Today:
 - Matrix Chain Multiplication

COSC 581, Algorithms January 23, 2014

Reading Assignments

- Today's class:
- Chapter 15.2
- Reading assignment for next class:
- Chapter 15.3-15.4

Matrix Chain Multiplication

- Given some matrices to multiply, determine the best order to multiply them so you minimize the number of single element multiplications.
- i.e., Determine the way the matrices are fully parenthesized.
- First, it should be noted that matrix multiplication is associative, but not commutative. But since it is associative, we always have:
- $((A B)(C D))=(A(B(C D)))$, or any other grouping as long as the matrices are in the same consecutive order.
- BUT NOT: ((AB)(CD)) = ((BA)(DC))

Matrix Chain Multiplication

- It may appear that the amount of work done won't change if you change the parenthesization of the expression, but we can prove that is not the case!
- FIRST, remember some matrix multiplication rules...

To multiply matrix A, which is size $p \times q$
with matrix B, which is size $q \times r$
The resulting matrix is of what size?

Matrix Chain Multiplication

- It may appear that the amount of work done won't change if you change the parenthesization of the expression, but we can prove that is not the case!
- FIRST, remember some matrix multiplication rules... To multiply matrix A, which is size $p \times q$ with matrix B, which is size $q \times r$

The resulting matrix is of what size? pxr
Number of scalar multiplications needed?

Matrix Chain Multiplication

- It may appear that the amount of work done won't change if you change the parenthesization of the expression, but we can prove that is not the case!
- FIRST, remember some matrix multiplication rules... To multiply matrix A, which is size $p \times q$ with matrix B, which is size $q \times r$

The resulting matrix is of what size? pxr
Number of scalar multiplications needed? $\mathrm{p} \times \mathrm{q} \times \mathrm{r}$

Matrix Chain Multiplication

- Let us examine the following example:
- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- We will show that the way we group matrices when multiplying A, B, C can greatly affect number of required scalar multiplications:

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=$

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=$

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=2 \times 10 \times 20=400$
- Total multiplications =

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=2 \times 10 \times 20=400$
- Total multiplications $=10000+400=10400$.
- Consider computing (AB)C:
- \# multiplications for (AB) =

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=2 \times 10 \times 20=400$
- Total multiplications $=10000+400=10400$.
- Consider computing (AB)C:
- \# multiplications for $(A B)=2 \times 10 \times 50=1000$, creating a 2×50 answer matrix
- \# multiplications for (AB)C =

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=2 \times 10 \times 20=400$
- Total multiplications $=10000+400=10400$.
- Consider computing (AB)C:
- \# multiplications for $(A B)=2 \times 10 \times 50=1000$, creating a 2×50 answer matrix
- \# multiplications for $(A B) C=2 \times 50 \times 20=2000$,
- Total multiplications =

Matrix Chain Multiplication

- Let A be a 2×10 matrix
- Let B be a 10×50 matrix
- Let C be a 50×20 matrix
- Consider computing $A(B C)$:
- \# multiplications for $(B C)=10 \times 50 \times 20=10000$, creating a 10×20 answer matrix
- \# multiplications for $\mathrm{A}(\mathrm{BC})=2 \times 10 \times 20=400$
- Total multiplications $=10000+400=10400$.
- Consider computing (AB)C:
- \# multiplications for $(A B)=2 \times 10 \times 50=1000$, creating a 2×50 answer matrix
- \# multiplications for (AB)C $=2 \times 50 \times 20=2000$
- Total multiplications $=1000+2000=3000$

Matrix Chain Multiplication

- Thus, our goal today is:
- Given a chain of matrices to multiply, determine the fewest number of scalar multiplications necessary to compute the product.
- Note: we don't actually need to compute the multiplication - just the ordering of the multiplications

How Many Possible Parenthesizations?

- For $\mathrm{n} \geq 2$, a fully parenthesized matrix product is the product of 2 fully parenthesized matrix subproducts.
- The split can occur between $\mathrm{k}^{\text {th }}$ and $(\mathrm{k}+1)^{\text {th }}$ matrices, for any $k=1,2, \ldots, n-1$
- So, the recurrence representing the total \# of possible parenthesizations is:

$$
-P(n)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
\sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2
\end{array}\right.
$$

- Solution is tricky -- turns out, it grows as $\Omega\left(\frac{4^{n}}{n^{3 / 2}}\right)$
- Or, also true that it grows as $\Omega\left(2^{n}\right)$

Matrix Chain Multiplication

- Formal Definition of the problem:
- Let $A=A_{1} \bullet A_{2} \bullet \ldots A_{n}$
- And let $p_{i-1} \times p_{i}$ denote the dimensions of matrix A_{i}.
- We must find the minimal number of scalar multiplications necessary to calculate A
- assuming that each single matrix multiplication uses the simple "standard" ($9^{\text {th }}$ grade ©) method.

Recall:
 The Primary Steps of Dynamic Programming

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom up fashion.
4. Construct an optimal solution from computed information.

Step 1: Optimal Substructure

- The key to solving this problem is noticing the optimal substructure:
- If a particular parenthesization of the whole product is optimal, then any sub-parenthesization in that product is optimal as well.
- Or, stating the same thing through an example:
- If (A (B ((CD) (EF)))) is optimal
- Then (B ((CD) (EF))) is optimal as well
- Illustration of Proof on the next slide...

Optimal Substructure

- Assume that we are calculating ABCDEF and that the following parenthesization is optimal:

$$
(A(B((C D)(E F))))
$$

Then it is necessarily the case that
(B ((CD) (EF)))
is the optimal parenthesization of BCDEF.

- Why is this?
- Because if it weren't, and, say, (((BC) (DE)) F) were better, then it would also follow that
($\mathrm{A}(((\mathrm{BC})(\mathrm{DE})) \mathrm{F}))$ was better than
(A (B ((CD) (EF)))),
- contradicting its optimality!

Optimal Substructure

Matrix Chain Multiplication

- Our final multiplication will ALWAYS be of the form

$$
\left(A_{1} \bullet A_{2} \bullet \ldots A_{k}\right) \bullet\left(A_{k+1} \bullet A_{k+2} \bullet \ldots A_{n}\right)
$$

- In essence, there is exactly one value of k for which we should "split" our work into two separate cases so that we get an optimal result.
- Here is a list of the cases to choose from:
$-\left(A_{1}\right) \bullet\left(A_{2} \bullet A_{3} \bullet \ldots A_{n}\right)$
$-\left(A_{1} \bullet A_{2}\right) \bullet\left(A_{3} \bullet A_{4} \bullet \ldots A_{n}\right)$
$-\left(A_{1} \bullet A_{2} \bullet A_{3}\right) \bullet\left(A_{4} \bullet A_{5} \bullet \ldots A_{n}\right)$
- ...
$-\left(A_{1} \bullet A_{2} \bullet \ldots A_{n-2}\right) \bullet\left(A_{n-1} \bullet A_{n}\right)$
$-\left(\begin{array}{lll}A_{1} \bullet A_{2} \bullet & \ldots & A_{n-1}\end{array}\right) \bullet\left(A_{n}\right)$
- Basically, count the number of multiplications in each of these choices and pick the minimum.
- One other point to notice is that you have to account for the minimum number of multiplications in each of the two products.

Matrix Chain Multiplication

- Consider the case multiplying these 4 matrices:
- A: 2×4
- B: 4×2
- C: 2×3
- D: 3×1
- 1. (A)(BCD) - This is a 2×4 multiplied by a 4×1,
- so $2 \times 4 \times 1=8$ multiplications, plus whatever work it will take to multiply (BCD).
- 2. (AB)(CD) - This is a 2×2 multiplied by a 2×1,
- so $2 \times 2 \times 1=4$ multiplications, plus whatever work it will take to multiply (AB) and (CD).
- 3. (ABC)(D) - This is a 2×3 multiplied by a 3×1,
- so $2 \times 3 \times 1=6$ multiplications, plus whatever work it will take to multiply (ABC).

Step 2: A recursive solution

- Define $m[i, j]=$ minimum number of scalar multiplications needed to compute the matrix $A_{i . . j}=A_{i} A_{i+1} \ldots A_{j}$
- Goal $m[1, n]$ (i.e., $A_{1 . . n}=A_{1} A_{2} \ldots A_{n}$)
$m[i, j]=\left\{\begin{array}{cc}0 & \text { if } i=j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{array}\right.$
- Since $m[i, j]$ only gives value of optimal solution, we also define $s[i, j]$ to be a value of k at which we split the product $A_{i . . j}=A_{i} A_{i+2} \ldots A_{j}$ in an optimal parenthesization

Step 3: Computing the Optimal Costs

$$
m[i, j]=\left\{\begin{array}{cl}
0 & \text { if } i=j \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j
\end{array}\right.
$$

- Now let's turn this recursive formula into a dynamic programming solution
- Which sub-problems are necessary to solve first?
- Clearly it's necessary to solve the smaller problems before the larger ones.
- Here "smaller" means shorter matrix chains
- So, solve for matrix chains of length 1 , then of length $2, \ldots$

Step 3:

Computing the optimal costs

Matrix-Chain-Order (p)

```
\(n=p . l e n g t h-1\)
let \(m[1 \ldots n, 1 \ldots n]\) and \(s[1 \ldots n-1,2 \ldots n]\) be new tables
for \(i=1\) to \(n\)
    \(m[i, i]=0\)
for \(l=2\) to \(n\)
    for \(i=1\) to \(n-l+1\)
        \(j=i+l-1\)
        \(m[i, j]=\infty\)
        for \(k=i\) to \(j-1\)
            \(q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\)
            if \(q<m[i, j]\)
                \(m[i, j]=q\)
                \(s[i, j]=k\)
```

Here, we're checking different places to "split" our matrices by checking different values of k and seeing if they improve our current minimum value.

12
13
14 return m and s

Step 3:

Computing the optimal costs

Matrix-Chain-Order (p)

$$
\begin{aligned}
& n=p \text {.length }-1 \\
& \text { let } m[1 \ldots n, 1 \ldots n] \text { and } s[1 \ldots n-1,2 \ldots n] \text { be new tables } \\
& \text { for } i=1 \text { to } n \\
& m[i, i]=0 \\
& \text { for } l=2 \text { to } n \\
& \text { for } i=1 \text { to } n-l+1 \\
& j=i+l-1 \\
& m[i, j]=\infty \\
& \text { for } k=i \text { to } j-1 \\
& q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \\
& m[i, j]=q \\
& s[i, j]=k \\
& 14 \text { return } m \text { and } s \\
& \text { Complexity? }
\end{aligned}
$$

Step 3:

Computing the optimal costs

Matrix-Chain-Order (p)

$$
\begin{aligned}
& n=p \text {.length }-1 \\
& \text { let } m[1 \ldots n, 1 \ldots n] \text { and } s[1 \ldots n-1,2 \ldots n] \text { be new tables } \\
& \text { for } i=1 \text { to } n \\
& m[i, i]=0 \\
& \text { for } l=2 \text { to } n \\
& \text { for } i=1 \text { to } n-l+1 \\
& j=i+l-1 \\
& m[i, j]=\infty \\
& \text { for } k=i \text { to } j-1 \\
& q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \\
& m[i, j]=q \\
& s[i, j]=k \\
& \text { Complexity? } \\
& \text { Here, were checking } \\
& \text { different places to } \\
& \text { "split" our matrices by } \\
& \text { checking different } \\
& \text { values of } k \text { and seeing } \\
& \text { if they improve our } \\
& \text { current minimum } \\
& \text { value. } \\
& 14 \text { return } m \text { and } s \\
& / / l \text { is the chain length }
\end{aligned}
$$

Example m and s tables computed by MATRIX-CHAIN-ORDER for $\mathrm{n}=6$

Step 4:

Constructing an optimal solution

```
Print-OptimAL-Parens (s,i,j)
if }i==
    print "A" }\mp@subsup{}{i}{
    else print "("
        Print-Optimal-Parens ( s,i,s[i,j])
    Print-Optimal-Parens (s,s[i,j]+1,j)
    print")"
```


Step 4:

Constructing an optimal solution

Print-Optimal-Parens (s, i, j)
1 if $i==j$
2 print " A " ${ }_{i}$
3 else print "("
4 Print-Optimal-Parens $(s, i, s[i, j])$
$5 \quad$ Print-Optimal-Parens $(s, s[i, j]+1, j)$

6 print ")"
Example: $A_{1} \cdots A_{6}$

Step 4:

Constructing an optimal solution

Print-Optimal-Parens (s, i, j)
1 if $i==j$
2 print " A " ${ }_{i}$
3 else print "("
4 Print-Optimal-Parens $(s, i, s[i, j])$
Print-Optimal-Parens $(s, s[i, j]+1, j)$

6 print ")"
Example: $A_{1} \cdots A_{6}$

$$
\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right)\left(A_{6}\right)\right)
$$

In-Class Exercise

- Describe a dynamic programming algorithm to find the maximum product of a contiguous sequence of positive numbers $\mathrm{A}[1 . . \mathrm{n}]$.
- For example, if $A=(0.1,17,1,5,0.5,0.2,4,0.7,0.02,12,0.3)$, then the answer would be 85 because of the subsequence $(17,1,5)$

Reading Assignments

- Today's class:
- Chapter 15.2
- Reading assignment for next class:
- Chapter 15.3-15.4

