
Today:
− Matrix Chain Multiplication

COSC 581, Algorithms
January 23, 2014

Reading Assignments

• Today’s class:
– Chapter 15.2

• Reading assignment for next class:

– Chapter 15.3-15.4

Matrix Chain Multiplication
• Given some matrices to multiply, determine the best order to

multiply them so you minimize the number of single element
multiplications.
– i.e., Determine the way the matrices are fully parenthesized.

• First, it should be noted that matrix multiplication is associative,

but not commutative. But since it is associative, we always have:

• ((AB)(CD)) = (A(B(CD))), or any other grouping as long as the
matrices are in the same consecutive order.

• BUT NOT: ((AB)(CD)) = ((BA)(DC))

Matrix Chain Multiplication
• It may appear that the amount of work done won’t

change if you change the parenthesization of the
expression, but we can prove that is not the case!

• FIRST, remember some matrix multiplication rules…
To multiply matrix A, which is size p x q
 with matrix B, which is size q x r

The resulting matrix is of what size?

Matrix Chain Multiplication
• It may appear that the amount of work done won’t

change if you change the parenthesization of the
expression, but we can prove that is not the case!

• FIRST, remember some matrix multiplication rules…
To multiply matrix A, which is size p x q
 with matrix B, which is size q x r

The resulting matrix is of what size? p x r

Number of scalar multiplications needed?

Matrix Chain Multiplication
• It may appear that the amount of work done won’t

change if you change the parenthesization of the
expression, but we can prove that is not the case!

• FIRST, remember some matrix multiplication rules…
To multiply matrix A, which is size p x q
 with matrix B, which is size q x r

The resulting matrix is of what size? p x r

Number of scalar multiplications needed? p x q x r

Matrix Chain Multiplication
• Let us examine the following example:

– Let A be a 2x10 matrix
– Let B be a 10x50 matrix
– Let C be a 50x20 matrix

• We will show that the way we group matrices

when multiplying A, B, C can greatly affect
number of required scalar multiplications:

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) = 2x10x20 = 400
– Total multiplications =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) = 2x10x20 = 400
– Total multiplications = 10000 + 400 = 10400.

• Consider computing (AB)C:

– # multiplications for (AB) =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) = 2x10x20 = 400
– Total multiplications = 10000 + 400 = 10400.

• Consider computing (AB)C:

– # multiplications for (AB) = 2x10x50 = 1000, creating a 2x50 answer
matrix

– # multiplications for (AB)C =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) = 2x10x20 = 400
– Total multiplications = 10000 + 400 = 10400.

• Consider computing (AB)C:

– # multiplications for (AB) = 2x10x50 = 1000, creating a 2x50 answer
matrix

– # multiplications for (AB)C = 2x50x20 = 2000,
– Total multiplications =

Matrix Chain Multiplication
• Let A be a 2x10 matrix
• Let B be a 10x50 matrix
• Let C be a 50x20 matrix

• Consider computing A(BC):

– # multiplications for (BC) = 10x50x20 = 10000, creating a 10x20
answer matrix

– # multiplications for A(BC) = 2x10x20 = 400
– Total multiplications = 10000 + 400 = 10400.

• Consider computing (AB)C:

– # multiplications for (AB) = 2x10x50 = 1000, creating a 2x50 answer
matrix

– # multiplications for (AB)C = 2x50x20 = 2000
– Total multiplications = 1000 + 2000 = 3000

Matrix Chain Multiplication

• Thus, our goal today is:
• Given a chain of matrices to multiply,

determine the fewest number of scalar
multiplications necessary to compute the
product.

• Note: we don’t actually need to compute the
multiplication – just the ordering of the
multiplications

How Many Possible
Parenthesizations?

• For n ≥ 2, a fully parenthesized matrix product is the
product of 2 fully parenthesized matrix subproducts.

• The split can occur between kth and (k+1)th matrices,
for any k = 1, 2, …, n-1

• So, the recurrence representing the total # of possible
parenthesizations is:

– 𝑃 𝑛 = � 1 if 𝑛 = 1
∑ 𝑃 𝑘 𝑃(𝑛 − 𝑘)𝑛−1
𝑘=1 if 𝑛 ≥ 2

• Solution is tricky -- turns out, it grows as Ω 4𝑛

𝑛3 2⁄
• Or, also true that it grows as Ω 2𝑛

Matrix Chain Multiplication
• Formal Definition of the problem:

– Let A = A1• A2• ... An
– And let pi-1 x pi denote the dimensions of matrix Ai.
– We must find the minimal number of scalar

multiplications necessary to calculate A
• assuming that each single matrix multiplication uses the

simple “standard” (9th grade) method.

Recall:
The Primary Steps of Dynamic Programming

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom

up fashion.
4. Construct an optimal solution from computed

information.

Step 1: Optimal Substructure

• The key to solving this problem is noticing the
optimal substructure:
– If a particular parenthesization of the whole product is

optimal, then any sub-parenthesization in that
product is optimal as well.

• Or, stating the same thing through an example:

– If (A (B ((CD) (EF)))) is optimal
– Then (B ((CD) (EF))) is optimal as well
– Illustration of Proof on the next slide…

Optimal Substructure
• Assume that we are calculating ABCDEF and that

the following parenthesization is optimal:
(A (B ((CD) (EF))))

Then it is necessarily the case that
 (B ((CD) (EF)))

is the optimal parenthesization of BCDEF.

• Why is this?
– Because if it weren’t, and, say, (((BC) (DE)) F) were

better, then it would also follow that
(A (((BC) (DE)) F)) was better than
(A (B ((CD) (EF)))),

– contradicting its optimality!

Optimal Substructure

Matrix Chain Multiplication
• Our final multiplication will ALWAYS be of the form

 (A1• A2• ... Ak) • (Ak+1• Ak+2• ... An)

• In essence, there is exactly one value of k for which we should
"split" our work into two separate cases so that we get an optimal
result.
– Here is a list of the cases to choose from:
– (A1) • (A2• A3• ... An)
– (A1• A2) • (A3• A4• ... An)
– (A1• A2•A3)• (A4• A5• ... An)
– ...
– (A1• A2• ... An-2) • (An-1 • An)
– (A1• A2• ... An-1) • (An)

• Basically, count the number of multiplications in each of these
choices and pick the minimum.
– One other point to notice is that you have to account for the

minimum number of multiplications in each of the two products.

Matrix Chain Multiplication
• Consider the case multiplying these 4 matrices:

– A: 2x4
– B: 4x2
– C: 2x3
– D: 3x1

• 1. (A)(BCD) - This is a 2x4 multiplied by a 4x1,

– so 2x4x1 = 8 multiplications, plus whatever work it will take to
multiply (BCD).

• 2. (AB)(CD) - This is a 2x2 multiplied by a 2x1,

– so 2x2x1 = 4 multiplications, plus whatever work it will take to
multiply (AB) and (CD).

• 3. (ABC)(D) - This is a 2x3 multiplied by a 3x1,

– so 2x3x1 = 6 multiplications, plus whatever work it will take to
multiply (ABC).

Step 2: A recursive solution
• Define m[i, j] = minimum number of scalar

multiplications needed to compute the matrix
𝐴𝑖..𝑗 = 𝐴𝑖𝐴𝑖+1 …𝐴𝑗

• Goal m[1, n] (i.e., 𝐴1..𝑛 = 𝐴1𝐴2 …𝐴𝑛)

• Since m[i,j] only gives value of optimal solution,
we also define s[i,j] to be a value of k at which we
split the product 𝐴𝑖..𝑗 = 𝐴𝑖𝐴𝑖+2 …𝐴𝑗 in an
optimal parenthesization

𝑚 𝑖, 𝑗 = �
0 if 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑚 𝑖, 𝑘 + 𝑚 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 if 𝑖 < 𝑗

Step 3: Computing the Optimal Costs

• Now let’s turn this recursive formula into a dynamic
programming solution

– Which sub-problems are necessary to solve first?

– Clearly it's necessary to solve the smaller problems before

the larger ones.

– Here “smaller” means shorter matrix chains

– So, solve for matrix chains of length 1, then of length 2, …

𝑚 𝑖, 𝑗 = �
0 if 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑚 𝑖, 𝑘 + 𝑚 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 if 𝑖 < 𝑗

Step 3:
Computing the optimal costs

Here, we’re checking
different places to
“split” our matrices by
checking different
values of k and seeing
if they improve our
current minimum
value.

Step 3:
Computing the optimal costs

Here, we’re checking
different places to
“split” our matrices by
checking different
values of k and seeing
if they improve our
current minimum
value.

Complexity?

Step 3:
Computing the optimal costs

Here, we’re checking
different places to
“split” our matrices by
checking different
values of k and seeing
if they improve our
current minimum
value.

Complexity? 𝚯 𝒏𝟑

Example m and s tables computed by
MATRIX-CHAIN-ORDER for n=6

Step 4:
Constructing an optimal solution

Step 4:
Constructing an optimal solution

Example: 𝐴1 ⋯𝐴6

Step 4:
Constructing an optimal solution

Example: 𝐴1 ⋯𝐴6

𝐴1 𝐴2𝐴3 𝐴4𝐴5 𝐴6

In-Class Exercise

• Describe a dynamic programming algorithm to
find the maximum product of a contiguous
sequence of positive numbers A[1..n].

• For example, if A = (0.1, 17, 1, 5, 0.5, 0.2, 4, 0.7, 0.02, 12, 0.3),
then the answer would be 85 because of the subsequence
(17, 1, 5)

Reading Assignments

• Today’s class:
– Chapter 15.2

• Reading assignment for next class:

– Chapter 15.3-15.4

	Today: �− Matrix Chain Multiplication
	Reading Assignments
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	How Many Possible Parenthesizations?
	Matrix Chain Multiplication
	Recall:�The Primary Steps of Dynamic Programming
	Step 1: Optimal Substructure
	Optimal Substructure
	Optimal Substructure
	Matrix Chain Multiplication
	Matrix Chain Multiplication
	Step 2: A recursive solution
	Step 3: Computing the Optimal Costs
	Step 3: �Computing the optimal costs
	Step 3: �Computing the optimal costs
	Step 3: �Computing the optimal costs
	Slide Number 29
	Step 4: �Constructing an optimal solution
	Step 4: �Constructing an optimal solution
	Step 4: �Constructing an optimal solution
	In-Class Exercise
	Reading Assignments

