
Today:  
− NP-Completeness wrapup 
− Brief insights into approximation algs  
 

COSC 581, Algorithms 
April 24, 2014 

Many of these slides are adapted from several online sources 



Announcement 

• Final Exam: 
– Wednesday, April 30, 10:15AM – 12:15PM 
– This room (MK 525) 
– Exam Content: 

• 75% of exam will be on multithreaded algorithms, 
linear programming, NP-completeness 

• 25% of exam will be comprehensive 



Reading Assignments 

• Today’s class:  
– Chapter 34.3 
– Chapter 35.1 (quick look) 

 



Need to show a “First” NP-complete problem: 
Circuit Satisfiability 

• Circuit-SAT problem:  Given a Boolean combinational circuit, 
determine if there is a satisfying assignment to inputs such that 
the circuit’s output is 1. 
 

Example circuit with satisfying assignment 

Implication: In the area of 
computer-aided hardware 
optimization, if a subcircuit 
always produces 0, then the 
subcircuit can be replaced 
by a simpler subcircuit that 
omits all gates and just 
outputs a 0. 



Circuit-satisfiability problem  
is NP-complete 

• We can show that CIRCUIT-SAT ∈ NP. 
• Proof: CIRCUIT-SAT is poly-time verifiable. 

– Given: (an encoding of) a CIRCUIT-SAT problem C and a 
certificate, which is an assignment of boolean values to (all) 
wires in C. 

– Verification algorithm:  check each gate and output wire of C:  
• If for every gate, the computed output value matches the 

value of the output wire given in the certificate and  the 
output of the whole circuit is 1, then the algorithm outputs 
1, otherwise 0. 

– This algorithm is executed in linear (i.e., polynomial) time.  



Circuit-satisfiability problem  
is NP-complete (cont.) 

• For the “first” NP-complete problem, we must show: 
– A problem B (i.e., Circuit-Sat) is NP-complete if: 

  (1) Circuit-Sat ∈ NP     //We just showed this 

  (2) X ≤p Circuit-Sat, for all X ∈ NP 
 

• How to do (2)? 
– Construct a poly-time algorithm f that maps every problem 

instance x in X to a circuit C=f(x) such that the answer to x is 
YES if and only if C∈CIRCUIT-SAT (i.e., C is satisfiable). 
 



Circuit-satisfiability problem 
is NP-hard (cont.) 

• Since  X∈NP, there is a poly-time algorithm A that verifies X. 
• Suppose the input length is n. 
• Let T(n) denote the worst-case running time.  
• Let k be the constant such that T(n)=O(nk) and the length of the 

certificate is O(nk). 
 



Circuit-satisfiability problem 
is NP-hard (cont.) 

• Idea is to represent the computation of A as a sequence 
of configurations, c0, c1,…,ci,ci+1,…,cT(n) 

• Each ci can be broken into:  
– (program for A, program counter PC, auxiliary machine state, input x,  

certificate y, working storage) and  
– ci is mapped to ci+1 by the combinational circuit M implementing 

the computer hardware. 
– The output of A (i.e., 0 or 1) is written to some designated 

location in working storage. 
– If the algorithm runs for at most T(n) steps, the output appears 

as one bit in cT(n). 
– Note: A(x,y)=1 or 0. 



Circuit-satisfiability problem  
is NP-hard (cont.) 

• The reduction algorithm F constructs a single 
combinational circuit C as follows: 
– Paste together all T(n) copies of the circuit M. 
– The output of the i th circuit, which produces ci, is directly 

fed into the input of the (i+1)st circuit. 
– All items in the initial configuration, except the bits 

corresponding to certificate y, are wired directly to their 
known values. 

– The bits corresponding to y are the inputs to C. 
– All the outputs to the circuit are ignored, except the one 

bit of cT(n) corresponding to the output of A.   



Sequence of 
configurations 
produced by A 
when running 
on input x and 

certificate y 



Circuit-satisfiability problem 
is NP-hard (cont.) 

• Two properties remain to be proven: 
1) F correctly constructs the reduction, i.e., C is 

satisfiable if and only if there exists a 
certificate y, such that A(x,y)=1. 
⇐ Suppose there is a certificate y, such that A(x,y)=1. 

Then if we apply the bits of y to the inputs of C, 
the output of C is the bit of A(x,y), that is C(y)= 
A(x,y) =1, so C is satisfiable.  

⇒ Suppose C is satisfiable, then there is a y such that 
C(y)=1. So, A(x,y)=1. 



Circuit-satisfiability problem  
is NP-hard (cont.) 

2) F runs in poly time: 
• Poly space: 

– Size of x is n. 
– Size of A is constant, independent of x. 
– Size of y is O(nk). 
– Amount of working storage is poly in n since A runs at most O(nk).  
– M has size poly in length of configuration, which is poly in O(nk), and 

hence is poly in n. 
– C consists of at most O(nk) copies of M, and hence is poly in n. 
– Thus, the C has poly space. 

• The construction of C takes at most O(nk) steps and each step takes 
poly time, so F takes poly time to construct C from x. 



CIRCUIT-SAT is NP-complete 

• In summary 
– CIRCUIT-SAT belongs to NP, verifiable in poly time. 
– CIRCUIT-SAT is NP-hard, since every NP problem 

can be reduced to CIRCUIT-SAT in poly time. 
– Thus CIRCUIT-SAT is NP-complete. 



Coping With NP-Hardness 
Brute-force algorithms: 

• Develop clever enumeration strategies 
• Guaranteed to find optimal solution 
• No guarantees on running time 

 
Heuristics: 

• Develop intuitive algorithms 
• Guaranteed to run in polynomial time 
• No guarantees on quality of solution 

 
Approximation algorithms: 

• Guaranteed to run in polynomial time. 
• Guaranteed to find "high quality" solution, say within 1% of 

optimum 
• Obstacle:  need to prove a solution's value is close to optimum, 

without even knowing what the optimum value is! 



Approximation Algorithms 
• Suppose we want to find a *minimum* cost solution to some 

problem (e.g., smallest vertex cover, minimum cost tour of a 
graph, etc.) 

• We define the relative cost of the solution S to be 

 Cost(S)/Cost(S*) 

     where S* is the best solution. 

• An algorithm has ratio r if it always returns a solution with 
relative cost at most r. 

• An algorithm that has ratio r is called an “r-approximation 
algorithm” 

 



Approximation Algorithms 
and Schemes 

ρ-approximation algorithm: 
• An algorithm A for problem X that runs in polynomial time 
• For every problem instance, A outputs a feasible solution within 

ratio ρ of true optimum for that instance 
 
Polynomial-time approximation scheme (PTAS). 

• A family of approximation algorithms {Aε  :  ε > 0} for a problem X 
• Aε is a (1 + ε) - approximation algorithm for X 
• Aε runs in time polynomial in the input size for a fixed ε 

 
Fully polynomial-time approximation scheme (FPTAS) 

• PTAS where Aε is runs in time polynomial in input size and 1 / ε . 



Lots of Approximation Algs 
Examples: 
 

• Vertex Cover (finding a set of vertices that include at least one 
endpoint of every edge) 

 
• Traveling Salesman (finding a minimum cost tour in an edge-

weighted graph) 
 

• Set-covering (finding subset of sets that covers given elements) 
 

• Max-3-CNF Sat (finding max number of clauses that are 
satisfiable) 
 

• Subset-Sum (finding subset of S that gets as close to t as 
possible without being greater than t) 
 
 



Vertex Cover 
For graph G = (V, E), a subset S of the vertices is a vertex cover if 
every edge in E has at least one endpoint in S. 
 

S = {2,3,7} is a vertex cover 
S = {1,2,3,4,5} is not a vertex cover 
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Minimum Vertex Cover 
{2,3,6,7} is a minimum vertex cover for this graph. 
 
We already know that finding a minimum vertex cover is NP-hard 
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2-approximation to Vertex Cover 

 
APPROX-VERTEX-COVER(G) 

C = ∅ 
E’ = G.E 
while E’ ≠ ∅ 
 let (u,v) be an arbitrary edge of E’ 
 C = C ∪{u,v} 
 remove from E’ every edge incident on either u or v 
return C 

 
 



Example: Approx. Vertex Cover 
Pick edge (1, 2).  C = {1, 2} 
Pick edge (3, 6).  C = {1, 2, 3, 6} 
Pick edge (4, 7).  C = {1, 2, 3, 6, 4, 7} 
 
The minimum vertex cover is {2,3,7}, and has 3 vertices.  
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Proof that APPROX-VC is 2-approx. alg 

S is a VC:  The set C of vertices returned must be a VC, since the alg. loops 
until every edge has been covered by some vertex in C. 
 
|C| ≤ 2|C*|:  Let A be the set of edges that line 4 of algorithm picked.  In 
order to cover the edges in A, any VC must include at least 1 endpoint of 
each edge in A.  No two edges in A share an endpoint.  Thus, no 2 edges in 
A are covered by the same vertex from C*.  This implies that |C*| ≥|A|.  
The size of the VC cover returned is |C| = 2|A|.  Combining, we get:      
|C| = 2|A| ≤ 2|C*|.  Thus, Approx-Vertex-Cover is a 2-approximation alg. 
 

APPROX-VERTEX-COVER(G) 
C = ∅ 
E’ = G.E 
while E’ ≠ ∅ 
 let (u,v) be an arbitrary edge of E’ 
 C = C ∪{u,v} 
 remove from E’ every edge incident 
on either u or v 
return C 



Lots of techniques for Approx. Algs 

• The vertex cover approximation gives you an 
idea of how the approach would work. 



Some top journals in algorithms 

• SIAM Journal on Computing 
• Automatica 
• Theoretical Computer Science 
• Journal of Computer and System Sciences 
• Algorithmica 
• Journal of Algorithms 
• Discrete Applied Mathematics 



Some top conferences in algorithms 

• ACM Symposium on Theory of Computing 
• IEEE Symposium on Foundations of CS 
• ACM-SIAM Symposium on Discrete Algorithms 
• International Colloquium on Automata, 

Languages, and Programming 
• Symposium on Theoretical Aspects of CS 
• Mathematical Foundations of CS 

 



Example titles of current (2013-2014) 
research in SIAM Journal of Computing 

• “On a linear program for minimum-weight triangulation” 
• “Distributed (δ+1)-coloring in linear (δ) time” 
• “New lower bounds for the rank of matrix multiplication” 
• “Deterministic algorithms for the Lovasz local lemma” 
• “On the insertion time of cuckoo hashing” 
• “On the power of randomization in algorithmic mechanism design” 
• “Adding one edge to planar graphs makes crossing number and 1-planarity hard” 
• “Jaywalking your dog:  Computing the Frechet distance with shortcuts” 
• “An algebraic theory of complexity for discrete optimization” 
• “On the complexity of package recommendation problems” 
• “On the NP-hardness of Max-Not-2” 
• “Characterizing truthful mluti-armed bandit mechanisms” 
• “Approaching optimality for solving SDD linear systems” 
• “NP-hardness of approximately solving linear equations over reals” 
• “LDFS-based certifying algorithm for the minimum path cover problem on 

cocomparability graphs” 
• “Set covering with our eyes closed” 
• “Computing the girth of a planar graph in linear time” 
• “Computing shortest paths and convex pseudodisks” 



• See you at the final exam! – Wed., 10:15AM  
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