is covered by some vertex in V' (i.e., if (u, v) $\in E$, then $u \in V'$ or $v \in V'$ or both.)
- Size of a VC: number of vertices it contains

Optimization problem:

Find a VC of maximum size

Decision problem:

– Does G have a VC of size k?

Reductions in CLRS...

NP-Complete Problem: Subset Sum

Subset Sum Problem:

- Given finite set S of positive integers and integer target t > 0.
- Is there a subset S' \subseteq S such that $t = \sum_{s \in S'} s$

Example:

S = {1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993)

T = 138457

Answer is yes, for S' = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705}

Reading Assignments

- Next class:
 - Chapter 34.3
 - Looking more deeply at reductions