Today: – All Pairs Shortest Paths

COSC 581, Algorithms February 6, 2014

Many of these slides are adapted from several online sources

Reading Assignments

- Today's class:
 Chapter 25.1-25.2
- Reading assignment for next class:
 Chapter 16.1-16.2

Announcement: Exam 1 is on Tues, Feb. 18

 Will cover everything up through dynamic programming

All Pairs Shortest Paths (APSP)

- given : directed graph G = (V, E), weight function $\omega : E \rightarrow R$, |V| = n
- goal : create an $n \times n$ matrix $L = (l_{ij})$ of shortest path distances i.e., $l_{ij} = \delta(i, j)$
- trivial solution : run a SSSP algorithm *n* times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

all edge weights are nonnegative : use Dijkstra's algorithm

- Priority Queue = linear array : O ($V^3 + VE$) = O (V^3)
- Priority Queue = binary heap : O (V²lgV + EVlgV) = O (V³lgV) for dense graphs
 - better only for sparse graphs
- Priority Queue = Fibonacci heap : O (V^2 lgV + EV) = O (V^3)

for dense graphs

better only for sparse graphs

negative edge weights : use Bellman-Ford algorithm
 O (V²E) = O (V⁴) on dense graphs

Assumption : negative edge weights may be present, but no negative weight cycles.

(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):

• Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$

▶ i.e., path p_{ii}^m has at most *m* edges.

- no negative-weight cycle ⇒ all shortest paths are simple
 ⇒ m is finite ⇒ m ≤ |V| − 1
- $i = j \implies |p_{ii}| = 0 \& \omega(p_{ii}) = 0$
- i ≠ j ⇒ decompose path p_{ij}^m into p_{ik}^{m-1} & v_k → v_j, where | p_{ik}^{m-1} | ≤ m 1
 p_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property.

Therefore, δ (i, j) = δ (i, k) + $ω_{kj}$

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem :

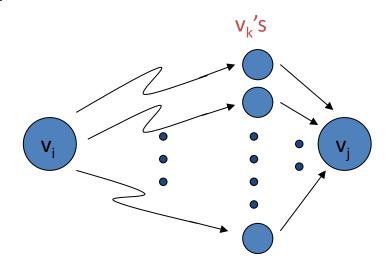
- l_{ij}^{m} = minimum weight of any path from v_i to v_j that contains at most "*m*" edges.
- m = 0: There exists a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

•
$$l_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

• $m \ge 1: l_{ij}^{m} = \min \{l_{ij}^{m-1}, \min_{1 \le k \le n \land k \ne j} \{l_{ik}^{m-1} + \omega_{kj}\}\}$
 $= \min_{1 \le k \le n} \{l_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V,$
 $\text{since } \omega_{jj} = 0 \text{ for all } v_j \in V.$

- To consider all possible shortest paths with $\leq m$ edges from v_i to v_j
 - **•** consider shortest path with $\leq m 1$ edges, from v_i to v_k , where

 $(v_k, v_j) \in E$



(Step 3) Computing the shortest-path weights bottom-up :

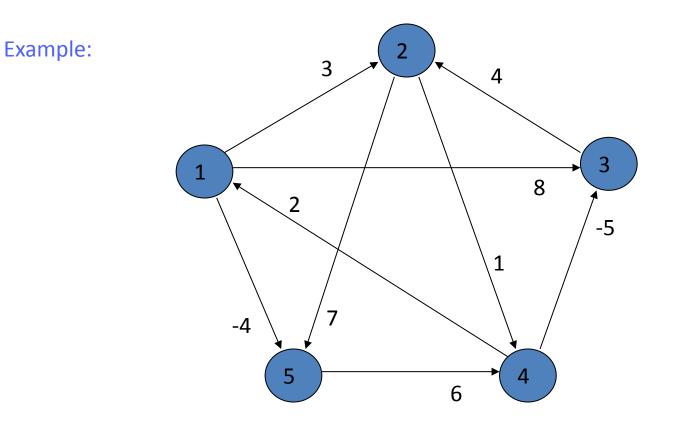
- Given W = L¹, compute a series of matrices L², L³, ..., Lⁿ⁻¹, where L^m = (l_{ij}^m) for m = 1, 2,..., |V| -1
 ▶ final matrix Lⁿ⁻¹ contains actual shortest path weights, i.e., l_{ii}ⁿ⁻¹ = δ (i, j)
- SLOW-APSP(W) $L^{1} \leftarrow W$ for $m \leftarrow 2$ to n-1 do $L^{m} \leftarrow EXTEND(L^{m-1}, W)$ return L^{n-1}

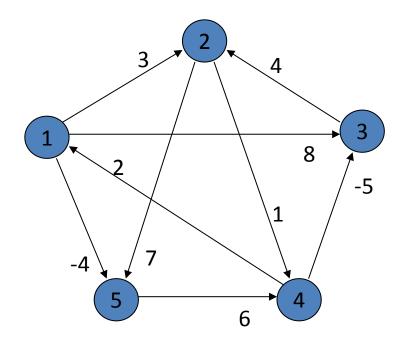
EXTEND (L, W) $L = (l_{ij}) \text{ is an n x n matrix}$ for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do $l_{ij} \leftarrow \infty$ for $k \leftarrow 1$ to n do $l_{ij} \leftarrow \min\{l_{ij}, l_{ik} + \omega_{kj}\}$ return L

MATRIX-MULT (A, B)

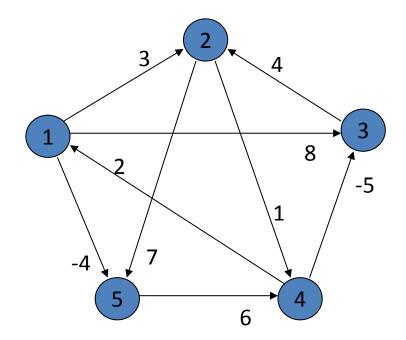
► $\mathbf{C} = (c_{ij})$ is an n x n result matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to n do $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$ return \mathbf{C}

- Relation to matrix multiplication $C = A \times B : \mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$, • $L^{m-1} \leftrightarrow A \& \mathbf{W} \leftrightarrow B \& L^m \leftrightarrow C$ "min" \leftrightarrow "+" & "+" \leftrightarrow "x" & " ∞ " \leftrightarrow "0"
- Thus, we compute the sequence of matrix products $L^{1} = L^{0} \times W = W ; \text{ note } L^{0} = \text{identity matrix,}$ $L^{2} = L^{1} \times W = W^{2} \qquad \text{i.e., } l_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ & \\ & \\ L^{3} = L^{2} \times W = W^{3} \\ & \\ & \\ \vdots \\ & \\ L^{n-1} = L^{n-2} \times W = W^{n-1} \end{cases}$
- Running time : $\Theta(V^4)$
 - each matrix product : $\Theta(|V|^3)$
 - number of matrix products : |V| -1

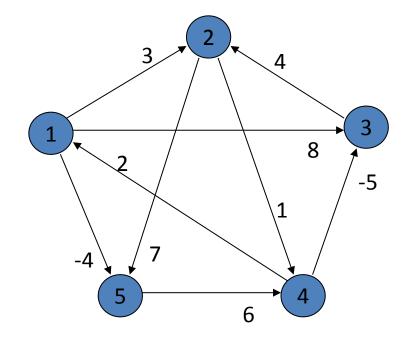




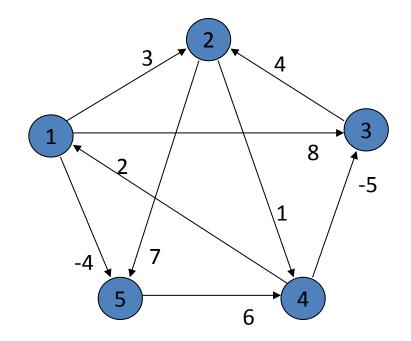
 $L^1 = L^0 W$



 $L^2 = L^1 W$



 $L^3 = L^2 W$



 $L^4 = L^3 W$

Improving Running Time Through Repeated Squaring

• Idea : goal is not to compute all L^m matrices

 \blacktriangleright we are interested only in matrix L^{n-1}

- Recall : no negative-weight cycles $\Rightarrow L^m = L^{n-1}$ for all $m \ge |V| 1$
- We can compute Lⁿ⁻¹ with only Ig(n-1) matrix products as

$$L^{1} = W$$

$$L^{2} = W^{2} = W \times W$$

$$L^{4} = W^{4} = W^{2} \times W^{2}$$

$$L^{8} = W^{8} = W^{4} \times W^{4}$$

$$U^{2} = L^{2} = L^{2} L^$$

• This technique is called repeated squaring.

Improving Running Time Through Repeated Squaring

- FASTER-APSP (W) $L^{1} \leftarrow W$ $m \leftarrow 1$ while m < n-1 do $L^{2m} \leftarrow EXTEND (L^{m}, L^{m})$ $m \leftarrow 2m$ return L^{m}
- Final iteration computes L^{2m} for some $n-1 \le 2m \le 2n-2 \Rightarrow L^{2m} = L^{n-1}$
- Running time : $\Theta(n^3 \lg n) = \Theta(V^3 \lg V)$
 - each matrix product : $\Theta(n^3)$
 - # of matrix products : [lg(n-1)]
 - simple code, no complex data structures, small hidden constants in Θ-notation.

Exercise

Give an efficient algorithm to find the length (number of edges) of a minimum-length negativeweight cycle in a graph.

Assumption : negative-weight edges, but no negative-weight cycles

(Step 1) The Structure of a Shortest Path (yet another optimal substructure argument):

Definition : intermediate vertex of a path p = < v₁, v₂, v₃, ..., v_k >

▶ any vertex of p other than v_1 or v_k .

- p_{ij}^m : a shortest path from v_i to v_j with all intermediate vertices from V_m = { v₁ , v₂ , ... , v_m }
- Relationship between p_{ij}^{m} and p_{ij}^{m-1}

 \blacktriangleright depends on whether v_m is an intermediate vertex of p_{ii}^m

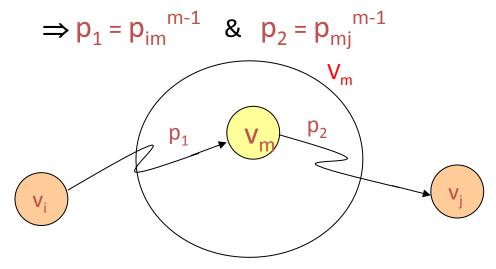
- Case 1: v_m is not an intermediate vertex of p_{ij}^{m}

⇒ all intermediate vertices of p_{ij}^{m} are in V_{m-1} ⇒ $p_{ii}^{m} = p_{ij}^{m-1}$

- Case 2 : v_m is an intermediate vertex of p_{ii}^{m}
 - decompose path as $v_i \bigwedge v_m \bigwedge v_j$

 $\Rightarrow p_1: v_i \wedge v_m \quad \& \quad p_2: v_m \wedge v_j$

- by opt. structure property both $p_1 \& p_2$ are shortest paths.
- v_m is not an intermediate vertex of $p_1 \& p_2$



(Step 2) A Recursive Solution to APSP Problem :

 d_{ij}^m = ω(p_{ij}) : weight of a shortest path from v_i to v_j with all intermediate vertices from

 $V_{m} = \{ v_{1}, v_{2}, \dots, v_{m} \}.$

Note : d_{ij}ⁿ = δ (i, j) since V_n = V
 ▶ i.e., all vertices are considered for being intermediate vertices of p_{ij}ⁿ.

- Compute d_{ij}^{m} in terms of d_{ij}^{k} with smaller k < m
- m = 0: $V_0 = empty set$ \Rightarrow path from v_i to v_j with no intermediate vertex. i.e., v_i to v_j paths with at most one edge $\Rightarrow d_{ij}^{0} = \omega_{ij}$
- $m \ge 1$: $d_{ij}^{m} = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

(Step 3) Computing Shortest Path Weights Bottom Up :

```
FLOYD-WARSHALL(W)

\blacktriangleright D^0, D^1, ..., D^n \text{ are } n \ge n \mod n matrices

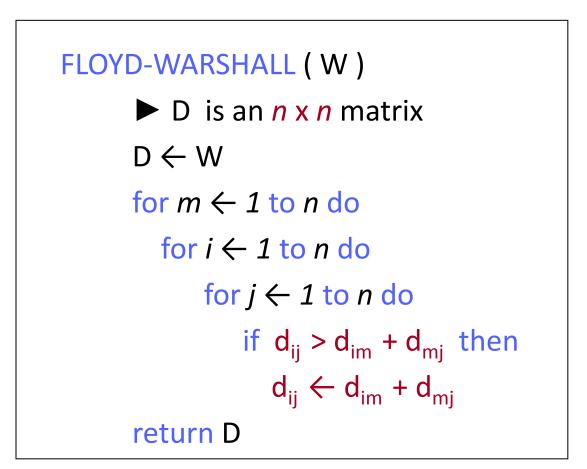
for m \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

d_{ij}^m \leftarrow \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}

return D^n
```



- Maintaining *n* D matrices can be avoided by dropping all superscripts.
 - *m-th* iteration of outermost for-loop

begins with $D = D^{m-1}$

ends with $D = D^m$

- computation of d_{ii}^{m} depends on d_{im}^{m-1} and d_{mi}^{m-1} .

no problem if $d_{im} \& d_{mj}$ are already updated to $d_{im}^{m} \& d_{mj}^{m}$ since $d_{im}^{m} = d_{im}^{m-1} \& d_{mj}^{m} = d_{mj}^{m-1}$.

• Running time : $\Theta(n^3) = \Theta(V^3)$ simple code, no complex data structures, small hidden constants

Reading Assignments

Reading assignment for next class:
 – Chapter 16.1-16.2

Announcement: Exam 1 is on Tues, Feb. 18

 Will cover everything up through dynamic programming