
Today:  
− Matrix Subarray (Divide & Conquer) 
− Intro to Dynamic Programming 
 (Rod cutting) 

COSC 581, Algorithms 
January 21, 2014 



Reading Assignments 

• Today’s class:  
– Chapter 4.1, 15.1 

 
• Reading assignment for next class: 

– Chapter 15.2 



Maximum-subarray problem 
(Another Divide & Conquer problem) 

• If you know the price of certain stock from day 
i to day j; 

• You can only buy and sell one share once 
• How to maximize your profit? 
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Maximum-Subarray Example 
 

Example: 
 



Maximum-Subarray Example 
Buying low and selling high doesn’t always work 

Best strategy: 
   Buy here 
   Sell here 

But doesn’t 
follow “buy low, 
sell high” rule 



Maximum-subarray problem 
 

• What is the brute-force solution? 
max = -infinity; 
for each day pair p { 
    if(p.priceDifference>max) 
            max=p.priceDifference; 
} 

 
 

Time complexity?  



Maximum-subarray problem 
 

• What is the brute-force solution? 
max = -infinity; 
for each day pair p { 
    if(p.priceDifference>max) 
            max=p.priceDifference; 
} 

 
 

Time complexity?  𝑛
2  pairs, so O(𝑛2) 



How to solve more efficiently? 

• If we know the price difference of each 2 
contiguous days 

• The solution can be found from the 
maximum-subarray  

• Maximum-subarray of array A is: 
– A subarray of A 
– Nonempty 
– Contiguous 
– Whose values have the largest sum 

 



Examine subarrays 
Day 0 1 2 3 4 
Price 10 11 7 10 6 
Difference 1 -4 3 -4 

Remember best solution:  Buy on day 2, sell on day 3  

Sub-array 0-1 0-2 0-3 0-4 2-2 2-3 2-4 3-3 3-4 4-4 
Difference 1 -3 0 -4 -4 -1 -5 3 -1 -4 

Examine the differences across subarrays (some examples): 



Divide-and-Conquer Approach 
• How to divide? 

– Divide into 2 arrays 
• What is the base case? 
• How to combine the subproblem solutions?   



Divide-and-Conquer Approach 
• Note where solution must lie: 

 
 
 
 
 

• 3 choices: 
– A[i, …, mid]  // best is in the left array 
– A[mid+1, …, j] // best is in the right array 
– A[ …, mid, mid+1….] // best is in the array across the midpoint 

– The maximum subarray for A[i,…,j] is the best of 
these 3 choices 

 



Maximum-subarray problem – divide-
and-conquer algorithm 

Input: array A[i, …, j] 
Ouput: sum of maximum-subarray, start point of maximum-subarray, 
end point of maximum-subarray 
 
FindMaxSubarray: 
1. if(j<=i) return (A[i], i, j); 
2. mid = floor(i+j);  
3. (sumCross, startCross, endCross) =                  

FindMaxCrossingSubarray(A, i, j, mid); 
4. (sumLeft, startLeft, endLeft) = FindMaxSubarray(A, i, mid); 
5. (sumRight, startRight, endRight) = FindMaxSubarray(A, mid+1, j); 
6. Return the largest of these 3 
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Time complexity? 𝑇 𝑛 = 2𝑇 𝑛
2

+ Θ(n) 



Maximum-subarray problem – divide-
and-conquer algorithm 

Input: array A[i, …, j] 
Ouput: sum of maximum-subarray, start point of maximum-subarray, 
end point of maximum-subarray 
 
FindMaxSubarray: 
1. if(j<=i) return (A[i], i, j); 
2. mid = floor(i+j);  
3. (sumCross, startCross, endCross) =                  

FindMaxCrossingSubarray(A, i, j, mid); 
4. (sumLeft, startLeft, endLeft) = FindMaxSubarray(A, i, mid); 
5. (sumRight, startRight, endRight) = FindMaxSubarray(A, mid+1, j); 
6. Return the largest of these 3 

Time complexity? 𝑇 𝑛 = 2𝑇 𝑛
2

+ Θ(n) = Θ(n lg n)  



In-Class Exercise for Divide & Conquer 
• Suppose you are given a complete binary tree of height h with n = 2h 

leaves.  [Here, we'll assume that the tree is completely filled in at all 
levels, including the deepest level.]   

• Each node and each leaf, x, in the tree has an associated "value" v(x), 
which is an arbitrary real number. 

• If x is a leaf, we denote by A(x) the set of ancestors of x (including x as 
one of its own ancestors).  That is, A(x) consists of x, x's parent, 
grandparent, etc., up to the root of the tree.   

• Let f(x) be the sum of the values of A(x) – that is, 𝑓 𝑥 = ∑ 𝑣(𝑦)𝑦∈𝐴(𝑥) .   
• Presume we have the functions left(x), right(x), and parent(x), which 

return pointers to the left child, right child, and parent of node x, 
respectively.  These functions return nil when no such node exists. 
 

Give an efficient algorithm that finds the maximum value of f(x) across 
all leaves x of the tree.  Note that we do not need to know which set of 
ancestors, A(x), sums to this maximum total; we only need to know its 
value. 



Dynamic Programming 

• Dynamic programming is typically applied to 
optimization problems.  In such problem there 
can be many solutions.  Each solution has a 
value, and we wish to find a solution with the 
optimal value.  



Optimization  

This, generally, refers to classes of problems that possess multiple 
solutions at one level, and where we have a real-valued function 
defined on the solutions. 
 
Problem: find a solution that minimizes or maximizes the value of 
this function. 
 
Note: there is no guarantee that such a solution will be unique 
and, moreover, there is no guarantee that you will find it (local 
maxima) unless the search is over a small enough search space or 
the function is restricted enough. 
 



Optimization  

Question: are there classes of problems for which you can 
guarantee an optimizing solution can be found? 
 



Optimization  

Question: are there classes of problems for which you can 
guarantee an optimizing solution can be found? 
 
Answer: yes. BUT you also need to find such a solution in a 
"reasonable" amount of time. 
 
We are going to look at two classes of problems, and the 
techniques that will succeed in constructing their solutions in a 
"reasonable" (i.e., low degree polynomial in the size of the initial 
data) amount of time. 



Optimization  

We begin with a rough comparison that contrasts a method you 
are familiar with (divide and conquer) and the method (still 
unspecified) of Dynamic Programming (developed by Richard 
Bellman in the late 1940's and early 1950's). 
 



Two Algorithmic Models:  

Divide & 
Conquer 

Dynamic 
Programming 

View problem as collection of 
subproblems 
“Recursive” in nature 

Independent subproblems 

Number of subproblems 
depends on 
partitioning 

factors 
typically small 

Preprocessing 
    characteristic running time Typically log 

function of n 
depends on number 

and difficulty of 
subproblems 

Primarily for optimization 
problems 
Optimal substructure: 
optimal solution to problem 
contains within it optimal 
solutions to subproblems 

Overlapping subproblems 



The Primary Steps of Dynamic Programming 

1. Characterize the structure of an optimal solution. 
2. Recursively define the value of an optimal solution. 
3. Compute the value of an optimal solution in a bottom 

up fashion. 
4. Construct an optimal solution from computed 

information. 



Example: Rod Cutting 

• You are given a rod of length n ≥ 0 (n in inches) 

• A rod of length i inches will be sold for pi dollars 

• Cutting is free (simplifying assumption) 

• Problem: given a table of prices pi determine the 
maximum revenue rn obtainable by cutting up the rod 
and selling the pieces. 

 Length i 

Price pi 

1 2 3 4 5 6 7 8 9 10 
1 5 8 9 10 17 17 20 24 30 



Example: Rod Cutting 

We can see immediately (from the values in the table) that 
    n ≤ pn ≤ 3n.  

This is not very useful because: 

• The range of potential revenues is very large 

• Our finding quick upper and lower bounds depends on 
finding quickly the minimum and maximum pi/i ratios 
(one pass through the table), but then we are back to the 
point above….  

 



Example: Rod Cutting  
Step 1: Characterizing an Optimal Solution 

 
 

Question:  in how many different ways can we cut a rod of length n? 
For a rod of length 4: 

 
 
 
 
 
 
 
 
 
 
 
 
 



Example: Rod Cutting  
Step 1: Characterizing an Optimal Solution 

 
 

Question:  in how many different ways can we cut a rod of length n? 
For a rod of length 4: 

 
 
 
 
 
 
 
 
 
Options:  24 - 1 = 23 = 8 
 
For a rod of length n: 2n-1.  Exponential: we cannot try all possibilities for n "large". 
The obvious exhaustive approach won't work. 



Example: Rod Cutting  
Step 1: Characterizing an Optimal Solution 
 
 Question:  in how many different ways can we cut a rod of length n? 

 
Proof Details: a rod of length n can have exactly n-1 possible cut positions – 
choose 0 ≤ k ≤ n-1 actual cuts. We can choose the k cuts (without repetition) 
anywhere we want, so that for each such k the number of different choices is  
 
 
When we sum up over all possibilities (k = 0 to k = n-1): 

 
 
 
 
For a rod of length n: 2n-1.   
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Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 Let us find a way to solve the problem recursively (we might be able to 

modify the solution so that the maximum can be actually computed):   
 
Assume we have cut a rod of length n into 0 ≤ k ≤ n pieces of length i1, …, ik, 
 n = i1 +…+ ik,  
     with revenue: 
 rn = pi1 + … + pik 
Assume further that this solution is optimal. 
 
How can we construct it? 
 
Advice: when you don’t know what to do next, start with a simple example 
and hope something will occur to you…    



Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 

We begin by constructing (by hand) the optimal solutions for i = 1, …, 10: 
r1 = 1  from soln. 1 = 1 (no cuts) 
r2 = 5  from soln. 2 = 2 (no cuts) 
r3 = 8  from soln. 3 = 3 (no cuts) 
r4 = 10  from soln. 4 = 2 + 2 
r5 = 13  from soln. 5 = 2 + 3 
r6 = 17  from soln. 6 = 6 (no cuts) 
r7 = 18  from soln. 7 = 1 + 6 or 7 = 2 + 2 + 3 
r8 = 22  from soln. 8 = 2 + 6 
r9 = 25  from soln. 9 = 3 + 6 
r10 = 30  from soln. 10 = 10 (no cuts) 
 

Length i 

Price pi 

1 2 3 4 5 6 7 8 9 10 
1 5 8 9 10 17 17 20 24 30 



Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 

Notice that in some cases rn = pn, while in other cases the optimal revenue rn is 
obtained by cutting the rod into smaller pieces.  
 
In ALL cases we have the recursion 
 rn = max(pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1) 
exhibiting optimal substructure 
 
A slightly different way of stating the same recursion, which avoids repeating some 
computations, is 
 rn = max1≤i≤n(pi + rn-i) 
 
This latter relation can be  
implemented as a simple top-down 
recursive procedure:  



Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 

Time Out: How to justify the step from: 
 rn = max(pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1) 
to 
 rn = max1≤i≤n(pi + rn-i) 
 
Note: every optimal partitioning of a rod of length n has a first cut – a segment of, 
say, length i. The optimal revenue, rn, must satisfy rn = pi + rn-i, where  rn-i  is the 
optimal revenue for a rod of length n – i. If the latter were not the case, there 
would be a better partitioning for a rod of length n – i, giving a revenue r’n–i > rn-i 
and  a total revenue r’n = pn + r’n-i > pi + rn-i = rn.  
 
Since we do not know which one of the leftmost cut positions provides the largest 
revenue, we just maximize over all the possible first cut positions. 
   



Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 We can also notice that all the items we choose the maximum of are 

optimal in their own right: each substructure (max revenue for rods 
of lengths 1, …, n-1) is also optimal (again, optimal substructure 
property). 
 
Nevertheless, we are still in trouble: computing the recursion leads 
to recomputing a number (= overlapping subproblems) of values – 
how many? 



Example: Rod Cutting  
Characterizing an Optimal Solution 

 
 

Let’s call Cut-Rod(p, 4), to see the effects on a simple case: 

The number of nodes for a tree corresponding to a rod of size n is: 

 

T 0( )=1, T(n) =1+ T( j)
j= 0

n−1∑ = 2n, n ≥1.



Example: Rod Cutting  
Beyond Naïve Time Complexity 

 
 

We have a problem: “reasonable size” problems are not solvable in 
“reasonable time” (but, in this case, they are solvable in “reasonable 
space”).   
 
Specifically: 
• Note that navigating the whole tree requires 2n work. 
• Note also that no more than n + 1 subproblems are active at any one time 
and that no more than n + 1 different values need to be computed or used. 
 
Can we exploit these observations? 
A standard solution method involves saving the values associated with 
each T(j), so that we compute each value only once (called “memoizing” = 
writing yourself a memo). 



Example: Rod Cutting  
Naïve Caching 

 
 

We introduce two procedures: 



Example: Rod Cutting  
More Sophisticated Caching By Solving Bottom-Up 

 
 



Example: Rod Cutting  
Time Complexity 

 
 Whether we solve the problem in a top-down or bottom-up manner 

the asymptotic time is Θ(n2), the major difference being recursive 
calls as compared to loop iterations. 
 
Why?? 



Handy Tool:  Subproblem graphs 

• For rod-cutting problem with n = 4 
– Subprogram graph is a directed graph 

• One vertex for each distinct 
subproblem. 

• Has a directed edge (x, y) if 
computing an optimal solution to 
subproblem x directly requires 
knowing an optimal solution to 
subproblem y. 



Subproblem graphs 
• Can think of the subproblem graph as a collapsed 

version of the tree of recursive calls, where all nodes 
for the same subproblem are collapsed into a single 
vertex, and all edges go from parent to child. 

• Subproblem graph can help determine running time. 
Because we solve each subproblem just once, running 
time is sum of times needed to solve each subproblem. 
– Time to compute solution to a subproblem is typically 

linear in the out-degree (number of outgoing edges) of its 
vertex. 

– Number of subproblems equals number of vertices. 
• When these conditions hold, running time is linear in 

number of vertices and edges. 



Reconstructing a solution 

• So far, have focused on computing the value 
of an optimal solution, rather than the choices 
that produced an optimal solution. 

• Extend the bottom-up approach to record not 
just optimal values, but optimal choices. Save 
the optimal choices in a separate table. Then 
use a separate procedure to print the optimal 
choices. 



Reconstructing a solution 

 



Reconstructing a solution 

 



In-Class Exercise 

• Draw the recursion tree for the MERGE-SORT 
procedure on an array of 16 elements.  (Each node of 
the recursion tree should simply indicate which 
elements of the array are being solved at that node.) 

• Explain why memoization is ineffective in speeding 
up a good divide-and-conquer algorithm such as 
MERGE-SORT. 



The Primary Steps of Dynamic Programming 

1. Characterize the structure of an optimal solution. 
2. Recursively define the value of an optimal solution. 
3. Compute the value of an optimal solution in a bottom 

up fashion. 
4. Construct an optimal solution from computed 

information. 



Reading Assignments 

• Today’s class:  
– Chapter 4.1, 15.1 

 
• Reading assignment for next class: 

– Chapter 15.2 (Matrix chain multiplication) 
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