
Today:  
− Master Method 
− Matrix Multiplication 
− Strassen’s Alg. For Matrix Mult. 

COSC 581, Algorithms 
January 16, 2014 



Reading Assignments 

• Today’s class:  
– Chapter 4.2, 4.5 

 
• Reading assignment for next class: 

– Chapter 4.1, 15.1 



Recurrence Relations 
• Equation or an inequality that characterizes a 

function by its values on smaller inputs. 
• Solution Methods (Chapter 4) 

– Substitution Method. 
– Recursion-tree Method. 
– Master Method. 

• Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms. 



The Master Method 
• Based on the Master theorem. 
• “Cookbook” approach for solving recurrences of 

the form 
    T(n) = aT(n/b) + f(n) 

• a ≥ 1, b > 1 are constants. 
• f(n) is asymptotically positive. 
• n/b may not be an integer, but we ignore floors and 

ceilings.  

– Requires memorization of 3+ cases. 



The Master Theorem 
Theorem 4.1 
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.  
T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–ε)  for some constant ε > 0, then T(n) = Θ(nlogba). 
2. If  f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n). 
3. If  f(n) = Ω(nlogba+ε)  for some constant ε > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)). 



Recursion tree view 
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The Master Theorem 
Theorem 4.1 
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.  
T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–ε)  for some constant ε > 0, then T(n) = Θ(nlogba). 
2. If  f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n). 
3. If  f(n) = Ω(nlogba+ε)  for some constant ε > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)). 



Recurrences 

• Three basic behaviors 
– Dominated by initial case 
– Dominated by base case 
– All cases equal – we care about the depth 



Gaining intuition on recurrences 

Work per level changes geometrically with the level 
• Geometrically increasing (dominated by leaves)  

– The bottom level wins 

• Balanced  (sum of internal nodes equal to leaves) 
– Equal contribution 

• Geometrically decreasing (dominated by root)  
– The top level wins 



Master Theorem – Case 1 
• Case 1: If  f(n) = O(nlogba–ε)  for some constant ε > 0, 

then T(n) = Θ(nlogba). 
– nlogba = alogbn : Number of leaves in the recursion tree. 
– f(n) = O(nlogba–ε) ⇒ Sum of the cost of the nodes at each 

internal level asymptotically smaller than the cost of leaves 
by a polynomial factor. 

– Cost of the problem dominated by leaves, hence cost is 
Θ(nlogba). 



Master Theorem – Case 2 
• Case 2: If  f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n). 

– nlogba = alogbn : Number of leaves in the recursion tree. 
– f(n) = Θ(nlogba) ⇒ Sum of the cost of the nodes at each 

level asymptotically the same as the cost of leaves. 
– There are Θ(lg n) levels. 

– Hence, total cost is Θ(nlogba lg n). 



Master Theorem – Case 3 
• Case 3: If  f(n) = Ω(nlogba+ε)  for some constant ε > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b) ≤ c f(n),  

              then T(n) = Θ(f(n)). 
 
 

– nlogba = alogbn : Number of leaves in the recursion tree. 
– f(n) = Ω(nlogba+ε) ⇒ Cost is dominated by the root. Cost of 

the root is asymptotically larger than the sum of the cost 
of the leaves by a polynomial factor. 

– Hence, cost is Θ(f(n)). 



Master Theorem – Case 3 
• Case 3: If  f(n) = Ω(nlogba+ε)  for some constant ε > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b) ≤ c f(n),  

              then T(n) = Θ(f(n)). 
 

• Regularity condition means that total work increases as you 
go to larger problems 
– Examples that obey regularity condition: 

 Polynomials (𝑛𝑘) 
 Polylogarithmic functions   (lg2𝑛) 
 Exponentials  (2𝑛) 
 Factorial functions   (𝑛!) 

– Example that doesn’t obey regularity: 
 Functions that include trigonometrics   (𝑛1+sin 𝑛) 

Regularity condition 



Master Method – Examples  

• T(n) = 16T(n/4)+n 
 
 
 

 
• T(n) = T(3n/7) + 1 
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The Master Theorem 
Theorem 4.1 
Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  
T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.  
T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–ε)  for some constant ε > 0, then T(n) = Θ(nlogba). 
2. If  f(n) = Θ(nlogba), then T(n) = Θ(nlogbalg n). 
3. If  f(n) = Ω(nlogba+ε)  for some constant ε > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b) ≤ c f(n), then T(n) = Θ(f(n)). 

Gaps where Master Method 
doesn’t apply 



Master Recurrence Special Case 
If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘𝑛) for 𝑘 ≥ 0, then recurrence has 
solution: 
 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘+1𝑛) 
 
• Previous Example:T(n) = 2T(n/2) + n lg n 

– a = 2, b=2, nlogba = nlog22 = n, f(n) = n lg n 
– Master Method doesn’t apply 

 
–  But, Special case applies, where k = 1 
 

Solution:   
• 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎lg𝑘+1𝑛) 
• 𝑇 𝑛 = Θ(𝑛 lg2𝑛) 

 
 

 



Back to Divide and Conquer… 

• Matrix multiplication 



Basic Matrix Multiplication 
void matrix_mult (){ 

  for (i = 1; i <= n; i++) {                                                                   

        for (j = 1; j <= n; j++) {                  
  compute ci,j;                                                           

  }}} 

Standard matrix 
multiplication 
algorithm 

Time analysis:     

𝑐𝑖,𝑗 = �𝑎𝑖𝑘𝑏𝑘𝑗

𝑛

𝑘=1

 

𝛩 𝑛2  entries, each of which requires 𝛩(𝑛) 
work to calculate   runtime = 𝛩(𝑛3) 



Matrix Multiplication  
using Divide and Conquer 

• Basic divide and conquer method: 
To multiply two n x n matrices, A x B = C, divide 
into sub-matrices: 

𝐴11 𝐴12
𝐴21 𝐴22

∙ 𝐵11 𝐵12
𝐵21 𝐵22

= 𝐶11 𝐶12
𝐶21 𝐶22

 

C11 = A11B11 + A12B21  

C12 = A11B12 + A12B22  

C21 = A21B11 + A22B21  

C22 = A21B12 + A22B22 

2x2 matrix multiplication can be 
accomplished in 8 multiplications 
and 4 additions. 
 



Runtime of Divide & Conquer  
Matrix Multiplication 

• Recurrence: 
𝑇 𝑛 = 8𝑇 𝑛

2 + Θ 𝑛2  
 

• Solution: 



Runtime of Divide & Conquer  
Matrix Multiplication 

• Recurrence: 
𝑇 𝑛 = 8𝑇 𝑛

2 + Θ 𝑛2  
 

• Solution: 
𝑓 𝑛 = 𝑛2 

𝑛log𝑏 𝑎 = 𝑛log2 8 = 𝑛3 
Case 1 of Master Method  solution = Θ 𝑛3 . 
 

• No better than “ordinary” approach.   
• What to do? 

 



Strassens’s Matrix Multiplication 
• Strassen (1969) showed that 2x2 matrix multiplication 

can be accomplished in  7 multiplications and 18 
additions or subtractions  

𝑇 𝑛 = 7𝑇 𝑛
2 + Θ 𝑛2  

 
𝑓 𝑛 = 𝑛2 

𝑛log𝑏 𝑎 = 𝑛log2 7 = 𝑛2.81 
Case 1 of Master Method  solution = Θ 𝑛2.81 . 

 
 

• His method uses Divide and Conquer Approach. 



Strassen’s Matrix Multiplication 
    Strassen observed [1969] that  the product of 

two matrices can be computed in general as 
follows: 
 

C11     C12                 A11    A12                B11    B12 

                              =                              * 
C21      C22                 A21    A22                B21    B22 
 
 
                        P5   + P4  - P2 + P6                        P1 + P2  
                        =                   
                          P3 + P4                                               P5   + P1  - P3 – P7  

 



Formulas for Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 



Formulas for Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 

First, create 10 
matrices, each of 
which is n/2 x n/2. 
Time = Θ 𝑛2  



Formulas for Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 

First, create 10 
matrices, each of 
which is n/2 x n/2.  
Time = Θ 𝑛2  

Then, recursively 
compute 7 matrix 
products 



Then add together 
 

  C11     C12                 A11    A12               B11    B12 

                              =                              * 
  C21      C22                 A21    A22               B21    B22 
 
 
                        P5   + P4  - P2 + P6                        P1 + P2  
                        =                   
                          P3 + P4                                               P5   + P1  - P3 – P7  

 

Time = Θ 𝑛2  



Resulting Runtime for  
Strassens’s Matrix Multiplication 

𝑇 𝑛 = Θ 1 + Θ 𝑛2 + 7𝑇 𝑛
2 + Θ 𝑛2   

 = 7𝑇 𝑛
2 + Θ 𝑛2  

 
𝑓 𝑛 = 𝑛2 

𝑛log𝑏 𝑎 = 𝑛log2 7 = 𝑛2.81 
Case 1 of Master Method  solution = Θ 𝑛2.81 . 

 
 



Practical Issues with Strassen’s 

• Constant factor in Strassen > constant in naïve 
Θ 𝑛2  approach 

• If matrices are sparse, then methods tailored 
to sparse matrices are faster 

• Strassen’s isn’t quite as numerically stable 
• Submatrices consume space 
• Typically, use naïve approach for small 

matrices 



How quickly can we multiply matrices? 

• Strassen’s algorithm: O (n 2.80736) time 

• Coppersmith–Winograd algorithm (1990):  O (n 2.376) time.  

– Frequently used as a building block in other algorithms 
to prove theoretical time bounds. 

– However, not used in practice; only provides an 
advantage for extremely large matrices  

 
• Best achieved to date (2011): O (n 2.3727)  

 
• Obvious lower bound = ? 



How quickly can we multiply matrices? 

• Strassen’s algorithm: O (n 2.80736) time 

• Coppersmith–Winograd algorithm (1990):  O (n 2.376) time.  

– Frequently used as a building block in other algorithms 
to prove theoretical time bounds. 

– However, not used in practice; only provides an 
advantage for extremely large matrices  
 

• Best achieved to date (2011): O (n 2.3727)  
 

• Obvious lower bound = Ω 𝑛2 , because you 
at least have to fill in the answer. 



In-Class Exercise 
You want to develop a matrix multiplication algorithm that is 
asymptotically faster than Strassen’s algorithm.   
 
Your algorithm will use the divide-and-conquer method, dividing 
each matrix into pieces of size n/4  ×  n/4;  the divide and 
combine steps together will take 𝛩(𝑛2) time.   
 
You need to determine how many subproblems your algorithm 
has to create in order to beat Strassens’ algorithm.   
 
What is the largest integral (i.e., integer) number of subproblems 
your algorithm can have that would be asymptotically faster than 
Strassen’s algorithm? 



Reading Assignments 

• Today’s class:  
– Chapter 4.2, 4.5 

 
• Reading assignment for next class: 

– Chapter 4.1, 15.1   
– (Maximum subarrays; dynamic programming) 
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