
Today: 
Dynamic Programming 

Longest Common Subsequence 

COSC 581, Algorithms 
January 28, 2014 



Reading Assignments 

• Today’s class:  
– Chapter 15.3-4 

 

• Reading assignment for next class: 
– Chapter 15.5 
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Dynamic Programming: Recall 
 

• Motivation of dynamic programming  
– Solving each subproblem only once 

 
• Steps of dynamic programming 

– Characterize the structure of an optimal solution 
– Recursively define the value of an optimal solution 
– Compute the value of an optimal solution 
– Construct an optimal solution from computed information 

 
• Dynamic programming implementation  

– Top-down method with memoization  
– Bottom-up approach 
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Dynamic Programming (Cont’d) 
 

• When to use dynamic programming? Two Elements: 
 

– Problem exhibits optimal structure 
• Optimal solutions to a problem incorporate optimal solutions to 

subproblems 
• Subproblems can be solved independently 

 
– Problem has overlapping subproblems 
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DP Element 1: Optimal Structure 
 

• Discover optimal structure 
 

– Show that a solution to a problem consists of making a choice 
• Rod-cutting: choosing an initial cut a rod 
• Matrix chain multiplication: choosing an index to split a matrix chain 

 

– Suppose the choice leads to an optimal solution 
 

– Given the choice, determine which subproblems to use 
• Rod-cutting: a subproblem is also a rod-cutting problem with a smaller size 
• Matrix-chain multiplication: a subproblem is also a matrix-chain multiplication 

problem with new start and end indices 
 

– Show that the solutions to the subproblems must themselves be 
optimal by using a “cut-and-paste” technique 
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DP Element 1: Optimal Structure 
 

• Optimal structure varies across problem domains 
 

– Number of subproblems 
• Rod-cutting: one 
• Matrix chain multiplication: two 

 

– Number of choices to determine which sub problem to use 
• Rod-cutting: for cutting up a rod of size n, we must consider n choices 
• Matrix-chain multiplication: for the subchain                         , we must consider  

(j – i) choices; that is to choose k to split the chain  
                          and                               . 

 

• Runtime of dynamic programming generally depends on: 
 overall number of subproblems x number of choices 
– Can be visualized using the subproblem graph 
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DP Element 1: Optimal Structure 
 

• Be careful with optimal structure: Not always apply! 
– Given a directed graph: 
– Unweighted shortest path 
– Unweighted longest path: consider  

 
 

 

 

 

 

 

• What makes optimal structure no longer apply? 
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DP Element 1: Optimal Structure 
 

• Be careful with optimal structure: Not always apply! 
– Given a directed graph: 
– Unweighted shortest path 
– Unweighted longest path: consider  

 
 

 

 

 

 

 

• What makes optimal structure no longer apply? 
      

           Subproblems are not independent 
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DP Element 2: Overlapping Subproblems 
 

 
 

 

 

Example: Matrix-chain multiplication (4 matrix in the chain) 



10 

Dynamic Programming—Optimal Strategy for a Game 
 

        Consider a row of n coins of values v1 ... vn where n is even. We play a 
game against an opponent by alternating turns. In each turn, a player selects 
either the first or last coin from the row, removes it from the row permanently, 
and receives the value of the coin.  
        Determine the maximum possible amount of money we can definitely win 
(for the entire game) if we move first.  We have no control over the opponent’s 
strategy, so we must presume that the opponent always chooses coins that are 
good for the opponent. 
        Let W(i,j) be the maximum value we can definitely win if it is our turn and 
only coins i..j, with values vi … vj, remain.  We can calculate two sets of base 
cases:  W(i, i) and W(i, i +1), for all i.  Note that these base cases correspond to 
all possible series of coins of length 1 and 2, respectively. 
 
1. Write a recursive expression for the value of W(i,j), including the base 
cases.  [Remember that the value of W(i,j) is always from our perspective, 
never from the opponent's perspective.  So, the opponent's possible choices 
have to be folded into the recursive expression.] 
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Dynamic Programming—Optimal Strategy for a Game 
 

        Consider a row of n coins of values v1 ... vn where n is even. We play a 
game against an opponent by alternating turns. In each turn, a player selects 
either the first or last coin from the row, removes it from the row permanently, 
and receives the value of the coin.  
        Determine the maximum possible amount of money we can definitely win 
(for the entire game) if we move first.  We have no control over the opponent’s 
strategy, so we must presume that the opponent always chooses coins that are 
good for the opponent. 
        Let W(i,j) be the maximum value we can definitely win if it is our turn and 
only coins i..j, with values vi … vj, remain.  We can calculate two sets of base 
cases:  W(i, i) and W(i, i +1), for all i.  Note that these base cases correspond to 
all possible series of coins of length 1 and 2, respectively. 
 
2. If you were to implement this as a dynamic programming problem, in 
what order would the W(i,j) table be filled in?   
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Dynamic Programming—Optimal Strategy for a Game 
 

        Consider a row of n coins of values v1 ... vn where n is even. We play a 
game against an opponent by alternating turns. In each turn, a player selects 
either the first or last coin from the row, removes it from the row permanently, 
and receives the value of the coin.  
        Determine the maximum possible amount of money we can definitely win 
(for the entire game) if we move first.  We have no control over the opponent’s 
strategy, so we must presume that the opponent always chooses coins that are 
good for the opponent. 
        Let W(i,j) be the maximum value we can definitely win if it is our turn and 
only coins i..j, with values vi … vj, remain.  We can calculate two sets of base 
cases:  W(i, i) and W(i, i +1), for all i.  Note that these base cases correspond to 
all possible series of coins of length 1 and 2, respectively. 
 
3.  How many distinct subproblems are there in this problem? 
 
4. What would be the runtime of a dynamic programming implementation 
of this recursive solution? 



Longest Common Subsequence 

Slides adapted from version found online 



Subsequences 

Suppose you have a sequence 
 X = < x1,x2,…,xm> 
of elements over a finite set S. 
 
A sequence Z = < z1,z2,…,zk> over S is called a subsequence of X if 

and only if it can be obtained from X by deleting elements. 
Put differently, there exist indices i1<i2 <…<ik such that  
   za = xia  
for all a in the range 1<= a <= k.   
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Common Subsequences 

Suppose that X and Y are two sequences over a 
set S.  
 
We say that Z is a common subsequence of X 
and Y if and only if  
• Z is a subsequence of X 
• Z is a subsequence of Y 
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The Longest Common Subsequence 
Problem 

Given two sequences X and Y over a set S, the 
longest common subsequence problem asks to 
find a common subsequence of X and Y that is of 
maximal length.  
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Naïve Solution 

Let X be a sequence of length m, 
and Y a sequence of length n. 
 
Check for every subsequence of X whether it is a subsequence of 

Y, and return the longest common subsequence found.  
 
There are 2m subsequences of X. Testing a sequences whether or 

not it is a subsequence of Y takes O(n) time. Thus, the naïve 
algorithm would take O(n2m) time. 



Dynamic Programming 

 
 
Let us try to develop a dynamic programming 
solution to the LCS problem. 
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Prefix 

Let X = < x1,x2,…,xm> be a sequence.   
 
We denote by Xi the sequence  
  Xi = < x1,x2,…,xi>  
and call it the ith prefix of X.  
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LCS Notation 

Let X and Y be sequences.  
 
We denote by LCS(X, Y) the set of longest 

common subsequences of X and Y.  
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Optimal Substructure 

Let X = < x1,x2,…,xm> 
and Y = < y1,y2,…,yn>  be two sequences. 
Let Z = < z1,z2,…,zk> is any LCS of X and Y. 
a)  If xm = yn then certainly xm = yn = zk 

 and Zk-1 is in LCS(Xm-1 , Yn-1) 
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Optimal Substructure (2) 

Let X = < x1,x2,…,xm> 
and Y = < y1,y2,…,yn>  be two sequences. 
Let Z = < z1,z2,…,zk> is any LCS of X and Y. 
b)  If xm != yn then xm != zk implies that    Z is in 

LCS(Xm-1 , Y) 
c) If xm != yn then yn != zk implies that      Z is in 

LCS(X, Yn-1) 
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Overlapping Subproblems 

If xm = yn  then we solve the subproblem to find 
an element in LCS(Xm-1 , Yn-1 ) and append xm 

If xm != yn  then we solve the two subproblems of 
finding elements in LCS(Xm , Yn-1 ) and LCS(Xm-1 
, Yn ) and choose the longer one.   
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Recursive Solution 

Let X and Y be sequences.  
Let  c[i,j] be the length of an element in LCS(Xi, Yj).  
 
     
 
            
c[i,j] =  
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• if i=0 or j=0 0 

• if i,j>0 and xi = yj c[i-1,j-1]+1 

• if i,j>0 and xi <> yj max(c[i,j-1],c[i-1,j]) 



Dynamic Programming Solution 

To compute length of an element in LCS(X,Y) with X of 
length m and Y of length n, we do the following: 
•Initialize first row and first column of the array c with 
0.  
•Calculate c[1,j] for 1 <= j <= n,        
c[2,j] for 1 <= j <= n             …  
•Return c[m,n]  
•Complexity O(mn).  
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Dynamic Programming Solution (2) 

How can we get an actual longest common 
subsequence?  
 
Store in addition to the array c an array b 
pointing to the optimal subproblem chosen 
when computing c[i,j].  
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Example 

 yj B D C A 

xj 0 0 0 0 0 

A 0 0 0 0 1 

B 0 1 1 1 1 

C 0 1 1 2 2 

B 0 1 1 2 2 
 

 

Start at b[m,n]. 
Follow the arrows. 
Each diagonal array 
gives one element 
of the LCS. 



Reading Assignments 

• Today’s class:  
– Chapter 15.3-4 

 

• Reading assignment for next class: 
– Chapter 15.5 
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