
Today:  
− NP-Completeness (con’t.) 

COSC 581, Algorithms 
April 17, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 34 (con’t.) 

 
 



Recall:  NP-Completeness 

• A problem B is NP-complete if: 

  (1) B ∈ NP 

  (2) A ≤p B for all A ∈ NP 

• If B satisfies only property (2) we say that B is NP-hard 

• No polynomial time algorithm has been discovered for an NP-Complete 
problem 

• No one has ever proven that no polynomial time algorithm can exist for any 
NP-Complete problem 

 

• Significance:  If one NP-Complete problem can be solved in poly-time, then all 
NP problems can be solved in poly-time 

P 

NP 

NP-complete 



Recall:  We always cast NP-Complete 
problems as decision problems 

• Decision problems 
– Given an input and a question regarding a problem, 

determine if the answer is yes or no 
• Optimization problems 

– Find a solution with the “best” value 
 

• Interesting question:   
– Let’s presume that someone (amazingly) proves that P=NP.   
– But, all the NP-complete (NPC) problems are expressed as 

decision problems.   
– So, if P=NP, how can we make use of the poly-time algorithm 

that solves an NPC decision problem to also solve the 
optimization version of the same problem in poly-time? 



Example:  Using Poly-time alg. for decision problem to 
solve optimization problem in poly-time 

Example:  Show that if P = NP, then there is a polynomial time algorithm that, 
given a Boolean formula φ, actually produces a satisfying assignment for φ 
(assuming φ is satisfiable).   
  

 



Recall:  Polynomial Reductions 

• Reduction is a way of saying that one problem is no 
harder than another. 

• We say that problem A is no harder than problem B,   
            (i.e., we write “A ≤ p B”)  

     if we can solve A using the algorithm that solves B. 
• Idea: transform the inputs of A to inputs of B in poly time 
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Recall: Polynomial Reductions 

• Given two problems A, B, we say that A is 

polynomially reducible to B (A ≤p B) if: 

1. There exists a function f  that converts the input of A 

to inputs of B in polynomial time 

2. A(α) = YES ⇔ B(f(α)) = YES 



Proving NP-Completeness In Practice 

1) Prove that the new problem B ∈ NP 

2) Show that one known NP-Complete problem, 

A, can be transformed to B in polynomial 

time (i.e., A ≤p B) 

 

• Conclude that B is NP-Complete 

 



Once one problem (SAT) shown to be  
NP-Complete, can show many others… 

Example reductions (From CLRS, Ch. 34): 



NP-Complete Problem: 
Circuit-SAT 

• Circuit-SAT problem:  Given a boolean combinational 
circuit, C, determine if there is a satisfying assignment 
to inputs such that the circuit’s output is 1. 

• CLRS proves this is NP-Complete (more next week) 

Example circuit with satisfying assignment 



NP-Complete Problem: 
Satisfiability (SAT) 

• Satisfiability problem: Given a logical expression φ, 
find an assignment of values (F, T) to variables xi that 
causes φ to evaluate to T: 
 

   φ = x1 ∨ ¬ x2 ∧ x3 ∨ ¬ x4 

 
• SAT was the historically first problem shown to be 

NP-complete 
 

• Here, we’ll presume CIRCUIT-SAT is known NP-
Complete (per CLRS), and prove SAT is NP-Complete 
by reduction 

 

 
 



Prove SAT is NP-complete 

• Step 1:  SAT ∈ NP 
 
– Argue that, given a certificate, you can verify that the 

certificate provides a solution in polynomial time 
 
 

• Step 2:  Show that some known NP-Complete problem 
is reducible in poly-time to SAT (i.e., A ≤p SAT) 
 
– What known NP-Complete problem do we choose? 



Show Circuit-SAT ≤p SAT 
• What do we have to do? 

1) Given an instance <C> of Circuit-SAT, define poly-time 
function f that converts <C> to instance <φ> of SAT 

2) Argue that f is poly-time 
3) Argue that f is correct (i.e., <C> of Circuit-SAT is satisfiable iff 

< φ > of SAT is satisfiable) 
 

• Here’s a proposed poly-time reduction, f: 
– For every wire 𝑥𝑖 of C, define a variable 𝑥𝑖 in the formula. 
– Every gate can be expressed as: 

𝑥𝑖  ↔ (boolean operations consistent with gate) 
– The final formula φ is the conjunction (AND) of the circuit 

output variable and conjunction of all clauses describing the 
operation of each gate.  



          Example of reduction of Circuit-SAT to SAT 
Here’s an input instance <C> if Circuit-SAT: 

φ= x10∧(x10↔(x7∧ x8∧ x9)) 
          ∧(x9↔(x6 ∨ x7))  
          ∧(x8↔(x5 ∨ x6)) 
           ∧(x7↔(x1∧ x2∧ x4)) 
           ∧(x6↔ ¬x4)) 
           ∧(x5↔(x1 ∨ x2)) 
           ∧(x4↔¬x3) 

Here’s the result of f(C), which gives instance < φ > of SAT: 



Next, prove properties of f 
• Argue that f is poly-time: 

– Obvious -- Clearly the reduction can be done in poly time 
 

• Argue that f is correct: 
– C is satisfiable if and only if φ is satisfiable: 

• ⇒   If C is satisfiable, then there is a satisfying assignment. This 
means that each wire of C has a well-defined value and the output 
of C is 1.  Thus, the assignment of wire values to variables in φ 
makes each clause in φ evaluate to 1.  So φ is 1 when C is satisfiable.   

• ⇐   The reverse proof should also be done (i.e., if φ evaluates to 1, 
then C must be satisfiable);  proof mirrors the argument above.  
 

• Since (1) SAT ∈ NP, and (2) Circuit-SAT ≤p SAT, we 
conclude that SAT is NP-Complete. 



Important note about reductions… 
• Note that we never make use of the solution to a problem in creating 

reduction function f 
 

• In the proof of correctness, we mention the solution of one problem 
helping us to get the solution of the other (if such a solution were 
known), based on our construction 
 

• But, this solution is not used for the construction defined by f.  Why? 
– We don’t know the solution, because finding it is an NP-complete 

problem. 
– Thus, our reduction function could not be polynomial-time if it 

required solving an NP-complete problem to create the 
construction. 

– The reduction function f must therefore work for any possible 
instance of the known NP-complete problem, but without 
knowledge of the solution. 



Another NP-Complete Problem: 
CNF Satisfiability 

• CNF is a special case of SAT  
• φ is in “Conjuctive Normal Form” (CNF)  

– “AND” of expressions (i.e., clauses) 
– Each clause contains only “OR”s of the variables 

and their complements 
 

     E.g.: φ = (x1 ∨ x2) ∧ (x1 ∨ ¬ x2) ∧ (¬ x1 ∨ ¬ x2) 
    

clauses 



Another NP-Complete Problem: 
3-CNF Satisfiability 

 3-CNF is a subcase of CNF problem: 
– A literal in a boolean formula is an occurrence of a variable or its 

negation.  
– CNF (Conjunctive Nornal Form) is a boolean formula expressed as 

AND of clauses, each of which is the OR of one or more literals.  
– 3-CNF is a CNF in which each clause has exactly 3 distinct literals (a 

literal and its negation are distinct) 
 

• Example:  
  Φ = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧     

  (¬x1 ∨ ¬x3 ∨ ¬ x4) 
 

• Let us prove that 3-CNF is NP-Complete 
 



Prove 3-CNF-SAT is NP-complete 

• Step 1:  3-CNF-SAT ∈ NP 
 
– Argue that, given a certificate, you can verify that the 

certificate provides a solution in polynomial time 
 
 

• Step 2:  Show that some known NP-Complete problem is 
reducible in poly-time to 3-CNF-SAT (i.e., A ≤p 3-CNF-SAT) 
 
– What known NP-Complete problem do we choose? 



SAT ≤p 3-CNF-SAT 
• What do we have to do? 

1) Given an instance < φ > of SAT, define poly-time function f that 
converts < φ > to instance < φ′′′ > of SAT 

2) Argue that f is poly-time 
3) Argue that f is correct (i.e., < φ > of SAT is satisfiable iff < φ′′′ > 

of 3-CNF-SAT is satisfiable) 
 



SAT ≤p 3-CNF-SAT 
• Proposed definition of f: 

• Suppose φ is any boolean formula, Construct a binary parse tree, with 
literals as leaves and connectives as internal nodes. 

• Introduce a variable yi for the output of each internal nodes. 
• Rewrite the formula to φ' as the AND of the root variable and a 

conjunction of clauses describing the operation of each node.  
• The result is that in φ', each clause has at most three literals. 
• Change each clause into conjunctive normal form as follows: 

– Construct a truth table 
– Write the disjunctive normal form for all truth-table items evaluating to 0 
– Using DeMorgans law to change to CNF. 

• The resulting φ'' is in CNF but each clause has 3 or fewer literals. 
• Change 1 or 2-literal clauses into a 3-literal clause φ''' as follows: 

– If a clause has one literal l, change it to (l∨p∨q)∧(l∨p∨¬q)∧ (l∨¬p∨q)∧ 
(l∨¬p∨¬q). 

– If a clause has two literals (l1∨ l2), change it to (l1∨ l2 ∨p) ∧ (l1∨ l2 ∨¬p). 



    Example:  Binary parse tree for: 
                φ=((x1→ x2) ∨¬((¬x1↔ x3) ∨ x4))∧¬x2 

φ'= y1∧(y1 ↔ (y2∧¬x2)) 
          ∧(y2 ↔ (y3 ∨ y4)) 
          ∧(y4 ↔ ¬y5) 
          ∧(y3 ↔ (x1 → x2)) 
          ∧(y5 ↔ (y6 ∨ x4)) 
          ∧(y6 ↔ (¬x1 ↔ x3)) 
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Example of Converting a 3-literal clause into CNF format 

Disjunctive Normal Form: 
φi'=(y1∧y2∧x2)∨(y1∧¬y2∧x2) 
      ∨(y1∧¬y2∧¬x2) ∨(¬y1∧y2∧¬x2) 

Conjunctive Normal Form: 
φi''=(¬y1∨¬y2∨¬x2)∧(¬y1∨y2∨¬x2) 
      ∧(¬y1∨y2∨x2)∧(y1∨¬y2∨x2) 



3-CNF-SAT is NP-complete 
Now, prove correctness of f: 
• First, prove reduction is poly time: 

–  From φ  to φ' , we introduce at most 1 variable and 1 clause per 
connective in φ.  

– From φ' to φ'' ,  we introduce at most 8 clauses for each clause in φ'. 
– From φ'' to final 3-CNF, we introduce at most 4 clauses for each clause in 

φ''. 
• Then, prove reduction is correct – i.e., φ and resulting 3-CNF 

formula are equivalent: 
– From φ  to φ' , keep equivalence by construction. 
– From φ' to φ'' , keep equivalence by construction. 
– From φ'' to final 3-CNF, keep equivalence by construction. 

 
Since: (1) 3-CNF-SAT ∈ NP, and (2) SAT ≤p 3-CNF-SAT, we conclude that 
3-CNF-SAT is NP-Complete. 

 



Another NP-Complete Problem: 
Clique 

 Clique Problem: 
– Given:  undirected graph G = (V, E) 
– Clique: a subset of vertices in V‘ ⊆ V, each pair of which is connected 

by an edge in E, i.e., a clique is a complete subgraph of G. 
– Size of a clique: number of vertices it contains 

 

 Optimization problem: 
– Find a clique of maximum size 

 Decision problem: 
– Does G have a clique of size k? 
– Input instance = <G,k> 



Prove Clique is NP-complete 

• Step 1:  Clique ∈ NP 
 
– Argue that, given a certificate, you can verify that the 

certificate provides a solution in polynomial time 
 
 

• Step 2:  Show that some known NP-Complete problem is 
reducible in poly-time to Clique (i.e., A ≤p Clique) 
 
– What known NP-Complete problem do we choose? 



3-CNF-SAT ≤p Clique 
• What do we have to do? 

1) Given an instance < φ > of 3-CNF-SAT, define poly-time 
function f that converts < φ > to instance < G, k > of Clique 

2) Argue that f is poly-time 
3) Argue that f is correct (i.e., < φ > of 3-CNF-SAT is satisfiable iff  

G has a Clique of size k) 
 



3-CNF-SAT ≤p Clique 

• Reduction function f from 3-CNF-SAT to Clique: 
– Suppose φ=C1∧ C2∧… ∧Ck is a boolean formula in 3-CNF form with 

k clauses.  
– We construct a graph G=(V,E) as follows: 

• For each clause Cr =(l1r∨ l2r∨ l3r), place a triple of  v1
r, v2

r, v3
r  into V 

• Place an edge between two vertices vi
r and vj

s when: 
– r≠s, that is vi

r and vj
s are in different triples, and 

– Their corresponding literals are consistent, i.e, lir is not negation of  ljs . 

– Our resulting instance of Clique is <G, k> 
 

• Then we argue that φ is satisfiable if and only if G has a 
clique of size k. 



 Example reduction from < φ > to <G, k>:   
 
φ=(x1∨¬x2∨¬x3)∧(¬x1∨x2∨x3)∧(x1∨x2∨x3) 

G: k = 3 



Clique is NP-Complete 
Now, prove correctness of f: 
• First, prove reduction is poly time: 

– Should be apparent – only create 3 variables per clause; do this k times 
 
• Then, prove reduction is correct – i.e., φ is satisfiable if and only if G has a clique 

of size k: 
– ⇒ If φ is satisfiable, then there exists a satisfying assignment that makes at least one literal in 

each clause evaluate to True.  Pick one of these literals from each clause.  Then consider the 
subgraph V' consisting of the corresponding vertex of each such literal. For each pair, vi

r,vj
s ∈V', 

where r≠s, since lir,ljs  both evaluate to 1, and lir is not negation of ljs, then there must be an 
edge between vi

r and vj
s.  So V' is a clique of size k.  

– ⇐  If G has a clique V' of size k, then V' contains exactly one vertex from each triple. Assign all 
the literals corresponding to the vertices in V' to True, and other literals to either True or False 
(i.e., they don’t matter).  Then each clause will evaluate to True.  So φ is satisfiable.    

 
Since: (1) Clique ∈ NP, and (2) 3-CNF-SAT ≤p Clique, we conclude that Clique is NP-Complete. 



Another NP-Complete Problem: 
Vertex Cover 

 Vertex Cover Problem: 
– Undirected graph G = (V, E) 
– Vertex cover: a subset V’ ⊆ V such that each edge in the 

graph is covered by some vertex in V’  (i.e., if (u, v) ∈ E, then 
u ∈ V’ or v ∈ V’ or both.) 

– Size of a VC: number of vertices it contains 

 Optimization problem: 
– Find a VC of maximum size 

 Decision problem: 
– Does G have a VC of size k? 
– Instance of VC = <G, k> 



Prove Vertex-Cover is NP-complete 

• Step 1:  Vertex-Cover ∈ NP 
 
– Argue that, given a certificate, you can verify that the 

certificate provides a solution in polynomial time 
 
 

• Step 2:  Show that some known NP-Complete problem is 
reducible in poly-time to Vertex-Cover                           
(i.e., A ≤p Vertex-Cover) 
 
– What known NP-Complete problem do we choose? 



Clique ≤p Vertex-Cover 
• What do we have to do? 

1) Given an instance < G, k > of Clique, define poly-time function 
f that converts < G, k > to instance < G’, k’ > of Vertex-Cover 

2) Argue that f is poly-time 
3) Argue that f is correct (i.e., G has a clique of size k iff  G’ has a 

vertex cover of size k) 
 



Clique ≤p Vertex Cover 

• Reduction f, from Clique to Vertex Cover: 
– Convert G(V, E) to complement graph G’(V,E’): 

• The edges E’ of G’ contain only those edges not in E 

– Output vertex cover instance <G’, |V|- k> 
 

• Then we argue that G has a clique of size k iff 
G’ has a vertex cover of size |V| - k  



Proof of correctness of f 
Now, prove correctness of f: 
• First, prove reduction is poly time; straight-forward 

 
Next, prove reduction is correct – i.e., G has a clique of size k iff G’ has 
a vertex cover of size |V| - k  
 
• ⇒ If G has a clique of size k, G’ has a vertex cover of size |V| - k  

– Let V’ be the k-clique 
– Then V - V’ is a vertex cover in G’ 

• Let (u,v) be any edge in G’.  Then u and v cannot both be in V’ (Why?) 
• Thus at least one of u or v is in V-V’ (why?), so  

edge (u, v) is covered by V-V’ 
• Since this is true for any edge in G’, V-V’ is a vertex cover. 



Vertex-Cover is NP-Complete (con’t) 

• ⇐  If G’  has a vertex cover V’ ⊆ V, with |V’| = |V| - k, then G has a 
clique of size k 
– For all u,v ∈ V, if (u,v) ∈ G’ then u ∈ V’ or v ∈ V’ or both (why?) 
– Contrapositive: if u ∉ V’ and v ∉ V’, then (u,v) ∈ E 
– In other words, all vertices in V-V’ are connected by an edge, 

thus V-V’ is a clique 
– Since |V| - |V’| = k, the size of the clique is k 

• Thus we conclude that G has a clique of size k iff G’ has a vertex 
cover of size |V| - k  

 
Since: (1) Vertex-Cover ∈ NP, and (2) Clique ≤p Vertex-Cover, 
we conclude that Vertex-Cover is NP-Complete. 



Reading Assignments 

• Next class:  
– Chapter 34.3  

• Looking more deeply at reductions 

 
 


	Today: �− NP-Completeness (con’t.)
	Reading Assignments
	Recall:  NP-Completeness
	Recall:  We always cast NP-Complete problems as decision problems
	Example:  Using Poly-time alg. for decision problem to solve optimization problem in poly-time
	Recall:  Polynomial Reductions
	Recall: Polynomial Reductions
	Proving NP-Completeness In Practice
	Once one problem (SAT) shown to be �NP-Complete, can show many others…
	NP-Complete Problem:�Circuit-SAT
	NP-Complete Problem:�Satisfiability (SAT)
	Prove SAT is NP-complete
	Show Circuit-SAT p SAT
	Slide Number 14
	Next, prove properties of f
	Important note about reductions…
	Another NP-Complete Problem:�CNF Satisfiability
	Another NP-Complete Problem:�3-CNF Satisfiability
	Prove 3-CNF-SAT is NP-complete
	SAT p 3-CNF-SAT
	SAT p 3-CNF-SAT
	Slide Number 22
	Slide Number 23
	3-CNF-SAT is NP-complete
	Another NP-Complete Problem:�Clique
	Prove Clique is NP-complete
	3-CNF-SAT p Clique
	3-CNF-SAT p Clique
	Slide Number 29
	Clique is NP-Complete
	Another NP-Complete Problem:�Vertex Cover
	Prove Vertex-Cover is NP-complete
	Clique p Vertex-Cover
	Clique p Vertex Cover
	Proof of correctness of f
	Vertex-Cover is NP-Complete (con’t)
	Reading Assignments

