
Today:
− Master Method
− Matrix Multiplication
− Strassen’s Alg. For Matrix Mult.

COSC 581, Algorithms
January 16, 2014

Reading Assignments

• Today’s class:
– Chapter 4.2, 4.5

• Reading assignment for next class:

– Chapter 4.1, 15.1

Recurrence Relations
• Equation or an inequality that characterizes a

function by its values on smaller inputs.
• Solution Methods (Chapter 4)

– Substitution Method.
– Recursion-tree Method.
– Master Method.

• Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.

The Master Method
• Based on the Master theorem.
• “Cookbook” approach for solving recurrences of

the form
 T(n) = aT(n/b) + f(n)

• a ≥ 1, b > 1 are constants.
• f(n) is asymptotically positive.
• n/b may not be an integer, but we ignore floors and

ceilings.

– Requires memorization of 3+ cases.

The Master Theorem
Theorem 4.1
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.
T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–ε) for some constant ε > 0, then T(n) = Θ(nlogba).
2. If f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n).
3. If f(n) = Ω(nlogba+ε) for some constant ε > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)).

Recursion tree view

Θ(1)

f(n)

f(n/b) f(n/b) f(n/b)

f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2)

a

a a a
…

… … …

a a a a a a

… … … … … …

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

f(n)

af(n/b)

a2f(n/b2)

Θ(nlogba)

Total: ∑
−

=

+Θ=
1log

0

log)/()()(
n

j

jja
b

b bnfannT

The Master Theorem
Theorem 4.1
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.
T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–ε) for some constant ε > 0, then T(n) = Θ(nlogba).
2. If f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n).
3. If f(n) = Ω(nlogba+ε) for some constant ε > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)).

Recurrences

• Three basic behaviors
– Dominated by initial case
– Dominated by base case
– All cases equal – we care about the depth

Gaining intuition on recurrences

Work per level changes geometrically with the level
• Geometrically increasing (dominated by leaves)

– The bottom level wins

• Balanced (sum of internal nodes equal to leaves)
– Equal contribution

• Geometrically decreasing (dominated by root)
– The top level wins

Master Theorem – Case 1
• Case 1: If f(n) = O(nlogba–ε) for some constant ε > 0,

then T(n) = Θ(nlogba).
– nlogba = alogbn : Number of leaves in the recursion tree.
– f(n) = O(nlogba–ε) ⇒ Sum of the cost of the nodes at each

internal level asymptotically smaller than the cost of leaves
by a polynomial factor.

– Cost of the problem dominated by leaves, hence cost is
Θ(nlogba).

Master Theorem – Case 2
• Case 2: If f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n).

– nlogba = alogbn : Number of leaves in the recursion tree.
– f(n) = Θ(nlogba) ⇒ Sum of the cost of the nodes at each

level asymptotically the same as the cost of leaves.
– There are Θ(lg n) levels.

– Hence, total cost is Θ(nlogba lg n).

Master Theorem – Case 3
• Case 3: If f(n) = Ω(nlogba+ε) for some constant ε > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b) ≤ c f(n),

 then T(n) = Θ(f(n)).

– nlogba = alogbn : Number of leaves in the recursion tree.
– f(n) = Ω(nlogba+ε) ⇒ Cost is dominated by the root. Cost of

the root is asymptotically larger than the sum of the cost
of the leaves by a polynomial factor.

– Hence, cost is Θ(f(n)).

Master Theorem – Case 3
• Case 3: If f(n) = Ω(nlogba+ε) for some constant ε > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b) ≤ c f(n),

 then T(n) = Θ(f(n)).

• Regularity condition means that total work increases as you
go to larger problems
– Examples that obey regularity condition:

 Polynomials (𝑛𝑘)
 Polylogarithmic functions (lg2𝑛)
 Exponentials (2𝑛)
 Factorial functions (𝑛!)

– Example that doesn’t obey regularity:
 Functions that include trigonometrics (𝑛1+sin 𝑛)

Regularity condition

Master Method – Examples

• T(n) = 16T(n/4)+n

• T(n) = T(3n/7) + 1

Master Method – Examples

• T(n) = 16T(n/4)+n

• T(n) = T(3n/7) + 1

The Master Theorem
Theorem 4.1
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.
T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–ε) for some constant ε > 0, then T(n) = Θ(nlogba).
2. If f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n).
3. If f(n) = Ω(nlogba+ε) for some constant ε > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)).

Gaps where Master Method
doesn’t apply

Master Recurrence Special Case
If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘𝑛) for 𝑘 ≥ 0, then recurrence has
solution:
 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘+1𝑛)

• Previous Example:T(n) = 2T(n/2) + n lg n

– a = 2, b=2, nlogba = nlog22 = n, f(n) = n lg n
– Master Method doesn’t apply

– But, Special case applies, where k = 1

Solution:
• 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘+1𝑛)
• 𝑇 𝑛 = Θ(𝑛 lg2𝑛)

Back to Divide and Conquer…

• Matrix multiplication

Basic Matrix Multiplication
void matrix_mult (){

 for (i = 1; i <= n; i++) {

 for (j = 1; j <= n; j++) {
 compute ci,j;

 }}}

Standard matrix
multiplication
algorithm

Time analysis:

𝑐𝑖,𝑗 = �𝑎𝑖𝑘𝑏𝑘𝑗

𝑛

𝑘=1

𝛩 𝑛2 entries, each of which requires 𝛩(𝑛)
work to calculate runtime = 𝛩(𝑛3)

Matrix Multiplication
using Divide and Conquer

• Basic divide and conquer method:
To multiply two n x n matrices, A x B = C, divide
into sub-matrices:

𝐴11 𝐴12
𝐴21 𝐴22

∙ 𝐵11 𝐵12
𝐵21 𝐵22

= 𝐶11 𝐶12
𝐶21 𝐶22

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

2x2 matrix multiplication can be
accomplished in 8 multiplications
and 4 additions.

Runtime of Divide & Conquer
Matrix Multiplication

• Recurrence:
𝑇 𝑛 = 8𝑇 𝑛

2 + Θ 𝑛2

• Solution:

Runtime of Divide & Conquer
Matrix Multiplication

• Recurrence:
𝑇 𝑛 = 8𝑇 𝑛

2 + Θ 𝑛2

• Solution:
𝑓 𝑛 = 𝑛2

𝑛log𝑏 𝑎 = 𝑛log2 8 = 𝑛3
Case 1 of Master Method solution = Θ 𝑛3 .

• No better than “ordinary” approach.
• What to do?

Strassens’s Matrix Multiplication
• Strassen (1969) showed that 2x2 matrix multiplication

can be accomplished in 7 multiplications and 18
additions or subtractions

𝑇 𝑛 = 7𝑇 𝑛
2 + Θ 𝑛2

𝑓 𝑛 = 𝑛2

𝑛log𝑏 𝑎 = 𝑛log2 7 = 𝑛2.81
Case 1 of Master Method solution = Θ 𝑛2.81 .

• His method uses Divide and Conquer Approach.

Strassen’s Matrix Multiplication
 Strassen observed [1969] that the product of

two matrices can be computed in general as
follows:

C11 C12 A11 A12 B11 B12

 = *
C21 C22 A21 A22 B21 B22

 P5 + P4 - P2 + P6 P1 + P2
 =
 P3 + P4 P5 + P1 - P3 – P7

Formulas for Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

Formulas for Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

First, create 10
matrices, each of
which is n/2 x n/2.
Time = Θ 𝑛2

Formulas for Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

First, create 10
matrices, each of
which is n/2 x n/2.
Time = Θ 𝑛2

Then, recursively
compute 7 matrix
products

Then add together

 C11 C12 A11 A12 B11 B12

 = *
 C21 C22 A21 A22 B21 B22

 P5 + P4 - P2 + P6 P1 + P2
 =
 P3 + P4 P5 + P1 - P3 – P7

Time = Θ 𝑛2

Resulting Runtime for
Strassens’s Matrix Multiplication

𝑇 𝑛 = Θ 1 + Θ 𝑛2 + 7𝑇 𝑛
2 + Θ 𝑛2

 = 7𝑇 𝑛
2 + Θ 𝑛2

𝑓 𝑛 = 𝑛2

𝑛log𝑏 𝑎 = 𝑛log2 7 = 𝑛2.81
Case 1 of Master Method solution = Θ 𝑛2.81 .

Practical Issues with Strassen’s

• Constant factor in Strassen > constant in naïve
Θ 𝑛2 approach

• If matrices are sparse, then methods tailored
to sparse matrices are faster

• Strassen’s isn’t quite as numerically stable
• Submatrices consume space
• Typically, use naïve approach for small

matrices

How quickly can we multiply matrices?

• Strassen’s algorithm: O (n 2.80736) time

• Coppersmith–Winograd algorithm (1990): O (n 2.376) time.

– Frequently used as a building block in other algorithms
to prove theoretical time bounds.

– However, not used in practice; only provides an
advantage for extremely large matrices

• Best achieved to date (2011): O (n 2.3727)

• Obvious lower bound = ?

How quickly can we multiply matrices?

• Strassen’s algorithm: O (n 2.80736) time

• Coppersmith–Winograd algorithm (1990): O (n 2.376) time.

– Frequently used as a building block in other algorithms
to prove theoretical time bounds.

– However, not used in practice; only provides an
advantage for extremely large matrices

• Best achieved to date (2011): O (n 2.3727)

• Obvious lower bound = Ω 𝑛2 , because you
at least have to fill in the answer.

In-Class Exercise
You want to develop a matrix multiplication algorithm that is
asymptotically faster than Strassen’s algorithm.

Your algorithm will use the divide-and-conquer method, dividing
each matrix into pieces of size n/4 × n/4; the divide and
combine steps together will take 𝛩(𝑛2) time.

You need to determine how many subproblems your algorithm
has to create in order to beat Strassens’ algorithm.

What is the largest integral (i.e., integer) number of subproblems
your algorithm can have that would be asymptotically faster than
Strassen’s algorithm?

Reading Assignments

• Today’s class:
– Chapter 4.2, 4.5

• Reading assignment for next class:

– Chapter 4.1, 15.1
– (Maximum subarrays; dynamic programming)

	Today: �− Master Method�− Matrix Multiplication�− Strassen’s Alg. For Matrix Mult.
	Reading Assignments
	Recurrence Relations
	The Master Method
	The Master Theorem
	Recursion tree view
	The Master Theorem
	Recurrences
	Gaining intuition on recurrences
	Master Theorem – Case 1
	Master Theorem – Case 2
	Master Theorem – Case 3
	Master Theorem – Case 3
	Master Method – Examples
	Master Method – Examples
	The Master Theorem
	Master Recurrence Special Case
	Back to Divide and Conquer…
	Basic Matrix Multiplication
	Matrix Multiplication �using Divide and Conquer
	Runtime of Divide & Conquer �Matrix Multiplication
	Runtime of Divide & Conquer �Matrix Multiplication
	Strassens’s Matrix Multiplication
	Strassen’s Matrix Multiplication
	Formulas for Strassen’s Algorithm
	Formulas for Strassen’s Algorithm
	Formulas for Strassen’s Algorithm
	Then add together
	Resulting Runtime for �Strassens’s Matrix Multiplication
	Practical Issues with Strassen’s
	How quickly can we multiply matrices?
	How quickly can we multiply matrices?
	In-Class Exercise
	Reading Assignments

