
Today:
Dynamic Programming

Longest Common Subsequence

COSC 581, Algorithms
January 28, 2014

Reading Assignments

• Today’s class:
– Chapter 15.3-4

• Reading assignment for next class:
– Chapter 15.5

3

Dynamic Programming: Recall

• Motivation of dynamic programming
– Solving each subproblem only once

• Steps of dynamic programming

– Characterize the structure of an optimal solution
– Recursively define the value of an optimal solution
– Compute the value of an optimal solution
– Construct an optimal solution from computed information

• Dynamic programming implementation

– Top-down method with memoization
– Bottom-up approach

4

Dynamic Programming (Cont’d)

• When to use dynamic programming? Two Elements:

– Problem exhibits optimal structure
• Optimal solutions to a problem incorporate optimal solutions to

subproblems
• Subproblems can be solved independently

– Problem has overlapping subproblems

5

DP Element 1: Optimal Structure

• Discover optimal structure

– Show that a solution to a problem consists of making a choice
• Rod-cutting: choosing an initial cut a rod
• Matrix chain multiplication: choosing an index to split a matrix chain

– Suppose the choice leads to an optimal solution

– Given the choice, determine which subproblems to use
• Rod-cutting: a subproblem is also a rod-cutting problem with a smaller size
• Matrix-chain multiplication: a subproblem is also a matrix-chain multiplication

problem with new start and end indices

– Show that the solutions to the subproblems must themselves be
optimal by using a “cut-and-paste” technique

6

DP Element 1: Optimal Structure

• Optimal structure varies across problem domains

– Number of subproblems
• Rod-cutting: one
• Matrix chain multiplication: two

– Number of choices to determine which sub problem to use
• Rod-cutting: for cutting up a rod of size n, we must consider n choices
• Matrix-chain multiplication: for the subchain , we must consider

(j – i) choices; that is to choose k to split the chain
 and .

• Runtime of dynamic programming generally depends on:
 overall number of subproblems x number of choices
– Can be visualized using the subproblem graph

7

DP Element 1: Optimal Structure

• Be careful with optimal structure: Not always apply!
– Given a directed graph:
– Unweighted shortest path
– Unweighted longest path: consider

• What makes optimal structure no longer apply?

8

DP Element 1: Optimal Structure

• Be careful with optimal structure: Not always apply!
– Given a directed graph:
– Unweighted shortest path
– Unweighted longest path: consider

• What makes optimal structure no longer apply?

 Subproblems are not independent

9

DP Element 2: Overlapping Subproblems

Example: Matrix-chain multiplication (4 matrix in the chain)

10

Dynamic Programming—Optimal Strategy for a Game

 Consider a row of n coins of values v1 ... vn where n is even. We play a
game against an opponent by alternating turns. In each turn, a player selects
either the first or last coin from the row, removes it from the row permanently,
and receives the value of the coin.
 Determine the maximum possible amount of money we can definitely win
(for the entire game) if we move first. We have no control over the opponent’s
strategy, so we must presume that the opponent always chooses coins that are
good for the opponent.
 Let W(i,j) be the maximum value we can definitely win if it is our turn and
only coins i..j, with values vi … vj, remain. We can calculate two sets of base
cases: W(i, i) and W(i, i +1), for all i. Note that these base cases correspond to
all possible series of coins of length 1 and 2, respectively.

1. Write a recursive expression for the value of W(i,j), including the base
cases. [Remember that the value of W(i,j) is always from our perspective,
never from the opponent's perspective. So, the opponent's possible choices
have to be folded into the recursive expression.]

11

Dynamic Programming—Optimal Strategy for a Game

 Consider a row of n coins of values v1 ... vn where n is even. We play a
game against an opponent by alternating turns. In each turn, a player selects
either the first or last coin from the row, removes it from the row permanently,
and receives the value of the coin.
 Determine the maximum possible amount of money we can definitely win
(for the entire game) if we move first. We have no control over the opponent’s
strategy, so we must presume that the opponent always chooses coins that are
good for the opponent.
 Let W(i,j) be the maximum value we can definitely win if it is our turn and
only coins i..j, with values vi … vj, remain. We can calculate two sets of base
cases: W(i, i) and W(i, i +1), for all i. Note that these base cases correspond to
all possible series of coins of length 1 and 2, respectively.

2. If you were to implement this as a dynamic programming problem, in
what order would the W(i,j) table be filled in?

12

Dynamic Programming—Optimal Strategy for a Game

 Consider a row of n coins of values v1 ... vn where n is even. We play a
game against an opponent by alternating turns. In each turn, a player selects
either the first or last coin from the row, removes it from the row permanently,
and receives the value of the coin.
 Determine the maximum possible amount of money we can definitely win
(for the entire game) if we move first. We have no control over the opponent’s
strategy, so we must presume that the opponent always chooses coins that are
good for the opponent.
 Let W(i,j) be the maximum value we can definitely win if it is our turn and
only coins i..j, with values vi … vj, remain. We can calculate two sets of base
cases: W(i, i) and W(i, i +1), for all i. Note that these base cases correspond to
all possible series of coins of length 1 and 2, respectively.

3. How many distinct subproblems are there in this problem?

4. What would be the runtime of a dynamic programming implementation
of this recursive solution?

Longest Common Subsequence

Slides adapted from version found online

Subsequences

Suppose you have a sequence
 X = < x1,x2,…,xm>
of elements over a finite set S.

A sequence Z = < z1,z2,…,zk> over S is called a subsequence of X if

and only if it can be obtained from X by deleting elements.
Put differently, there exist indices i1<i2 <…<ik such that
 za = xia
for all a in the range 1<= a <= k.

14

Common Subsequences

Suppose that X and Y are two sequences over a
set S.

We say that Z is a common subsequence of X
and Y if and only if
• Z is a subsequence of X
• Z is a subsequence of Y

15

The Longest Common Subsequence
Problem

Given two sequences X and Y over a set S, the
longest common subsequence problem asks to
find a common subsequence of X and Y that is of
maximal length.

16

17

Naïve Solution

Let X be a sequence of length m,
and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of

Y, and return the longest common subsequence found.

There are 2m subsequences of X. Testing a sequences whether or

not it is a subsequence of Y takes O(n) time. Thus, the naïve
algorithm would take O(n2m) time.

Dynamic Programming

Let us try to develop a dynamic programming
solution to the LCS problem.

18

Prefix

Let X = < x1,x2,…,xm> be a sequence.

We denote by Xi the sequence
 Xi = < x1,x2,…,xi>
and call it the ith prefix of X.

19

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest

common subsequences of X and Y.

20

Optimal Substructure

Let X = < x1,x2,…,xm>
and Y = < y1,y2,…,yn> be two sequences.
Let Z = < z1,z2,…,zk> is any LCS of X and Y.
a) If xm = yn then certainly xm = yn = zk

 and Zk-1 is in LCS(Xm-1 , Yn-1)

21

Optimal Substructure (2)

Let X = < x1,x2,…,xm>
and Y = < y1,y2,…,yn> be two sequences.
Let Z = < z1,z2,…,zk> is any LCS of X and Y.
b) If xm != yn then xm != zk implies that Z is in

LCS(Xm-1 , Y)
c) If xm != yn then yn != zk implies that Z is in

LCS(X, Yn-1)

22

Overlapping Subproblems

If xm = yn then we solve the subproblem to find
an element in LCS(Xm-1 , Yn-1) and append xm

If xm != yn then we solve the two subproblems of
finding elements in LCS(Xm , Yn-1) and LCS(Xm-1
, Yn) and choose the longer one.

23

Recursive Solution

Let X and Y be sequences.
Let c[i,j] be the length of an element in LCS(Xi, Yj).

c[i,j] =

24

• if i=0 or j=0 0

• if i,j>0 and xi = yj c[i-1,j-1]+1

• if i,j>0 and xi <> yj max(c[i,j-1],c[i-1,j])

Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of
length m and Y of length n, we do the following:
•Initialize first row and first column of the array c with
0.
•Calculate c[1,j] for 1 <= j <= n,
c[2,j] for 1 <= j <= n …
•Return c[m,n]
•Complexity O(mn).

25

Dynamic Programming Solution (2)

How can we get an actual longest common
subsequence?

Store in addition to the array c an array b
pointing to the optimal subproblem chosen
when computing c[i,j].

26

27

Example

 yj B D C A

xj 0 0 0 0 0

A 0 0 0 0 1

B 0 1 1 1 1

C 0 1 1 2 2

B 0 1 1 2 2

Start at b[m,n].
Follow the arrows.
Each diagonal array
gives one element
of the LCS.

Reading Assignments

• Today’s class:
– Chapter 15.3-4

• Reading assignment for next class:
– Chapter 15.5

	Today:�Dynamic Programming�Longest Common Subsequence
	Reading Assignments
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Longest Common Subsequence
	Subsequences
	Common Subsequences
	The Longest Common Subsequence Problem
	Naïve Solution
	Dynamic Programming
	Prefix
	LCS Notation
	Optimal Substructure
	Optimal Substructure (2)
	Overlapping Subproblems
	Recursive Solution
	Dynamic Programming Solution
	Dynamic Programming Solution (2)
	Example
	Reading Assignments

