Today:

- Review of:
 - Heaps, Priority Queues
 - Basic Graph Algs.

 Algs for SSSP (Bellman-Ford, Topological sort for DAGs, Dijkstra)

> COSC 581, Algorithms February 4, 2014

> > Many of these slides are adapted from several online sources

Reading Assignments

• Today's class:

- Chapter 6, 22, 24.0, 24.1, 24.2, 24.3

Reading assignment for next class:
 – Chapter 25.1-25.2

Announcement: Exam 1 is on Tues, Feb. 18

 Will cover everything up through dynamic programming

Heaps & Priority Queues

Complete binary tree:

- All leaves have the same depth
- All internal nodes have 2 children

The (binary) heap data structure is:

an array object

Parent(i) = $\lfloor i/2 \rfloor$ Left(i) = 2i Right(i) = 2i+1 that can be viewed as a nearly complete binary tree

Heap Property:

- For a max-heap: child <= parent
- For a min-heap: child >= parent

Maintaining Heap Property

Heaps & Priority Queues

Maximum No. of elements

1

2

4

8

level 0: level 1:

level 2: level 3:

Maximum No. of elements

- > a one-level tree (height=0): 1
- a 2-level tree (height=1): 3
- a 3-level tree (height=2): 7
- a 4-level tree (height=3): 15

Therefore, for a heap containing *n* elements :

Maximum no. of elements in level $k = 2^k$

Height of tree = $\lfloor \mathbf{Ig} \mathbf{n} \rfloor = \Theta(\lg \mathbf{n})$

Basic procedures:		
MAX-HEAPIFY	O(lg n)	HEAP-EXTRACT-MAX O(lg n)
BUILD-MAX-HEAP	O(n)	HEAP-INCREASE-KEY O(lg n)
MAX-HEAP-INSERT	O(lg n)	HEAP-MAXIMUM O(lg n)

Heaps & Priority Queues Building a heap:

BUILD-MAX-HEAP(Input_numbers)

- 1 Copy Input_numbers to a heap
- 2 For $i = \lfloor n/2 \rfloor$ down to 1 /*all non-leaf nodes */
 - MAX-HEAPIFY(A,i)

3

Note that $\lceil n/2 \rceil$ the elements are leaf nodes

Illustration for a Complete-binary tree:

A complete-binary tree of height h has h+1 levels: 0,1,2,3,.. h. The levels have 2^{0} , 2^{1} , 2^{2} , 2^{3} ,... 2^{h} elements respectively. Then, maximum total no. of "float down" carried out by MAX-HEAPIFY = sum of maximum no. of "float down" of all non-leaf nodes (levels h-1, h-2, ...0) = 1 x $2^{h-1} + 2 x 2^{h-2} + 3 x 2^{h-3} + 4 x 2^{h-4} + ... h x 2^{0}$ = $2^{h} (1/2 + 2/4 + 3/8 + 4/16...)$ [note: $2^{h+1} = n+1$, thus $2^{h}=0.5^{*}(n+1)$] = 0.5(n+1) (1/2 + 2/4 + 3/8 + 4/16...) [note: 1/2 + 2/4 + 3/8 + 4/16... <2] < $0.5(n+1)^{*} 2 = (n+1)$ = O(n)

O(n)

Priority Queue

- Priority queue is a data structure for maintaining a set of elements each associated with a key.
- Maximum priority queue supports the following operations:
 - INSERT(S,x) Insert element x into the set S
 MAXIMUM(S) Return the 'largest' element
 EXTRACT-MAX(S) Remove and return the 'largest' element
 INCREASE-KEY(S,x,v) Increase x's key to a new value, v

We can implement priority queues based on a heap structure.

Heaps & Priority Queues

Graph Representation

Given graph G = (V, E).

- May be either directed or undirected.
- Two common ways to represent for algorithms:
 - 1. Adjacency lists.
 - 2. Adjacency matrix.

Expressing the running time of an algorithm is often in terms of both |V| and |E|.

In asymptotic notation - and *only* in asymptotic notation - we'll drop the cardinality. Example: O(V + E).

Adjacency lists

Array *Adj* of *V* lists, one per vertex.

Vertex u's list has all vertices v such that $(u, v) \in E$. (Works for both directed and undirected graphs.)

If edges have *weights*, can put the weights in the lists.

Weight: $w : E \rightarrow R$ We'll use weights later on for shortest paths. Space: $\Theta(V + E)$. Time: to list all vertices adjacent to u: $\Theta(degree(u))$. Time: to determine if $(u, v) \in E$: O(degree(u)).

Undirected graph:

Directed graph:

Adjacency Matrix

Can store weights instead of bits for weighted graph.

Breadth-First Search

• Input:

Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

• Output:

d[v] = distance (smallest # of edges) from *s* to *v*, for all $v \in V$. Also $\pi[v] = u$ such that (u, v) is last edge on shortest path *s* $\sqrt{4}v$

- *u* is *v*'s **predecessor**.
- set of edges $\{(\pi[v], v) : v = s\}$ forms a tree.
- Later, a breadth-first search will be generalized with edge weights. Now, let's keep it simple.
 - Compute only d[v], not $\pi[v]$.
 - Omitting colors of vertices.
- *Idea:* Send a wave out from *s*.
 - First hits all vertices 1 edge from s.
 - From there, hits all vertices 2 edges from *s*.
 - Etc.
- Use FIFO queue Q to maintain wavefront.
 - $-v \in Q$ if and only if wave has hit v but has not come out of v yet.

Breadth-First Search

Breadth-First Search (BFS)

Explores the edges of a graph to reach every vertex from a vertex **s**, with "shortest paths"

U

Y

ι

Х

W

Now v joins

our solution

The algorithm:

Start by inspecting the source vertex S:

So we connect them:

For s, its 2 neighbors are not yet searched

U

Now r and w join our solution

For w, we do the same to its white color neighbors:

. . .

Now t and x join our solution

Breadth-First Search

Using 3 colors: white / gray / black

Start by inspecting the source vertex S:

For s, its 2 neighbors are not yet searched

Since s is in our solution, and it is to be inspected, we mark it gray

So we connect them:

Now r and w join our solution

For r, we do the same to its white color neighbors:

Now v joins our solution

For w, we do the same to its white color neighbors:

Now t and x join our solution

No more need to check w, so mark it black.

t and x join our solution, we need to check them later on. so mark them gray.

<u>qray</u>.

No more need to check No more need to s, so mark it <u>black</u>. check r, so mark it r and w join our black. solution, we need to v joins our solution, check them later on, so we need to check it mark them gray. later on, so mark it

Breadth-First Search Algorithm

BFS(G,s) /*G=(V,E)*/For each vertex u in $V - \{s\}$ u.color = white2 $\Theta(V)$ 3 u.distance = ∞ u.pred = NIL4 s.color = gray5 6 s.distance = 0s.pred = NIL7 8 $\mathbf{Q} = \emptyset$ ENQUEUE(Q,s) 9 while $Q \neq \emptyset$ 10 u = DEQUEUE(Q)11 for each v adjacent to u 12 if v.color = white 13 14 v.color = gray15 v.distance = u.distance + 116 v.pred = uENQUEUE(Q,v) 17 18 u.color = black

The running time of BFS is: O(V+E)

Total number of edges kept by the adjacency list is $\Theta(E)$

Total time spent in the adjacency list is O(E)

Depth-First Search

• Input:

Graph G = (V, E), either directed or undirected. No source vertex given.

- **Output:** 2 *timestamps* on each vertex:
 - *d*[*v*] = *discovery time*.
 - f[v] = finishing time.
 - $\pi[v]$: v's predecessor field.
- Will methodically explore *every* edge.
 - Start over from different vertices as necessary.
- As soon as we discover a vertex, explore from it.
 - Unlike BFS, which puts a vertex on a queue so that we explore from it later.
- As DFS progresses, every vertex has a *color*:
 - WHITE = undiscovered
 - GRAY = discovered, but not finished (not done exploring from it)
 - BLACK = finished (have found everything reachable from it)
- Discovery and finish times:
 - Unique integers from 1 to 2 |V|.
 - For all v, d[v] < f[v].</p>
- In other words, $1 \le d[v] < f[v] \le 2 |V|$.

Depth-First Search

Depth-First Search (BFS)

Explores the edges of a graph by searching "deeper" whenever possible.

Depth-First Search

On many occasions it is useful to keep track of the discovery time and the finishing time while checking each node.

4 time = 0

5 for each vertex u in V

DFS-VISIT(u)

DFS-VISIT(u)

7

6

- 1 u.color = gray
- 2 time = time + 1
- 3 u.discover = time
- 4 for each v adjacent to u
- 5 if v.color = white
 - v.pred = u
- 7 DFS-VISIT(v)
- 8 u.color = black

10 u.finish = time

Properties of Depth-First Search

Parenthesis theorem

For all *u*, *v*, exactly one of the following holds:

- d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither of u and v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.

So d[u] < d[v] < f[u] < f[v] cannot happen.

Like parentheses:

- ОК: ()[] ([]) [()]
- Not OK: ([)] [(])

Corollary

- v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

White-path theorem

v is a descendant of *u* if and only if at time *d* [*u*], there is a path $u \sim v$ consisting of only white vertices.

(Except for *u*, which was *just* colored gray.)

Classification of edges

- **Tree edge:** in the depth-first forest. Found by exploring (*u*, *v*).
- **Back edge:** (*u*, *v*), where *u* is a descendant of *v*.
- **Forward edge:** (*u*, *v*), where *v* is a descendant of *u*, but not a tree edge.
- Cross edge: any other edge.

Can go between vertices in same depth-first tree or in different depth-first trees.

In an undirected graph, there may be some ambiguity since (*u*, *v*) and (*v*, *u*) are the same edge. Classify by the first type above that matches.

Theorem

In DFS of an *un*directed graph, we get only tree and back edges. No forward or cross edges.

Topological Sort of a DAG

Topological Sort

- A linear ordering of vertices : if the graph contains an edge (u,v), then u appears before v.
- Applied to directed acyclic graphs (DAG)

Sorting according to the finishing times, in descending order:

Topological Sort of a DAG

TOPOLOGICAL-SORT(G)

- Call DFS(G) to compute finishing times v.finish for each vertex v
- 2 As each vertex is finished, insert it onto the front of a linked list
- 3 Return the linked list of vertices

/+E)

Sorting according to the finishing times, in descending order:

Strongly Connected Components

- Given directed graph G = (V, E).
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \land q v$ and $v \land q u$
- Example:

- Algorithm uses $G^{\mathsf{T}} = transpose$ of G:
 - $\quad G^{\mathsf{T}} = (V, \, E^{\mathsf{T}}), \, E^{\mathsf{T}} = \{(u, \, v) : (v, \, u) \, \in \, E\}.$
 - G^{T} is G with all edges reversed.
- Can create G^{T} in (V + E) time if using adjacency lists.
- Observation: G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

Algorithm For Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS(G)

call DFS(G) to compute finishing times *u*.*f* for each vertex *u*

compute G^T

call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing *u.f* (as computed above)

output vertices of each tree from previous DFS(G^T) call as a separate strongly connected component

Runtime: $\Theta(V+E)$

Single-Source Shortest Paths

Given a weighted, directed graph, find the shortest paths from a given source vertex s to other vertices.

SSSP Variants

Single-destination shortest-path problem

By reversing the direction of each edge, we can reduce this problem to a single-source problem.

Single-pair shortest-path problem

If the single-source problem is solved, we can solve this problem also. There are no asymptotically faster algorithms.

All-pairs shortest-path problem

Can be solved by running a single source algorithm once for each source vertex. However, other faster approaches exist.

Optimal substructure of a shortest path:

A shortest path between 2 vertices contains other shortest paths within it.

Edge weight & Path weight : Edge weight: eg. w(c,d) = 6 Path weight: eg. For a path p=<s,c,d>, w(p) = w(s,c) + w(c,d) = 11

Shortest-path weight:

Define shortest-path weight for a path **p** from **u** to **v** as:

$$\delta(u,v) = \begin{cases} \min \{ w(p): u \frown_p v \} & \text{if there is a path from u to } v \\ \infty & \text{otherwise} \end{cases}$$

If there is no negative weight cycle reachable from the source vertex s, then for all v in V, the shortest-path weight $\delta(s,v)$ remains well defined.

A well defined shortest path has no cycle. Prove:

- 1. A shortest path should not contain non-negative weight cycle. [otherwise reducing the cycle would give a more optimal path]
- 2. A well defined shortest path should not contain negative weight cycle => A well defined shortest path has no cycle, and has at most |V|-1 edges.

A general function for single-source shortest paths algorithms:

A general technique for single-source shortest paths algorithms:

Relaxation

```
"Relaxing an edge (d,b)" :
```

Testing whether we can improve the shortest path to b found so far by going through d, if so, update b.d and b.pred.

Where v.d is the upper bound on the weight of a shortest path from source vertex s to v.

Three solutions to the problem:

Bellman-Ford algorithm

- By relaxing the whole set of edges |V|-1 times

Algorithm for directed acyclic graphs (DAG)

- By topological sorting the vertices first, then relax the edges of the sorted vertices one by one.

Dijkstra's algorithm

 Handle non-negative edges only. Grow the solution by checking vertices one by one, starting from the one nearest to the source vertex.

A Fact About Shortest Paths – Optimal Substructure

- **Theorem:** If *p* is a shortest path from *u* to *v*, then any subpath of *p* is also a shortest path.
- **Proof:** Consider a subpath of *p* from *x* to *y*. If there were a shorter path from *x* to *y*, then there would be a shorter path from *u* to *v*.

Shortest-Paths Idea

- $\delta(u,v) \equiv$ length of the shortest path from *u* to *v*.
- All SSSP algorithms maintain a field d[u] for every vertex u. d[u] will be an estimate of δ(s,u). As the algorithm progresses, we will refine d[u] until, at termination, d[u] = δ(s,u). Whenever we discover a new shortest path to u, we update d[u].
- In fact, d[u] will always be an *overestimate* of $\delta(s,u)$:

 $\mathsf{d}[u] \geq \delta(s, u)$

 We'll use π[u] to point to the parent (or predecessor) of u on the shortest path from s to u. We update π[u] when we update d[u].

SSSP Subroutine

RELAX(u, v, w)

▷ (Maybe) improve our estimate of the distance to v
 ▷ by considering a path along the edge (u, v).
 if v.d > u.d + w(u,v) then
 v.d ← u.d + w(u, v) ▷ actually, DECREASE-KEY
 V.π ← U
 ▷ remember predecessor on path

$$\begin{array}{ccc} d[u] & d[v] \\ \hline u & w(u,v) & & v \end{array}$$

The Bellman-Ford Algorithm

- Handles negative edge weights
- Detects negative cycles
- Is slower than Dijkstra

Bellman-Ford: Idea

- Repeatedly update d for all pairs of vertices connected by an edge.
- **Theorem:** If *u* and *v* are two vertices with an edge from *u* to *v*, and $s \Rightarrow u \rightarrow v$ is a shortest path, and $u.d = \delta(s,u)$,

then *u.d+w(u,v)* is the length of a shortest path to *v*.

• **Proof:** Since $s \Rightarrow u \rightarrow v$ is a shortest path, its length is $\delta(s,u) + w(u,v) = u.d + w(u,v)$.

Why Bellman-Ford Works

- On the first pass, we find δ (s,u) for all vertices whose shortest paths have one edge.
- On the second pass, the d[u] values computed for the oneedge-away vertices are correct (= δ (s,u)), so they are used to compute the correct d values for vertices whose shortest paths have two edges.
- Since no shortest path can have more than |V[G]|-1 edges, after that many passes all d values are correct.
- Note: all vertices not reachable from s will have their original values of infinity. (Same, by the way, for Dijkstra).

Bellman-Ford: Algorithm

BELLMAN-FORD(G, w, s)

- 1 for each vertex $v \in V[G]$ do //INIT_SINGLE_SOURCE 2 v.d $\leftarrow \infty$

$$v.\pi \leftarrow NIL$$

- s.d \leftarrow 0
- 5 for i ← 1 to |V[G]|-1 do ▷ each iteration is a "pass"
 6 for each edge (u,v) in E[G] do
 7 RELAX(u, v, w)
 8 ▷ check for negative cycles
- 9 for each edge (u,v) in É[G] do
 10 if v.d > u.d + w(u,v) then
 11 return FALSE
 12 return TRUE

Running time: $\Theta(VE)$

Single-Source Shortest Paths

Bellman-Ford Algorithm

Method: Relax the whole set of edges |V|-1 times.

6

n

8

8

S

S

-7

 ∞

 ∞

4

5

Negative Cycle Detection

- What if there is a negative-weight cycle reachable from s?
- Assume: $u.d \le x.d+4$ $v.d \le u.d+5$ $x.d \le v.d-10$
 - Adding:

 $u.d+v.d+x.d \le x.d+u.d+v.d-1$

- Because it's a cycle, vertices on left are same as those on right. Thus we get 0 ≤ -1; a contradiction. So for at least one edge (u,v), v.d > u.d + w(u,v)
- This is exactly what Bellman-Ford checks for.

SSSP in a DAG

- Recall: a *DAG* is a *d*irected *a*cyclic *g*raph.
- If we update the edges in topologically sorted order, we correctly compute the shortest paths.
- Reason: the only paths to a vertex come from vertices before it in the topological sort.

SSSP in a DAG Theorem

- Theorem: For any vertex u in a DAG, if all the vertices before u in a topological sort of the DAG have been updated, then $u.d = \delta(s,u)$.
- **Proof:** By induction on the position of a vertex in the topological sort.
- Base case: *s*.d is initialized to 0.
- Inductive case: Assume all vertices before u have been updated, and for all such vertices v, $v.d=\delta(s,v)$. (continued)

Proof, Continued

- Some edge (*v*,*u*) where *v* is before *u*, must be on the shortest path to *u*, since there are no other paths to *u*.
- When v was updated, we set u.d to v.d+w(v,u)

$$= \delta(s,v) + w(v,u)$$

=δ(*s*,*u*) ■

SSSP-DAG Algorithm

DAG-SHORTEST-PATHS(G,w,s)

 $\Theta(V+E)$

5

topologically sort the vertices of G initialize d and π as in previous algorithms for each vertex u in topological sort order do for each vertex v in Adj[u] do RELAX(u, v, w)

Running time: $\theta(V+E)$, same as topological sort

Single-Source Shortest Paths

Algorithm for directed acyclic graphs (DAG)

Single-Source Shortest Paths DAG-Shortest-Path

Method: By topological sorting the vertices first, then relax the edges of the sorted vertices one by one.

Dijkstra's Algorithm

- Assume that all edge weights are \geq 0.
- Idea: say we have a set K containing all vertices whose shortest paths from s are known (i.e. u.d = d(s,u) for all u in K).
- Now look at the "frontier" of *K*—all vertices adjacent to a vertex in *K*.

Dijkstra's: Theorem

- At each frontier vertex *u*, update *u.d* to be the minimum from all edges from *K*.
- Now pick the frontier vertex u with the smallest value of u.d.
- Claim: $u.d = \delta(s,u)$

Dijkstra's: Proof

- By construction, *u*.d is the length of the shortest path to *u* going through only vertices in *K*.
- Another path to *u* must leave *K* and go to *v* on the frontier.
- But the length of this path is at least v.d, (assuming non-negative edge weights), which is ≥ u.d.

Proof Explained

- Why is the path through v at least v.d in length?
- We know the shortest paths to every vertex in *K*.
- We've set v.d to the shortest distance from s to v via K.
- The additional edges from *v* to *u* cannot decrease the path length.

Dijkstra's Algorithm, Rough Draft

 $K \leftarrow \{s\}$ Update *d* for frontier of *K* $u \leftarrow$ vertex with minimum *d* on frontier \triangleright we now know $u.d = \delta(s, u)$ $K \leftarrow K \cup \{u\}$ repeat until all vertices are in *K*.

A Refinement

- Note: we don't really need to keep track of the frontier.
- When we add a new vertex *u* to *K*, just update vertices adjacent to *u*.

Dijkstra's Algorithm

1	DIJKSTRA(G, w, s) ⊳ Graph, weights, start vertex
2	for each vertex v in V[G] do
3	$v.d \leftarrow \infty$
4	$v.\pi \leftarrow NIL$
5	s.d \leftarrow 0
6	$Q \leftarrow BUILD-PRIORITY-QUEUE(V[G])$
7	⊳ Q is V[G] - K
8	while Q is not empty do
9	u = EXTRACT-MIN(Q)
10	for each vertex v in Adj[u]
11	RELAX(u, v, w) // DECREASE_KEY

Running Time of Dijkstra

- Initialization: $\theta(V)$
- Building priority queue: $\theta(V)$
- "while" loop done |V| times
- |V| calls of EXTRACT-MIN
- Inner "edge" loop done |E| times
- At most |E| calls of DECREASE-KEY
- Total time:

 $\Theta(V + V \times \mathsf{T}_{\mathsf{EXTRACT-MIN}} + E \times \mathsf{T}_{\mathsf{DECREASE-KEY}})$

Dijkstra Running Time (cont.)

 $\Theta(V + V \times \mathsf{T}_{\mathsf{EXTRACT-MIN}} + E \times \mathsf{T}_{\mathsf{DECREASE-KEY}})$

- 1. Priority queue is an array. EXTRACT-MIN in $\Theta(n)$ time, DECREASE-KEY in $\Theta(1)$ Total time: $\Theta(V + VV + E) = \Theta(V^2)$
- 2. ("Modified Dijkstra")
 Priority queue is a binary (standard) heap.
 EXTRACT-MIN in Θ(lgn) time, also DECREASE-KEY
 Total time: Θ(VlgV + ElgV)
- 3. Priority queue is Fibonacci heap. (Of theoretical interest only.)
 EXTRACT-MIN in Θ(lgn),
 DECREASE-KEY in Θ(1) (amortized)
 Total time: Θ(VlgV+E)

Dijkstra's Algorithm Example

Single-Source Shortest Paths Dijkstra's Algorithm

Handle non-negative edges only.

Method: Grow the solution by checking vertices one by one, starting from the one nearest to the source vertex.

Reading Assignments

- Reading assignment for next class:
 Chapter 25.1-25.2
- Announcement: Exam 1 is on Tues, Feb. 18

 Will cover everything up through dynamic programming