
Today:  
− Review of: 
  − Heaps, Priority Queues 
  − Basic Graph Algs. 

− Algs for SSSP (Bellman-Ford, Topological sort 
             for DAGs, Dijkstra) 

  
COSC 581, Algorithms 

February 4, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 6, 22, 24.0, 24.1, 24.2, 24.3 

• Reading assignment for next class: 
– Chapter 25.1-25.2 

 

• Announcement:  Exam 1 is on Tues, Feb. 18 
– Will cover everything up through dynamic 

programming 



Heaps & Priority Queues 
The (binary) heap data structure is: 

• All leaves 
have the 
same depth 

• All internal 
nodes have 
2 children 

Complete 
binary tree: 
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an array object that can be viewed as  
a nearly complete binary tree 

Parent(i) =  i/2  
Left(i)  = 2i 
Right(i) = 2i+1  

Heap Property: 
• For a max-heap: child <= parent 
• For a min-heap: child >= parent 



Maintaining Heap Property 
MAX-HEAPIFY(A,i) 
1 
2 
3 
4 
.. 

The binary trees rooted at LEFT(i) and RIGHT(i) 
are max-heaps 

But A[i] may be smaller than its children.  

MAX-HEAPIFY is to “float down” A[i] to make 
the subtree rooted at A[i] a max-heap. 
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O(height of node i) 
= O(lg n) 



Heaps & Priority Queues 

Basic procedures: 
MAX-HEAPIFY  O(lg n) 
BUILD-MAX-HEAP  O(n) 
MAX-HEAP-INSERT O(lg n) 

Maximum No. of elements Maximum No. of elements 

Therefore, for a heap containing n elements : 

a one-level tree (height=0): 1 1 

2 3 

6 7 4 5 

8 9 10 

Height of tree = lg n  = Θ(lg n) Maximum no. of elements in level k = 2k 

HEAP-EXTRACT-MAX O(lg n) 
HEAP-INCREASE-KEY O(lg n) 
HEAP-MAXIMUM O(lg n) 

a 2-level tree (height=1): 3 

a 3-level tree (height=2): 7 

a 4-level tree (height=3): 15 

1 level 0: 

2 level 1: 

4 level 2: 

8 level 3: 



Heaps & Priority Queues 
BUILD-MAX-HEAP(Input_numbers) 
1  Copy Input_numbers to a heap 
2  For i =  n/2  down to 1 /*all non-leaf nodes */ 
3  MAX-HEAPIFY(A,i) 

Building a heap: 1 

2 3 

6 7 4 5 

8 9 10 
.. .. 

15 14 11 

Note that n/2 the elements are leaf nodes 

1 

2 3 

6 7 4 5 

8 9 10 

Illustration for a Complete-binary tree:  
A complete-binary tree of height h has h+1 levels: 0,1,2,3,.. h.   
The levels have 20,21,22,23,…2h elements respectively. 
Then, maximum total no. of “float down” carried out by MAX-HEAPIFY  
= sum of maximum no. of “float down” of all non-leaf nodes (levels h-1, h-2, .. 0) 
= 1 x 2h-1 + 2 x 2h-2 + 3 x 2h-3 + 4 x 2h-4 + .. h x 20 
= 2h (1/2 + 2/4 + 3/8 + 4/16…)  [note: 2h+1 = n+1, thus 2h=0.5*(n+1)] 
= 0.5(n+1) (1/2 + 2/4 + 3/8 + 4/16…) [note: 1/2 + 2/4 + 3/8 + 4/16.. <2] 
< 0.5(n+1) * 2 = (n+1) 
= O(n) 

O(n) 



Priority Queue 
 

 Priority queue is a data structure for maintaining a set of 
elements each associated with a key. 

 Maximum priority queue supports the following 
operations: 

INSERT(S,x)  - Insert element x into the set S 
MAXIMUM(S)  - Return the ‘largest’ element 
EXTRACT-MAX(S)  - Remove and return the ‘largest’ element 
INCREASE-KEY(S,x,v)  - Increase x’s key to a new value, v 

We can implement priority queues based 
on a heap structure. 



HEAP-EXTRACT-MAX(A) 
1 
2 
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7 

 
Step 1.  Save the value of the root that is to be returned. 

Step 2.  Move the last value to the root node. 

Step 3.  MAX-HEAPIFY(A,1/*the root node*/). 

Heaps & Priority Queues 
MAXIMUM(A) 
1  return A[1] 
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Heaps & Priority Queues 
HEAP-INCREASE-KEY(A,i,v) 
1 
2 
3 
4 
5 
6 

MAX-HEAP-INSERT(A,key) 
1  n = n+1 
2 A[n]= - ∞ 
3 HEAP-INCREASE-KEY(A,n,key) 
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Keep on exchanging with parent until parent is greater than the current node. 

O(lg n) 
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Graph Representation 
 
Given graph G = (V, E). 

•  May be either directed or undirected. 
•  Two common ways to represent for algorithms: 

 1. Adjacency lists. 
 2. Adjacency matrix. 
 

Expressing the running time of an algorithm is often in terms of  
both |V| and |E|.    
 

In asymptotic notation - and only in asymptotic notation - we’ll drop the  
cardinality.   Example: O(V + E). 
 

 



Adjacency lists 
Array Adj of |V| lists, one per vertex. 
Vertex u’s list has all vertices v such that (u, v) ∈ E. (Works for both directed and undirected graphs.) 

If edges have weights, can put the weights in the lists. 
 Weight: w : E → R 
  We’ll use weights later on for shortest paths. 
 Space: Θ (V + E). 
 Time:   to list all vertices adjacent to u:   Θ (degree(u)). 
 Time:   to determine if (u, v) ∈  E:   O(degree(u)). 
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Undirected graph: Directed graph: 
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Adjacency Matrix 
|V| × |V| matrix A = (a i j ) 
 a ij =  1  if  (i, j ) ∈  E , 
           0  otherwise . 
 Space:                     
 Time:   to list all vertices adjacent to u:   Θ (V). 
 Time:   to determine if (u, v) ∈  E:   O(1). 
 

 Can store weights instead of bits for weighted graph. 

2( )VΘ

1 2 3 

4 5 6 

a 1 2 3 4 5 6 
1 0 1 0 1 0 0 
2 1 0 0 1 1 0 
3 0 0 0 0 1 1 
4 1 1 0 0 1 0 
5 0 1 1 1 0 0 
6 0 0 1 0 0 0 

1 2 3 

4 5 6 

0000006
0000005
0000004
0000003
0000002
0000001
654321

0000006
0000005
0000004
0000003
0000002
0000001
654321

1 1
1
1 1

1
1

1

1 1
1
1 1

1
1

1

Undirected graph: Directed graph: 



Breadth-First Search 

• Input:  
   Graph G = (V, E), either directed or undirected, and source vertex s ∈ V. 
 

• Output:  
  d[v] = distance (smallest # of edges) from s to v, for all v ∈  V. 

  Also π[v] = u such that (u, v) is last edge on shortest path s       v  
• u is v’s  predecessor. 
• set of edges {(π[v], v) : v = s}   forms a tree. 

 

• Later, a breadth-first search will be generalized  with edge weights.  
 Now, let’s keep it simple. 

– Compute only d[v], not π[v].  
– Omitting colors of vertices.  

• Idea:   Send a wave out from s. 
– First hits all vertices 1 edge from s. 
– From there, hits all vertices 2 edges from s. 
– Etc. 

• Use FIFO queue Q to maintain wavefront. 
– v ∈  Q  if and only if  wave has hit v but has not come out of v yet. 



Breadth-First Search 
Explores the edges of a graph to 
reach every vertex from a vertex 
s, with “shortest paths” 
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So we connect  
them: 

The algorithm: 

Start by inspecting  
the source vertex S: 
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For r, we do the  
same to its white 
 color neighbors: 

For s, its 2 neighbors 
are not yet searched 

Now r and w join 
our solution 

∞ ∞ 
∞ ∞ 

∞ ∞ 
∞ ∞ 

s r u t 

w v y x 

For w, we do the  
same to its white  
color neighbors: 

Breadth-First Search (BFS) 

Now v joins 
our solution 

Now t and x join 
our solution 

… 



Breadth-First Search 

∞ ∞ 
∞ ∞ 

∞ ∞ 
∞ ∞ 

s r u t 

w v y x 

So we connect  
them: 

Using 3 colors: white / gray / black 

Start by inspecting  
the source vertex S: 
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For r, we do the  
same to its white 
 color neighbors: 

For s, its 2 neighbors 
are not yet searched 

Now r and w join 
our solution 

∞ ∞ 
∞ ∞ 

∞ ∞ 
∞ ∞ 

s r u t 

w v y x 

For w, we do the  
same to its white  
color neighbors: 

Now v joins 
our solution 

Now t and x join 
our solution 

… 

Since s is in our 
solution, and it is to be 
inspected, we mark it 
gray 

No more need to check 
s, so mark it black. 
r and w join our 
solution, we need to 
check them later on, so 
mark them gray. 

No more need to 
check r, so mark it 
black. 
v joins our solution, 
we need to check it 
later on, so mark it 
gray. 

No more need to 
check w, so mark it 
black. 
t and x join our 
solution, we need to 
check them later on, 
so mark them gray. 



Breadth-First Search Algorithm 
BFS(G,s)  /*G=(V,E)*/ 
1 For each vertex u in V - {s} 
2  u.color = white 
3  u.distance = ∞ 
4  u.pred = NIL 
5 s.color = gray 
6 s.distance = 0 
7 s.pred = NIL 
8 Q = ∅ 
9 ENQUEUE(Q,s) 
10 while Q ≠ ∅ 
11  u = DEQUEUE(Q) 
12  for each v adjacent to u 
13   if v.color = white 
14    v.color = gray 
15    v.distance = u.distance + 1 
16    v.pred = u 
17    ENQUEUE(Q,v) 
18  u.color = black 

Θ(V) 

Total number of edges kept 
by the adjacency list is Θ(E) 

Total time spent in the 
adjacency list is O(E) 

The running time 
of BFS is: O(V+E) 



Depth-First Search 
• Input:  
   Graph G = (V, E), either directed or undirected.  No source vertex given. 
 

• Output:  2 timestamps on each vertex: 
• d[v] = discovery time. 
• f[v]  =  finishing time. 
• π[v]     : v’s predecessor field. 

 

• Will methodically explore every edge. 
– Start over from different vertices as necessary. 

• As soon as we discover a vertex, explore from it. 
– Unlike BFS, which puts a vertex on a queue so that we explore from it later. 

• As DFS progresses, every vertex has a color: 
– WHITE = undiscovered 
– GRAY = discovered, but not finished (not done exploring from it) 
– BLACK = finished (have found everything reachable from it) 

• Discovery and finish times: 
– Unique integers from 1 to 2 |V|. 
– For all v,  d[v] < f [v]. 

• In other words, 1 ≤  d[v] < f [v] ≤ 2 |V|. 
 



Depth-First Search 

Explores the edges of 
a graph by searching 
“deeper” whenever 
possible. 

 

Depth-First Search (BFS) 
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DFS(G) /*G = (V,E) */ 
1 for each vertex u in V 
2  u.color = white 
3  u.pred = NIL 
4 for each vertex u in V 
5  if u.color = white 
6   DFS-VISIT(u) 

DFS-VISIT(u) 
1 u.color = gray 
2 for each v adjacent to u 
3  if v.color = white 
4   v.pred = u 
5   DFS-VISIT(v) 
6 u.color = black 

Θ(V) 

Θ(V) + 
Time to  
execute 
calls to  
DFS-VISIT 

Total number of  
edges kept by  
the adjacency 
list is Θ(E). 
Total time spent 
in the adjacency 
list is Θ(E). 

The running 
time of DFS 
is: Θ(V+E) 

√ √ √ 

√ √ √ 



Depth-First Search 

On many occasions it is useful to 
keep track of the discovery time 
and the finishing time while 
checking each node. 
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DFS(G) /*G = (V,E) */ 
1 for each vertex u in V 
2  u.color = white 
3  u.pred = NIL 
4 time = 0 
5 for each vertex u in V 
6  if u.color = white 
7   DFS-VISIT(u) 

DFS-VISIT(u) 
1 u.color = gray 
2 time = time + 1 
3 u.discover = time 
4 for each v adjacent to u 
5  if v.color = white 
6   v.pred = u 
7   DFS-VISIT(v) 
8 u.color = black 
9 time = time + 1 
10 u.finish = time 
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Properties of Depth-First Search 
Parenthesis theorem 
For all u, v, exactly one of the following holds: 

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and  

 neither of u and v is a descendant of the other. 

2.    d[u] < d[v] < f [v] < f [u] and v is a descendant of u. 
3.    d[v] < d[u] < f [u] < f [v] and u is a descendant of v. 
 

So d[u] < d[v] < f [u] < f [v] cannot happen. 
Like parentheses: 
– OK:  ( ) [ ]     ( [ ] )      [ ( ) ] 
– Not OK:      ( [ ) ]     [ ( ] ) 
 

Corollary 
– v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u]. 
 

White-path theorem 
v is a descendant of u if and only if at time d [u], there is a path u       v      
consisting of only white vertices.  
(Except for u, which was just colored gray.) 



Classification of edges 
 
 

– Tree edge: in the depth-first forest. Found by exploring (u, v). 
– Back edge: (u, v), where u is a descendant of v. 
– Forward edge: (u, v), where v is a descendant of u, but not a tree edge. 
– Cross edge:   any other edge.    
         Can go between vertices in same depth-first tree or  
         in different depth-first trees. 
 
In an undirected graph, there may be some ambiguity since (u, v) and (v, u)  
are the same edge.    Classify by the first type above that matches. 
 
Theorem 
In DFS of an undirected graph, we get only tree and back edges.  
No forward or cross edges. 
 



Topological Sort of a DAG 

• A linear ordering of 
vertices : if the 
graph contains an 
edge (u,v), then u 
appears before v. 

• Applied to directed 
acyclic graphs 
(DAG) 

Topological Sort 

undershorts pants belt socks shoes shirt tie jacket watch 

Sorting according to the finishing times, in descending order: 

undershorts 

pants 

belt 

socks 

shoes 

shirt 

tie 

jacket 

watch 
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17/18 13/14 9/10 1/8 2/5 3/4 6/7 11/16 12/15 



Topological Sort of a DAG 

undershorts pants belt socks shoes shirt tie jacket watch 

Sorting according to the finishing times, in descending order: 

undershorts 

pants 

belt 

socks 

shoes 

shirt 

tie 

jacket 

watch 

1/8 

17/18 

13/14 

2/5 

3/4 

9/10 

11/16 

12/15 

6/7 

17/18 13/14 9/10 1/8 2/5 3/4 6/7 11/16 12/15 

TOPOLOGICAL-SORT(G) 

1 Call DFS(G) to 
compute finishing 
times v.finish for each 
vertex v 

2 As each vertex is 
finished, insert it onto 
the front of a linked list 

3 Return the linked list 
of vertices 

Θ(V+E) 



Strongly Connected Components 
• Given directed graph G = (V, E). 
• A strongly connected component (SCC) of G is a maximal set of vertices C ⊆ V such 

that for all u, v ∈  C, both u        v    and  v       u  
 

• Example:  
  
 
 
 
 
 
• Algorithm uses GT = transpose of G: 

– GT = (V, ET), ET = {(u, v) : (v, u) ∈  E}. 
– GT is G with all edges reversed. 

• Can create GT in (V + E) time if using adjacency lists. 
• Observation: G and GT have the same SCC’s. (u and v are reachable from each 

other in G if and only if reachable from each other in GT.) 



Algorithm For Strongly Connected 
Components 

STRONGLY-CONNECTED-COMPONENTS(G) 
 call DFS(G) to compute finishing times u.f for each  
  vertex u 
 compute GT 

 call DFS(GT), but in the main loop of DFS, consider  
  the vertices in order of decreasing u.f (as  
  computed above) 
 output vertices of each tree from previous DFS(GT)  
  call as a separate strongly connected component 

Runtime:  Θ(V+E) 



Single-Source Shortest Paths 
  Single-Source Shortest Paths 

Given a weighted, directed graph,  find the shortest paths 
from a given source vertex s to other vertices.   
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SSSP Variants 

All-pairs  
shortest-path  
problem 
Can be solved by 
running a single source 
algorithm once for each 
source vertex.  However, 
other faster approaches 
exist.  
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Single-destination 
shortest-path problem 
By reversing the direction of 
each edge, we can reduce this 
problem to a single-source 
problem. Single-pair  

shortest-path  
problem 
If the single-source 
problem is solved, we 
can solve this problem 
also.  There are no 
asymptotically faster 
algorithms. 



Single-Source Shortest Paths 

Shortest-path weight: 
 Define shortest-path weight for a path p from u to v as: 

Optimal substructure of a shortest path: 
 A shortest path between 2 vertices contains 

other shortest paths within it. 

Edge weight & Path weight : 
 Edge weight:  eg. w(c,d) = 6 
 Path weight: eg. For a path p=<s,c,d>, w(p) = w(s,c) + w(c,d) = 11 
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δ(u,v) = 
   min { w(p): u   p  v}  if there is a path from u to v 

   ∞        otherwise 



Single-Source Shortest Paths 

If there is no negative weight cycle reachable from the source vertex s, 
then for all v in V, the shortest-path weight δ(s,v) remains well defined. 

Negative-weight edges  
eg. w(a,b) = -4  

Negative-weight path  
eg. <s,a,b>: -1 

Negative-weight cycle   
eg. <e,f,e>: -3 
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h, i, and j are not reachable from s 
=> δ(s,h), δ(s,i) and δ(s,j) are ∞ 

A well defined shortest path has no cycle.  Prove: 
1. A shortest path should not contain non-negative weight cycle.  

[otherwise reducing the cycle would give a more optimal path] 
2. A well defined shortest path should not contain negative weight cycle 
=> A well defined shortest path has no cycle, and has at most |V|-1 edges. 



Single-Source Shortest Paths 

A general technique for single-source 
shortest paths algorithms: 

INITIALIZE-SINGLE-SOURCE() 
1 For each vertex v in V 
2  v.d = ∞ 
3  v.pred = NIL 
4 s.d = 0 

RELAX(u,v)  
1 if v.d > u.d + w(u,v) 
2  v.d = u.d + w(u,v) 
3  v.pred = u 

A general function for single-source 
shortest paths algorithms:  
 

Where v.d is the upper bound on the 
weight of a shortest path from source 
vertex s to v. 

Relaxation 
“Relaxing an edge (d,b)” : 
Testing whether we can improve the shortest 
path to b found so far by going through d, if so, 
update b.d and b.pred. 

Θ(V) 
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Single-Source Shortest Paths 

Three solutions to the problem: 
 Bellman-Ford algorithm  

- By relaxing the whole set of edges |V|-1 times 

 Algorithm for directed acyclic graphs (DAG)  
- By topological sorting the vertices first, then relax the 

edges of the sorted vertices one by one. 

 Dijkstra’s algorithm  
- Handle non-negative edges only.  Grow the solution 

by checking vertices one by one, starting from the one 
nearest to the source vertex. 



A Fact About Shortest Paths –  
Optimal Substructure 

• Theorem: If p is a shortest path from u to v, 
then any subpath of p is also a shortest path. 

• Proof: Consider a subpath of p from x to y. If 
there were a shorter path from x to y, then 
there would be a shorter path from u to v. 
 

u x y v 

shorter? 



Shortest-Paths Idea 
• δ(u,v) ≡ length of the shortest path from u to v. 
• All SSSP algorithms maintain a field d[u] for every vertex u.  

d[u] will be an estimate of δ(s,u).  As the algorithm 
progresses, we will refine d[u] until, at termination,  
d[u] = δ(s,u). Whenever we discover a new shortest path to 
u, we update d[u]. 

• In fact, d[u] will always be an overestimate of δ(s,u): 
   d[u] ≥ δ(s,u) 
• We’ll use π[u] to point to the parent (or predecessor) of u 

on the shortest path from s to u.  We update π[u] when we 
update d[u]. 



SSSP Subroutine 
RELAX(u, v, w) 
  (Maybe) improve our estimate of the distance to v 
  by considering a path along the edge (u, v). 
 if v.d > u.d + w(u,v) then 
  v.d ← u.d + w(u, v)  actually, DECREASE-KEY 
  v.π ← u            remember predecessor on path 

u v w(u,v) 
d[v] d[u] 



The Bellman-Ford Algorithm 
• Handles negative edge weights 
• Detects negative cycles 
• Is slower than Dijkstra 

4 

5 
-10 

a negative cycle 



Bellman-Ford: Idea 

• Repeatedly update d for all pairs of vertices 
connected by an edge. 

• Theorem: If u and v are two vertices with an 
edge from u to v, and s ⇒ u → v is a shortest 
path, and u.d = δ(s,u), 

 then u.d+w(u,v) is the length of a shortest 
 path to v. 
• Proof: Since s ⇒u → v is a shortest path, its 

length is δ(s,u) + w(u,v) = u.d + w(u,v).  
 



Why Bellman-Ford Works 
• On the first pass, we find δ (s,u) for all vertices whose 

shortest paths have one edge. 

• On the second pass, the d[u] values computed for the one-

edge-away vertices are correct (= δ (s,u)), so they are used 
to compute the correct d values for vertices whose 
shortest paths have two edges. 

• Since no shortest path can have more than |V[G]|-1 edges, 
after that many passes all d values are correct. 

• Note: all vertices not reachable from s will have their 
original values of infinity.  (Same, by the way, for Dijkstra). 



Bellman-Ford: Algorithm 
BELLMAN-FORD(G, w, s) 
1   for each vertex v ∈V[G] do //INIT_SINGLE_SOURCE 
2       v.d ← ∞ 
3       v.π ← NIL 
4   s.d ← 0 
5   for i ← 1 to |V[G]|-1 do   each iteration is a “pass” 
6       for each edge (u,v) in E[G] do 
7            RELAX(u, v, w) 
8    check for negative cycles 
9   for each edge (u,v) in E[G] do  
10      if v.d > u.d + w(u,v) then 
11         return FALSE 
12 return TRUE               Running time: Θ(VE)  

O(V) 

O(VE) 

O(E) 



Single-Source Shortest Paths 

Bellman-Ford Algorithm 
Method:  Relax the whole set of edges |V|-1 times. 
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Negative Cycle Detection 
• What if there is a negative-weight 

cycle reachable from s? 
• Assume: u.d ≤ x.d+4 
  v.d ≤ u.d+5 
  x.d ≤ v.d-10 
• Adding: 
 u.d+v.d+x.d ≤ x.d+u.d+v.d-1 
• Because it’s a cycle, vertices on left are same as those on 

right.  Thus we get 0 ≤ -1; a contradiction.   
So for at least one edge (u,v), 

 v.d > u.d + w(u,v) 
• This is exactly what Bellman-Ford checks for. 

u 

x 

v 
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SSSP in a DAG 

• Recall: a DAG is a directed acyclic graph. 
• If we update the edges in topologically sorted 

order, we correctly compute the shortest 
paths. 

• Reason: the only paths to a vertex come from 
vertices before it in the topological sort. 
 

0 1 4 6 1 3 2 

9 
s 



SSSP in a DAG Theorem 

• Theorem: For any vertex u in a DAG, if all the 
vertices before u in a topological sort of the 
DAG have been updated, then u.d = δ(s,u). 

• Proof: By induction on the position of a vertex 
in the topological sort. 

• Base case: s.d is initialized to 0. 
• Inductive case: Assume all vertices before u 

have been updated, and for all such vertices v, 
v.d=δ(s,v). (continued) 



Proof, Continued 

• Some edge (v,u) where v is before u, must be 
on the shortest path to u, since there are no 
other paths to u.          

• When v was updated, we set u.d to 
 v.d+w(v,u) 

 = δ(s,v) + w(v,u) 
 = δ(s,u)  



SSSP-DAG Algorithm 

DAG-SHORTEST-PATHS(G,w,s) 
1 topologically sort the vertices of G 
2 initialize d and π as in previous algorithms 
3 for each vertex u in topological sort order do 
4  for each vertex v in Adj[u] do 
5      RELAX(u, v, w) 

Running time: θ(V+E), same as topological sort 

Θ(V+E) 

Θ(V) 

Θ(E) 



Single-Source Shortest Paths 

Algorithm for directed acyclic graphs (DAG)  
Single-Source Shortest Paths 
   

DAG-Shortest-Path 
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Method:   By topological sorting the vertices first, then relax the 
edges of the sorted vertices one by one. 
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Dijkstra’s Algorithm 
• Assume that all edge weights are ≥ 0. 
• Idea: say we have a set K containing all vertices 

whose shortest paths from s are known  
(i.e. u.d = d(s,u) for all u in K). 

• Now look at the “frontier” of K—all vertices 
adjacent to a vertex in K. 

the rest 
of  the  
graph 

s 

K 



Dijkstra’s: Theorem 

• At each frontier 
vertex u, update 
u.d to be the 
minimum from all 
edges from K. 

• Now pick the 
frontier vertex u 
with the smallest 
value of u.d. 

• Claim: u.d = δ(s,u) 
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Dijkstra’s: Proof 

• By construction, u.d is the length of the 
shortest path to u going through only vertices 
in K. 

• Another path to u must leave K and go to v on 
the frontier. 

• But the length of this path is at least v.d, 
(assuming non-negative edge weights),  
which is ≥ u.d.  



Proof Explained 

• Why is the path through v at least v.d in length? 
• We know the shortest paths to every vertex in K. 
• We’ve set v.d to the shortest distance from s to v via K. 
• The additional edges from v to u cannot decrease the path 

length. 
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u.d ≤ v.d 

K 

shortest path to u 

another path to u, via v 



Dijkstra’s Algorithm, Rough Draft 
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A Refinement 

• Note: we don’t really need to keep track of the 
frontier. 

• When we add a new vertex u to K, just update 
vertices adjacent to u. 
 
 



Dijkstra’s Algorithm 
1 DIJKSTRA(G, w, s)  Graph, weights, start vertex 
2   for each vertex v in V[G] do 
3   v.d  ∞ 
4   v.π  NIL 
5  s.d  0 
6  Q  BUILD-PRIORITY-QUEUE(V[G]) 
7    Q is V[G] - K 
8  while Q is not empty do 
9   u = EXTRACT-MIN(Q) 
10   for each vertex v in Adj[u] 
11    RELAX(u, v, w)       // DECREASE_KEY 



Running Time of Dijkstra 

• Initialization: θ(V) 
• Building priority queue: θ(V) 
• “while” loop done |V| times 
•      |V| calls of EXTRACT-MIN 
• Inner “edge” loop done |E| times 
•      At most |E| calls of DECREASE-KEY 
• Total time:  
 Θ(V + V × TEXTRACT-MIN + E × TDECREASE-KEY ) 



Dijkstra Running Time (cont.) 

• 1. Priority queue is an array. 
EXTRACT-MIN in Θ(n) time, DECREASE-KEY in Θ(1) 
Total time: Θ(V + VV + E) = Θ(V2) 

• 2. (“Modified Dijkstra”) 
Priority queue is a binary (standard) heap. 
EXTRACT-MIN in Θ(lgn) time, also DECREASE-KEY 
Total time: Θ(VlgV + ElgV) 

• 3. Priority queue is Fibonacci heap. (Of theoretical interest 
only.) 
EXTRACT-MIN in Θ(lgn),   
DECREASE-KEY in Θ(1) (amortized) 
Total time: Θ(VlgV+E) 

Θ(V + V × TEXTRACT-MIN + E × TDECREASE-KEY ) 
 



 
Dijkstra’s Algorithm Example 

 

Single-Source Shortest Paths 
   

Dijkstra’s Algorithm 
Handle non-negative edges only.  
Method:   Grow the solution by checking vertices one by one, 
starting from the one nearest to the source vertex. 
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Reading Assignments 

• Reading assignment for next class: 
– Chapter 25.1-25.2 

 

• Announcement:  Exam 1 is on Tues, Feb. 18 
– Will cover everything up through dynamic 

programming 
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