
Today:
− NP-Completeness (con’t.)

COSC 581, Algorithms
April 22, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 34.5 (con’t.)

Recall: Proving NP-Completeness In Practice

1) Prove that the new problem B ∈ NP

2) Show that one known NP-Complete problem,

A, can be transformed to B in polynomial

time (i.e., A ≤p B)

• Conclude that B is NP-Complete

Once one problem (SAT) shown to be
NP-Complete, can show many others…

Example reductions (From CLRS, Ch. 34):

Subset-Sum is NP Complete
 Subset-Sum Problem:

– Given: finite set S of positive integers and integer target t > 0
(That is, input instance is <S, t>)

– Question: Is there a subset S’ ⊆ S such that 𝑡 = ∑ 𝑠𝑠∈𝑆′

Proving NP-Completeness:
• Step 1: Subset-Sum ∈ NP

– Argue that, given a certificate, you can verify that the certificate provides a

solution in polynomial time

• Step 2: Show that some known NP-Complete problem is reducible
in poly-time to Subset-Sum (i.e., A ≤p Subset-Sum)

– What known NP-Complete problem do we choose?

3-CNF-SAT ≤p Subset-Sum
• What do we have to do?

1) Given an instance < φ > of 3-CNF-SAT, define poly-
time function f that converts < φ > to instance < S, t >
of Subset-Sum

2) Argue that f is poly-time
3) Argue that f is correct (i.e., φ is satisfiable iff S has a

subset that sums to t)

3-CNF-SAT ≤p Subset-Sum
Reduction function f from 3-CNF-SAT to Subset-Sum:
• Given a 3-CNF formula φ=C1∧ C2∧… ∧Ck with literals x1, x2,…, xn, construct a Subset-Sum

instance as follows:
– Two assumptions about φ (WLOG): (1) no clause contains both a literal and its

negation; (2) every variable appears in at least one clause.
– The numbers in S are in base 10 and have n+k digits; each digit corresponds to (or

is labeled by) a literal or a clause.
– Target t=1…1||4…4 (i.e., n 1’s and k 4’s)
– For each variable xi, create two integers:

• vi =0…01(i)0…0||0…01(l)0…01(w)0…0, where xi appears in Cl,…,Cw.
• vi'=0…01(i)0…0||0…1(m)0……01(p)0…0, where ¬xi appears in Cm,…,Cp.
• Clearly, vi and vi' can not be equal in right k digits; moreover all vi and vi' in S

are distinct.
– For each clause Cj, create two integers:

• sj=0…0||0…01(j)0…0,
• sj'=0…0||0…02(j)0…0.
• all sj and sj' are called “slack variables”. Clearly, all sj and sj' in S are distinct.

– Note: the sum of digits in any one digit position is 2 or 6, so there will never be
carries when adding any subset of the above integers.

Example:
𝜙 = 𝐶1 ∧ 𝐶2 ∧ 𝐶3 ∧ 𝐶4

𝐶1 = 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3

 𝐶2 = ¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3
𝐶3 = ¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3
𝐶4 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

Satisfying assignment for 𝜙 :
𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 1

S= {all 14 numbers in table}
t = 1114444

Satisfying assignment for <S, t>
is lightly shaded numbers from S

Subset-Sum is NP Complete
Now, prove correctness of f:

First, prove reduction is poly time:

Should be apparent – set contains 2n + 2k values; each has n + k digits; time to
produce each is polynomial in n + k.

Then, prove reduction is correct:
• The 3-CNF formula φ is satisfiable iff there is a subset S' of S whose sum is t.

⇒ Suppose φ has a satisfying assignment.
• Then for i=1,…,n, if xi=1 in the assignment, then vi is put in S', otherwise, vi' is put in S'.
• The digits labeled by literals will sum to 1.
• Moreover, for each digit labeled by a clause Cj , there may be 1, 2, or 3 assignments that are 1.
• Correspondingly, both sj and sj' , or sj', or sj , is added to S' to make the sum of the digits be 4.
• So S' will sum to 1…1 4…4.

⇐ Suppose there is a S' which sums to 1…1 4…4.

• Then S' contains exactly one of vi and vi' for i =1,…,n. If vi∈ S', then set xi=1, otherwise, vi'∈ S', so
set xi = 0.

• It can be seen that this assignment makes each clause of φ evaluate to 1. So φ is satisfiable.

Since (1) Subset-Sum ∈ NP, and (2) 3-CNF-SAT ≤p Subset-Sum, then Subset-Sum is NP-Complete

Hamiltonian Cycle is NP-Complete

Hamiltonian Cycle Problem: Given a graph <G>, does it contain a cycle
that includes all of the vertices in G?

Proving NP-Completeness:
Step 1: Ham-Cycle ∈ NP

Argue that, given a certificate, you can verify that the certificate
provides a solution in polynomial time

Step 2: Show that some known NP-Complete problem is reducible in
poly-time to Ham-Cycle (i.e., A ≤p Ham-Cycle)

What known NP-Complete problem do we choose?

Vertex-Cover ≤p Ham-Cycle

What do we have to do?
1) Given an instance < G, k > of Vertex-Cover, define poly-

time function f that converts < G, k > to instance < G’ > of
Ham-Cycle

2) Argue that f is poly-time
3) Argue that f is correct (i.e., G has a vertex cover of size k iff

G’ has a Hamiltonian Cycle)

Vertex-Cover ≤p Ham-Cycle
Reduction function f from Vertex-Cover to Ham-Cycle:

For every edge in the Vertex Cover problem (in G), we must reduce it to
a “widget” in the Hamiltonian Cycle Problem (in G’):

 v u

[u,v,1]

[u,v,2]

[u,v,3]

[u,v,4]

[u,v,5]

[u,v,6]

[v,u,1]

[v,u,2]

[v,u,3]

[v,u,4]

[v,u,5]

[v,u,6]

Wuv

Observations….

There are only three possible ways that a cycle can include all of the
vertices in this widget.

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

Wuv

Wuv

Joining Widgets

All widgets that represent edges
adjacent to u are strung together into a
chain, according to an arbitrary ordering
of the adjacent vertices.

We also have to connect chains to
selector vertices (coming up soon…)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

Wwu

Wux

[w,u,1]

[w,u,6]

[u,w,1]

[u,w,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

 v u

 w x

 Adjacency:
 u → v, w, x

Means we connect:
 [u,v,6] with [u,w,1],
 [u,w,6] with [u,x,1]

v u
y w

x z

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

 Adjacencies:
y → v (no additional edge needed)
v → y, u, z
u → w, v, x
w → u (no additional edge needed)
x → u (no additional edge needed)
z → v (no additional edge needed)

Tying the Chains Together
Since we want to know if its possible to cover the original graph using
only k vertices, this would be the same as seeing if we can include all of
the vertices using only k chains.

How can we include exactly k chains in the Hamiltonian Cycle problem?

We must add k extra vertices and connect each of them to the
beginning and end of every chain. Since each vertex can only be
included once, this allows k chains in the final cycle.

Beginning a Transform

The Final Transform

v u
y w

x z

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

 Adjacencies:
y → v
v → y, u, z
u → w, v, x
w → u
x → u
z → v

s1

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

s2

 Adjacencies:
y → v
v → y, u, z
u → w, v, x
w → u
x → u
z → v

Plus, similar edges into s2

s1

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

s2

 Adjacencies:
y → v
v → y, u, z
u → w, v, x
w → u
x → u
z → v

Plus, similar edges into s2

s

Vertex-Cover ≤p Ham-Cycle
Now, prove correctness of f:

• First, prove reduction is poly time:

– # vertices in G’:

• There are 12 vertices for each edge in G, plus k selector vertices (where
k < |V|)

• So, we have |V’| ≤ 12|E| + k

– # edges in G’:

• 14|E| for widgets

• ∑ degree 𝑢 − 1 = 2 E − |V|𝑢∈𝑉 edges between widgets

• 2 edges connecting each selector vertex and each vertex

• So, we have 𝐸′ ≤ 16 𝐸 + 2 𝑉 − 1 𝑉

Vertex-Cover ≤p Ham-Cycle
Then, prove reduction is correct:

⇒ If G has a vertex cover of size k, then G’ has a Hamiltonian Cycle.
Given the vertex cover, we can find the Hamiltonian Cycle – see next
slide.

s1

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

s2

 Adjacencies:
y → v
v → y, u, z
u → w, v, x
w → u
x → u
z → v

Vertex Cover is {u, v}

s

Vertex-Cover ≤p Ham-Cycle
Then, prove reduction is correct:

⇒ If G has a vertex cover of size k, then G’ has a Hamiltonian
Cycle. Given the vertex cover, we can find the Hamiltonian
Cycle

⇐ If G’ has a Hamiltonian Cycle, then G has vertex cover of size k.
We can select the vertex cover as the vertices u connected
from sj to [u, _, 1] (see next slide)

s1

Wyv Wuw

Wvu

Wzv Wux

[y,v,1]

[y,v,6]

[v,y,1]

[v,y,6]

[u,w,1]

[u,w,6]

[w,u,1]

[w,u,6]

[v,u,1]

[v,u,6]

[u,v,1]

[u,v,6]

[z,v,1]

[z,v,6]

[v,z,1]

[v,z,6]

[u,x,1]

[u,x,6]

[x,u,1]

[x,u,6]

s2

 Adjacencies:
y → v
v → y, u, z
u → w, v, x
w → u
x → u
z → v

Vertex Cover is {u, v}

s

Vertex-Cover ≤p Ham-Cycle
Then, prove reduction is correct:

⇒ If G has a vertex cover of size k, then G’ has a Hamiltonian
Cycle. Given the vertex cover, we can find the Hamiltonian
Cycle

⇐ If G’ has a Hamiltonian Cycle, then G has vertex cover of size k.
We can select the vertex cover as the vertices u connected
from sj to [u, _, 1] (see next slide)

Since (1) Ham-Cycle ∈ NP, and (2) Vertex-Cover ≤p Ham-Cycle,
then Ham-Cycle is NP-Complete. [WHEW!]

Traveling-salesman problem is NP Complete
TSP Problem:
 Instance of TSP: <G,c,k>, where:

 G=(V,E) is a complete graph,
 c is a function from V×V→Z,
 k∈Z, and G has a traveling salesman tour with cost at most k.}

Proving NP-Completeness:
• Step 1: TSP ∈ NP

– Argument: given a certificate of a sequence of vertices in the tour,
the verifying algorithm checks whether each vertex appears once,
and that the sum of the costs is at most k. Can be done in poly-time.

• Step 2: Show that some known NP-Complete problem is reducible in

poly-time to TSP (i.e., A ≤p TSP)

– What known NP-Complete problem do we choose?

Ham-Cycle ≤p TSP
• What do we have to do?

1) Given an instance < G > of Ham-Cycle, define poly-time
function f that converts < G > to instance < G’, c, k > of TSP

2) Argue that f is poly-time
3) Argue that f is correct (i.e., G has a Hamiltonian Cycle iff G has

a traveling salesman tour of weight at most k, according to
cost function c)

Ham-Cycle ≤p TSP

Reduction function f from Ham-Cycle to TSP:

• Given an instance G=(V,E) of HAM-CYCLE, construct a TSP
instance <G',c,0) as follows:

– G'=(V,E'), where E'={<i,j>: i,j∈ V and i≠j}

– Cost function c is defined as:

𝑐 𝑖, 𝑗 = �0 if (𝑖, 𝑗) ∈ 𝐸
1 if (𝑖, 𝑗) ∉ 𝐸

Ham-Cycle ≤p TSP
Now, prove correctness of f:

• First, prove reduction is poly time:

– Size of G’ is polynomial in G. Cost function is polynomial in G.

Then, prove reduction is correct:

⇒ If G has a Hamiltonian cycle h, then h is also a tour in G' with cost at
most 0.

⇐ If G' has a tour h' of cost at most 0, then each edge in h' has weight
0. This means that each edge belongs to E, so h' is also a
Hamiltonian cycle in G.

Since (1) TSP ∈ NP, and (2) Ham-Cycle ≤p TSP then TSP is NP-Complete.

The Art of Proving Hardness

Proving that problems are hard is a skill. Once you get the hang of it, it
becomes much more straightforward and intuitive.

Indeed, the hidden secret of NP-completeness proofs is that they are
usually easier to recreate than explain, in the same way that it is usually
easier to rewrite old code than to try to understand it.

Guideline 1
Make your source problem as simple as possible.

Never try to reduce the general Traveling Salesman Problem to prove
hardness. Better, use Hamiltonian Cycle. Even better, don’t worry
about closing the cycle, and use Hamiltonian Path.

If you are aware of simpler NP-Complete problems, you should always
use them instead of their more complex variants. When reducing
Hamiltonian Path, you could actually demand the graph to be directed,
planar or even 3-regular if any of these make an easier reduction
(since all these variants are also NP-Complete).

Guideline 2

Make your target problem as hard as possible.

Don’t be afraid to add extra constraints or freedoms in order to make
your problem more general.

Perhaps you are trying to prove a problem NP-Complete on an
undirected graph. If you can prove it using a directed graph, do so, and
then come back and try to simplify the target, modifying your proof.
Once you have one working proof, it is often (but not always) much
easier to produce a related one.

Guideline 3
Select the right source problem for the right reason.

3-SAT: The old reliable. When none of the other problems seem to
work, this is the one to come back to.

Vertex Cover: This is the answer for any graph problems whose
hardness depends upon selection.

Hamiltonian Path: This is the proper choice for most problems whose
answer depends upon ordering.

Integer Partition: This is the primary choice for problems whose
hardness requires using large numbers.

[In the Integer Partition problem, you’re given a set of positive integers S, and
you want to know whether S can be partitioned into 2 subsets S1 and S2, such
that the sums of S1 and S2 are the same.]

Guideline 4

Amplify the penalties for making the undesired selection.

If you want to remove certain possibilities from being considered, it is
usually possible to assign extreme values to them, such as zero or infinity.

For example, we can show that the Traveling Salesman Problem is still
hard on a complete graph by assigning a weight of infinity to those edges
that we don’t want used.

Guideline 5

Think strategically at a high level, and then build gadgets to enforce
tactics.

You should be asking yourself the following types of questions: “How
can I force that either A or B, but not both are chosen?” “How can I force
that A is taken before B?” “How can I clean up the things that I did not
select?”

After you have an idea of what you want your gadgets to do, you can
start to worry about how to craft them. The reduction to Hamiltonian
Path is a perfect example.

Guideline 6
When you get stuck, alternate between looking for an algorithm or a
reduction.

Sometimes the reason you cannot prove hardness is that there exists
an efficient algorithm that will solve your problem! Techniques such as
dynamic programming or reducing to polynomial time graph problems
sometimes yield surprising polynomial time algorithms.

Whenever you can’t prove hardness, it likely pays to alter your opinion
occasionally to keep yourself honest.

Reading Assignments

• Next class:
– Chapter 34.3

• Circuit-SAT proof of NP-Completeness

	Today: �− NP-Completeness (con’t.)
	Reading Assignments
	Recall: Proving NP-Completeness In Practice
	Once one problem (SAT) shown to be �NP-Complete, can show many others…
	Subset-Sum is NP Complete
	3-CNF-SAT p Subset-Sum
	3-CNF-SAT p Subset-Sum
	Example:
	Subset-Sum is NP Complete
	Hamiltonian Cycle is NP-Complete
	Vertex-Cover p Ham-Cycle
	Vertex-Cover p Ham-Cycle
	Observations….
	Joining Widgets
	Slide Number 15
	Tying the Chains Together
	Beginning a Transform
	The Final Transform
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Vertex-Cover p Ham-Cycle
	Vertex-Cover p Ham-Cycle
	Slide Number 24
	Vertex-Cover p Ham-Cycle
	Slide Number 26
	Vertex-Cover p Ham-Cycle
	Traveling-salesman problem is NP Complete
	Ham-Cycle p TSP
	Ham-Cycle p TSP
	Ham-Cycle p TSP
	The Art of Proving Hardness
	Guideline 1
	Guideline 2
	Guideline 3
	Guideline 4
	Guideline 5
	Guideline 6
	Reading Assignments

