Today: - NP-Completeness (con’t.)

COSC 581, Algorithms
 April 17, 2014

Reading Assignments

- Today's class:
- Chapter 34 (con't.)

Recall: NP-Completeness

- A problem B is NP-complete if:
(1) $B \in \mathbf{N P}$
(2) $A \leq_{p} B$ for all $A \in N P$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem
- Significance: If one NP-Complete problem can be solved in poly-time, then all NP problems can be solved in poly-time

Recall: We always cast NP-Complete problems as decision problems

- Decision problems
- Given an input and a question regarding a problem, determine if the answer is yes or no
- Optimization problems
- Find a solution with the "best" value
- Interesting question:
- Let's presume that someone (amazingly) proves that $\mathrm{P}=\mathrm{NP}$.
- But, all the NP-complete (NPC) problems are expressed as decision problems.
- So, if $P=N P$, how can we make use of the poly-time algorithm that solves an NPC decision problem to also solve the optimization version of the same problem in poly-time?

Example: Using Poly-time alg. for decision problem to solve optimization problem in poly-time

Example: Show that if $\mathbf{P}=N P$, then there is a polynomial time algorithm that, given a Boolean formula ϕ, actually produces a satisfying assignment for ϕ (assuming ϕ is satisfiable).

Recall: Polynomial Reductions

- Reduction is a way of saying that one problem is no harder than another.
- We say that problem A is no harder than problem B, (i.e., we write " $\mathrm{A} \leq_{p} \mathrm{~B}$ ")
if we can solve A using the algorithm that solves B.
- Idea: transform the inputs of A to inputs of B in poly time

Problem A

Recall: Polynomial Reductions

- Given two problems A, B, we say that A is polynomially reducible to $B\left(A \leq_{p} B\right)$ if:

1. There exists a function f that converts the input of A
to inputs of B in polynomial time
2. $A(\alpha)=Y E S \Leftrightarrow B(f(\alpha))=Y E S$

Proving NP-Completeness In Practice

1) Prove that the new problem $B \in N P$
2) Show that one known NP-Complete problem,
A, can be transformed to B in polynomial time (i.e., $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$)

- Conclude that B is NP-Complete

Once one problem (SAT) shown to be NP-Complete, can show many others...

Example reductions (From CLRS, Ch. 34):

NP-Complete Problem: Circuit-SAT

- Circuit-SAT problem: Given a boolean combinational circuit, C , determine if there is a satisfying assignment to inputs such that the circuit's output is 1.
- CLRS proves this is NP-Complete (more next week)

Example circuit with satisfying assignment

NP-Complete Problem:

Satisfiability (SAT)

- Satisfiability problem: Given a logical expression ϕ, find an assignment of values (F, T) to variables x_{i} that causes ϕ to evaluate to T :

$$
\phi=x_{1} \vee \neg x_{2} \wedge x_{3} \vee \neg x_{4}
$$

- SAT was the historically first problem shown to be NP-complete
- Here, we'll presume CIRCUIT-SAT is known NPComplete (per CLRS), and prove SAT is NP-Complete by reduction

Prove SAT is NP-complete

- Step 1: SAT \in NP
- Argue that, given a certificate, you can verify that the certificate provides a solution in polynomial time
- Step 2: Show that some known NP-Complete problem is reducible in poly-time to SAT (i.e., $A \leq_{p} S A T$)
- What known NP-Complete problem do we choose?

Show Circuit-SAT \leq_{p} SAT

- What do we have to do?

1) Given an instance <C> of Circuit-SAT, define poly-time function f that converts $\langle\mathrm{C}\rangle$ to instance $\langle\phi\rangle$ of SAT
2) Argue that f is poly-time
3) Argue that f is correct (i.e., $<C>$ of Circuit-SAT is satisfiable iff $<\phi>$ of SAT is satisfiable)

- Here's a proposed poly-time reduction, f :
- For every wire x_{i} of C , define a variable x_{i} in the formula.
- Every gate can be expressed as: $x_{i} \leftrightarrow$ (boolean operations consistent with gate)
- The final formula ϕ is the conjunction (AND) of the circuit output variable and conjunction of all clauses describing the operation of each gate.

Example of reduction of Circuit-SAT to SAT

Here's an input instance $<\mathrm{C}>$ if Circuit-SAT:

Here's the result of $f(\mathrm{C})$, which gives instance $<\phi>$ of SAT:

$$
\begin{aligned}
\phi=x_{10} & \wedge\left(x_{10} \leftrightarrow\left(x_{7} \wedge x_{8} \wedge x_{9}\right)\right) \\
& \wedge\left(x_{9} \leftrightarrow\left(x_{6} \vee x_{7}\right)\right) \\
& \wedge\left(x_{8} \leftrightarrow\left(x_{5} \vee x_{6}\right)\right) \\
& \wedge\left(x_{7} \leftrightarrow\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right) \\
& \left.\wedge\left(x_{6} \leftrightarrow \neg x_{4}\right)\right) \\
& \wedge\left(x_{5} \leftrightarrow\left(x_{1} \vee x_{2}\right)\right) \\
& \wedge\left(x_{4} \leftrightarrow \neg x_{3}\right)
\end{aligned}
$$

Next, prove properties of f

- Argue that f is poly-time:
- Obvious -- Clearly the reduction can be done in poly time
- Argue that f is correct:
- C is satisfiable if and only if ϕ is satisfiable:
- \Rightarrow If C is satisfiable, then there is a satisfying assignment. This means that each wire of C has a well-defined value and the output of C is 1 . Thus, the assignment of wire values to variables in ϕ makes each clause in ϕ evaluate to 1 . So ϕ is 1 when C is satisfiable.
- \Leftarrow The reverse proof should also be done (i.e., if ϕ evaluates to 1 , then C must be satisfiable); proof mirrors the argument above.
- Since (1) SAT \in NP, and (2) Circuit-SAT \leq_{p} SAT, we conclude that SAT is NP-Complete.

Important note about reductions...

- Note that we never make use of the solution to a problem in creating reduction function f
- In the proof of correctness, we mention the solution of one problem helping us to get the solution of the other (if such a solution were known), based on our construction
- But, this solution is not used for the construction defined by f. Why?
- We don't know the solution, because finding it is an NP-complete problem.
- Thus, our reduction function could not be polynomial-time if it required solving an NP-complete problem to create the construction.
- The reduction function f must therefore work for any possible instance of the known NP-complete problem, but without knowledge of the solution.

Another NP-Complete Problem: CNF Satisfiability

- CNF is a special case of SAT
- ϕ is in "Conjuctive Normal Form" (CNF)
- "AND" of expressions (i.e., clauses)
- Each clause contains only "OR"s of the variables and their complements

$$
\text { E.g.: } \phi=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right)
$$

Another NP-Complete Problem: 3-CNF Satisfiability

3-CNF is a subcase of CNF problem:

- A literal in a boolean formula is an occurrence of a variable or its negation.
- CNF (Conjunctive Nornal Form) is a boolean formula expressed as AND of clauses, each of which is the OR of one or more literals.
- 3-CNF is a CNF in which each clause has exactly 3 distinct literals (a literal and its negation are distinct)
- Example:

$$
\begin{aligned}
& \Phi=\left(x_{1} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge \\
& \left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
\end{aligned}
$$

- Let us prove that 3-CNF is NP-Complete

Prove 3-CNF-SAT is NP-complete

- Step 1: 3-CNF-SAT \in NP
- Argue that, given a certificate, you can verify that the certificate provides a solution in polynomial time
- Step 2: Show that some known NP-Complete problem is reducible in poly-time to 3 -CNF-SAT (i.e., $\mathrm{A} \leq_{p} 3-C N F-S A T$)
- What known NP-Complete problem do we choose?

SAT $\leq_{\mathrm{p}} 3$-CNF-SAT

- What do we have to do?

1) Given an instance $\langle\phi>$ of SAT, define poly-time function f that converts $<\phi>$ to instance $<\phi^{\prime \prime \prime}>$ of SAT
2) Argue that f is poly-time
3) Argue that f is correct (i.e., $\left\langle\phi>\right.$ of SAT is satisfiable iff $\left\langle\phi^{\prime \prime \prime}\right\rangle$ of 3-CNF-SAT is satisfiable)

SAT $\leq_{p} 3-C N F-S A T$

- Proposed definition of f :

- Suppose ϕ is any boolean formula, Construct a binary parse tree, with literals as leaves and connectives as internal nodes.
- Introduce a variable y_{i} for the output of each internal nodes.
- Rewrite the formula to ϕ^{\prime} as the AND of the root variable and a conjunction of clauses describing the operation of each node.
- The result is that in ϕ^{\prime}, each clause has at most three literals.
- Change each clause into conjunctive normal form as follows:
- Construct a truth table
- Write the disjunctive normal form for all truth-table items evaluating to 0
- Using DeMorgans law to change to CNF.
- The resulting $\phi^{\prime \prime}$ is in CNF but each clause has 3 or fewer literals.
- Change 1 or 2-literal clauses into a 3-literal clause ϕ "' as follows:
- If a clause has one literal I, change it to $(/ \vee p \vee q) \wedge(I \vee p \vee \neg q) \wedge(/ \vee \neg p \vee q) \wedge$ ($\vee \neg p \vee \neg q)$.
- If a clause has two literals $\left(I_{1} \vee I_{2}\right)$, change it to $\left(I_{1} \vee I_{2} \vee p\right) \wedge\left(I_{1} \vee I_{2} \vee \neg p\right)$.

Example: Binary parse tree for:

$$
\phi=\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}
$$

$$
\begin{aligned}
\phi^{\prime}=y_{1} & \wedge\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right) \\
& \wedge\left(y_{2} \leftrightarrow\left(y_{3} \vee y_{4}\right)\right) \\
& \wedge\left(y_{4} \leftrightarrow \neg y_{5}\right) \\
& \wedge\left(y_{3} \leftrightarrow\left(x_{1} \rightarrow x_{2}\right)\right) \\
& \wedge\left(y_{5} \leftrightarrow\left(y_{6} \vee x_{4}\right)\right) \\
& \wedge\left(y_{6} \leftrightarrow\left(\neg x_{1} \leftrightarrow x_{3}\right)\right)
\end{aligned}
$$

Figure 34.11 The tree corresponding to the formula $\phi=\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$.

Example of Converting a 3-literal clause into CNF format

y_{1}	y_{2}	x_{2}	$\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right)$	
1	1	1	0	
1	1	0	1	Disjunctive Normal Form:
1	0	1	0	$\phi_{i}^{\prime}=\left(y_{1} \wedge y_{2} \wedge x_{2}\right) \vee\left(y_{1} \wedge \neg y_{2} \wedge x_{2}\right)$ 1 0^{2}
	0	0		
0	1	1	1	
0	1	0	0	Conjunctive Normal Form:
0	0	1	1	$\phi_{i}^{\prime \prime}=\left(\neg y_{1} \vee \neg y_{2} \vee \neg x_{2}\right) \wedge\left(\neg y_{1} \vee y_{2} \vee \neg x_{2}\right)$
0	0	0	1	$\wedge\left(\neg y_{1} \vee y_{2} \vee x_{2}\right) \wedge\left(y_{1} \vee \neg y_{2} \vee x_{2}\right)$

Figure 34.12 The truth table for the clause $\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right)$.

3-CNF-SAT is NP-complete

Now, prove correctness of f :

- First, prove reduction is poly time:
- From ϕ to ϕ^{\prime}, we introduce at most 1 variable and 1 clause per connective in ϕ.
- From ϕ^{\prime} to $\phi^{\prime \prime}$, we introduce at most 8 clauses for each clause in ϕ^{\prime}.
- From $\phi^{\prime \prime}$ to final 3-CNF, we introduce at most 4 clauses for each clause in ф".
- Then, prove reduction is correct - i.e., ϕ and resulting 3-CNF formula are equivalent:
- From ϕ to ϕ^{\prime}, keep equivalence by construction.
- From ϕ^{\prime} to $\phi^{\prime \prime}$, keep equivalence by construction.
- From ϕ " to final 3-CNF, keep equivalence by construction.

Since: (1) 3-CNF-SAT $\in N P$, and (2) SAT $\leq_{p} 3-C N F-S A T$, we conclude that 3-CNF-SAT is NP-Complete.

Another NP-Complete Problem: Clique

Clique Problem:

- Given: undirected graph $G=(\mathrm{V}, \mathrm{E})$
- Clique: a subset of vertices in $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, each pair of which is connected by an edge in E, i.e., a clique is a complete subgraph of G.
- Size of a clique: number of vertices it contains

Optimization problem:

- Find a clique of maximum size

Decision problem:

- Does G have a clique of size k ?
- Input instance = <G,k>

Prove Clique is NP-complete

- Step 1: Clique \in NP
- Argue that, given a certificate, you can verify that the certificate provides a solution in polynomial time
- Step 2: Show that some known NP-Complete problem is reducible in poly-time to Clique (i.e., $\mathrm{A} \leq_{p}$ Clique)
- What known NP-Complete problem do we choose?

$3-C N F-S A T \leq_{p}$ Clique

- What do we have to do?

1) Given an instance $\langle\phi\rangle$ of 3-CNF-SAT, define poly-time function f that converts $\langle\phi>$ to instance $<\mathrm{G}, \mathrm{k}>$ of Clique
2) Argue that f is poly-time
3) Argue that f is correct (i.e., $\langle\phi>$ of 3-CNF-SAT is satisfiable iff G has a Clique of size k)

3-CNF-SAT \leq_{p} Clique

- Reduction function f from 3-CNF-SAT to Clique:
- Suppose $\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}$ is a boolean formula in 3-CNF form with k clauses.
- We construct a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ as follows:
- For each clause $C_{r}=\left(I_{1}{ }^{r} \vee I_{2}{ }^{r} \vee I_{3}{ }^{r}\right)$, place a triple of $v_{1}{ }^{r}, v_{2}{ }^{r}, v_{3}{ }^{r}$ into V
- Place an edge between two vertices v_{i}^{r} and v_{j}^{s} when:
- $r \neq s$, that is v_{i}^{r} and v_{j}^{s} are in different triples, and
- Their corresponding literals are consistent, i.e, l_{i}^{r} is not negation of l_{j}^{s}.
- Our resulting instance of Clique is <G, k>
- Then we argue that ϕ is satisfiable if and only if G has a clique of size k.

Example reduction from $<\phi>$ to $<\mathrm{G}, \mathrm{k}>$:

$$
\phi=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

$$
C_{1}=x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Clique is NP-Complete

Now, prove correctness of f :

- First, prove reduction is poly time:
- Should be apparent - only create 3 variables per clause; do this k times
- Then, prove reduction is correct - i.e., ϕ is satisfiable if and only if G has a clique of size k :
- \Rightarrow If ϕ is satisfiable, then there exists a satisfying assignment that makes at least one literal in each clause evaluate to True. Pick one of these literals from each clause. Then consider the subgraph V^{\prime} consisting of the corresponding vertex of each such literal. For each pair, $v_{i}^{r}, v_{j}^{s} \in \mathrm{~V}^{\prime}$, where $r \neq s$, since l_{i}^{r}, l_{j}^{s} both evaluate to 1 , and l_{i}^{r} is not negation of l_{j}^{s}, then there must be an edge between v_{i}^{r} and v_{j}^{s}. So V^{\prime} is a clique of size k.
$-\Leftarrow$ If G has a clique V ' of size k, then V^{\prime} contains exactly one vertex from each triple. Assign all the literals corresponding to the vertices in V^{\prime} to True, and other literals to either True or False (i.e., they don't matter). Then each clause will evaluate to True. So ϕ is satisfiable.

Since: (1) Clique \in NP, and (2) $3-C N F-S A T \leq_{p}$ Clique, we conclude that Clique is NP-Complete.

Another NP-Complete Problem:

Vertex Cover

Vertex Cover Problem:

- Undirected graph G = (V, E)
- Vertex cover: a subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that each edge in the graph is covered by some vertex in V^{\prime} (i.e., if $(u, v) \in E$, then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both.)
- Size of a VC: number of vertices it contains

Optimization problem:

- Find a VC of maximum size

Decision problem:

- Does G have a VC of size k?
- Instance of VC = <G, k>

Prove Vertex-Cover is NP-complete

- Step 1: Vertex-Cover \in NP
- Argue that, given a certificate, you can verify that the certificate provides a solution in polynomial time
- Step 2: Show that some known NP-Complete problem is reducible in poly-time to Vertex-Cover (i.e., $\mathrm{A} \leq_{\mathrm{p}}$ Vertex-Cover)
- What known NP-Complete problem do we choose?

Clique \leq_{p} Vertex-Cover

- What do we have to do?

1) Given an instance $<G, k>$ of Clique, define poly-time function f that converts < G, k>to instance < $\mathrm{G}^{\prime}, \mathrm{k}^{\prime}>$ of Vertex-Cover
2) Argue that f is poly-time
3) Argue that f is correct (i.e., G has a clique of size k iff G^{\prime} has a vertex cover of size k)

Clique \leq_{p} Vertex Cover

- Reduction f, from Clique to Vertex Cover:
- Convert G(V, E) to complement graph $\mathrm{G}^{\prime}\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$:
- The edges E^{\prime} of G^{\prime} contain only those edges not in E
- Output vertex cover instance <G', |V|-k>
- Then we argue that G has a clique of size k iff G^{\prime} has a vertex cover of size $|\mathrm{V}|-k$

Proof of correctness of f

Now, prove correctness of f :

- First, prove reduction is poly time; straight-forward

Next, prove reduction is correct - i.e., G has a clique of size k iff G ' has a vertex cover of size $|\mathrm{V}|-k$

- $\Rightarrow \mathrm{If} \mathrm{G}$ has a clique of size k, G^{\prime} has a vertex cover of size $|\mathrm{V}|-k$
- Let V^{\prime} be the k-clique
- Then V - V^{\prime} is a vertex cover in G^{\prime}
- Let (u, v) be any edge in G^{\prime}. Then u and v cannot both be in V^{\prime} (Why?)
- Thus at least one of u or v is in $V-V^{\prime}(w h y$?), so edge (u, v) is covered by $V-V^{\prime}$
- Since this is true for any edge in $\mathrm{G}^{\prime}, \mathrm{V}-\mathrm{V}^{\prime}$ is a vertex cover.

Vertex-Cover is NP-Complete (con't)

- \Leftarrow If G^{\prime} has a vertex cover $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, with $\left|\mathrm{V}^{\prime}\right|=|\mathrm{V}|-k$, then G has a clique of size k
- For all $u, v \in \mathrm{~V}$, if $(u, v) \in \mathrm{G}^{\prime}$ then $u \in \mathrm{~V}^{\prime}$ or $v \in \mathrm{~V}^{\prime}$ or both (why?)
- Contrapositive: if $u \notin \mathrm{~V}^{\prime}$ and $v \notin \mathrm{~V}^{\prime}$, then $(u, v) \in \mathrm{E}$
- In other words, all vertices in $\mathrm{V}-\mathrm{V}^{\prime}$ are connected by an edge, thus $V-V^{\prime}$ is a clique
- Since $|\mathrm{V}|-\left|\mathrm{V}^{\prime}\right|=k$, the size of the clique is k
- Thus we conclude that G has a clique of size k iff G^{\prime} has a vertex cover of size $|\mathrm{V}|-k$

Since: (1) Vertex-Cover $\in N P$, and (2) Clique \leq_{p} Vertex-Cover, we conclude that Vertex-Cover is NP-Complete.

Reading Assignments

- Next class:
- Chapter 34.3
- Looking more deeply at reductions

