Today:
 - All Pairs Shortest Paths

COSC 581, Algorithms
 February 6, 2014

Reading Assignments

- Today's class:
- Chapter 25.1-25.2
- Reading assignment for next class:
- Chapter 16.1-16.2
- Announcement: Exam 1 is on Tues, Feb. 18
- Will cover everything up through dynamic programming

All Pairs Shortest Paths (APSP)

- given : directed graph $G=(V, E)$, weight function $\omega: E \rightarrow R,|V|=n$
- goal : create an $n \times n$ matrix $L=\left(l_{i j}\right)$ of shortest path distances i.e., $l_{i j}=\delta(i, j)$
- trivial solution : run a SSSP algorithm n times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

- all edge weights are nonnegative : use Dijkstra's algorithm
- Priority Queue $=$ linear array: $\mathrm{O}\left(\mathrm{V}^{3}+\mathrm{VE}\right)=\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Priority Queue $=$ binary heap : $\mathrm{O}\left(\mathrm{V}^{2} \lg V+E V \lg V\right)=\mathrm{O}\left(\mathrm{V}^{3} \lg V\right)$ for dense graphs
- better only for sparse graphs
- Priority Queue $=$ Fibonacci heap : $\mathrm{O}\left(\mathrm{V}^{2} \lg V+E V\right)=\mathrm{O}\left(\mathrm{V}^{3}\right)$
for dense graphs
- better only for sparse graphs
- negative edge weights : use Bellman-Ford algorithm
$-O\left(V^{2} E\right)=O\left(V^{4}\right)$ on dense graphs

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.
(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):

- Consider a shortest path $p_{i j}{ }^{m}$ from v_{i} to v_{j} such that $\left|p_{i j}{ }^{m}\right| \leq m$
i.e., path $p_{\mathrm{ij}}{ }^{\mathrm{m}}$ has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple
$\Rightarrow \mathrm{m}$ is finite $\Rightarrow m \leq|V|-1$
- $\mathrm{i}=\mathrm{j} \Rightarrow\left|\mathrm{p}_{\mathrm{ij}}\right|=0 \& \omega\left(\mathrm{p}_{\mathrm{ij}}\right)=0$
- $i \neq j \Rightarrow$ decompose path $p_{i j}{ }^{m}$ into $p_{i k}{ }^{m-1} \& v_{k} \rightarrow v_{j}$, where $\left|p_{i k}{ }^{m-1}\right| \leq m-1$
- $\mathrm{p}_{\mathrm{ik}}{ }^{m-1}$ should be a shortest path from v_{i} to v_{k} by optimal substructure property.
- Therefore, $\delta(\mathrm{i}, \mathrm{j})=\delta(\mathrm{i}, \mathrm{k})+\omega_{\mathrm{kj}}$

Shortest Paths and Matrix Multiplication

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem :

- $l_{i j}^{m}=$ minimum weight of any path from v_{i} to v_{j} that contains at most " m " edges.
- $m=0$: There exists a shortest path from v_{i} to v_{j} with no edges $\leftrightarrow \mathrm{i}=\mathrm{j}$.

$$
l_{\mathrm{ij}}^{0}=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{i}=\mathrm{j} \\
\infty & \text { if } & \mathrm{i} \neq \mathrm{j}
\end{array}\right.
$$

- $m \geq 1: l_{\mathrm{ij}}^{m}=\min \left\{l_{\mathrm{ij}}^{m-1}, \min _{1 \leq \mathrm{k} \leq n \wedge k \neq j}\left\{l_{\mathrm{ik}}{ }^{m-1}+\omega_{\mathrm{kj}}\right\}\right\}$

$$
\begin{aligned}
= & \min _{1 \leq \mathrm{k} \leq \mathrm{n}}\left\{l_{\mathrm{ik}}{ }^{m-1}+\omega_{\mathrm{kj}}\right\} \text { for all } \mathrm{v}_{\mathrm{k}} \in \mathrm{~V}, \\
& \text { since } \omega_{\mathrm{j} j}=0 \text { for all } \mathrm{v}_{\mathrm{j}} \in \mathrm{~V} .
\end{aligned}
$$

Shortest Paths and Matrix Multiplication

- To consider all possible shortest paths with $\leq m$ edges from v_{i} to v_{j}
- consider shortest path with $\leq m-1$ edges, from v_{i} to v_{k}, where $\left(v_{k}, v_{j}\right) \in E$

Shortest Paths and Matrix Multiplication

(Step 3) Computing the shortest-path weights bottom-up :

- Given $W=L^{1}$, compute a series of matrices $L^{2}, L^{3}, \ldots, L^{n-1}$, where $\mathrm{L}^{m}=\left(l_{\mathrm{ij}}^{\mathrm{m}}\right)$ for $m=1,2, \ldots,|V|-1$
- final matrix $\mathrm{L}^{\mathrm{n}-1}$ contains actual shortest path weights, i.e., $l_{\mathrm{ij}}{ }^{\mathrm{n}-1}=\delta(\mathrm{i}, \mathrm{j})$
- SLOW-APSP(W)
$\mathrm{L}^{1} \leftarrow \mathrm{~W}$
for $m \leftarrow 2$ to $n-1$ do
$L^{m} \leftarrow \operatorname{EXTEND}\left(\mathrm{~L}^{\mathrm{m}-1}, \mathrm{~W}\right)$
return L^{n-1}

Shortest Paths and Matrix Multiplication

EXTEND (L, W)
$-\mathrm{L}=\left(l_{\mathrm{ij}}\right)$ is an $\mathrm{n} \times \mathrm{n}$ matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do
$l_{\mathrm{ij}} \leftarrow \infty$
for $k \leftarrow 1$ to n do

$$
l_{\mathrm{ij}} \leftarrow \min \left\{l_{\mathrm{ij}}, l_{\mathrm{ik}}+\omega_{\mathrm{kj}}\right\}
$$

return L

MATRIX-MULT (\mathbf{A}, \mathbf{B})

- $\mathbf{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$ is an $\mathrm{n} \times \mathrm{n}$ result matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do

$$
\mathrm{c}_{\mathrm{ij}} \leftarrow 0
$$

$$
\text { for } k \leftarrow 1 \text { to } n \text { do }
$$

$$
c_{i j} \leftarrow c_{i j}+a_{i k} \times b_{k j}
$$

return C

Shortest Paths and Matrix Multiplication

- Relation to matrix multiplication $C=A \times B: \mathbf{c}_{\mathrm{ij}}=\sum_{1 \leq k \leq n} \mathbf{a}_{\mathrm{ik}} \times \mathbf{b}_{\mathrm{kj}}$,
- $L^{m-1} \leftrightarrow A \quad \& W \leftrightarrow B \quad \& \quad L^{m} \leftrightarrow C$

$$
\text { "min" } \leftrightarrow \text { " }+ \text { " \& " }+ \text { " } \leftrightarrow \text { " } x \text { " \& " } \infty \text { " } \leftrightarrow \text { " } 0 "
$$

- Thus, we compute the sequence of matrix products

$$
\begin{aligned}
& L^{1}=L^{0} \times W=W \text {; note } L^{0}=\text { identity matrix, } \\
& L^{2}=L^{1} \times W=W^{2} \\
& L^{3}=L^{2} \times W=W^{3} \\
& \text { i.e., } l_{\mathrm{ij}}^{0}=\left\{\begin{array}{lll}
0 & \text { if } i=j \\
\infty & \text { if } & i \neq j
\end{array}\right. \\
& L^{n-1}=L^{n-2} \times W=W^{n-1}
\end{aligned}
$$

- Running time : $\Theta\left(\mathrm{V}^{4}\right)$
- each matrix product: $\Theta\left(|V|^{3}\right)$
- number of matrix products : $|V|-1$

Shortest Paths and Matrix Multiplication

Example:

Shortest Paths and Matrix Multiplication

		2	3	4	5
	0	3	8	∞	-4
	∞	0	∞	1	7
	∞	4	0	∞	∞
	2	∞	-5	0	∞
	∞	∞	∞	6	0

$$
L^{1}=L^{0} W
$$

Shortest Paths and Matrix Multiplication

	1			2	
3	4	5			
1	0	3	8	2	-4
2	3	0	-4	1	7
3	∞	4	0	5	11
	2	2	-1	-5	0

$L^{2}=L^{1} W$

Shortest Paths and Matrix Multiplication

	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$
L^{3}=L^{2} W
$$

Shortest Paths and Matrix Multiplication

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$
L^{4}=L^{3} W
$$

Improving Running Time Through Repeated Squaring

- Idea : goal is not to compute all L^{m} matrices
- we are interested only in matrix $\mathrm{L}^{\mathrm{n}-1}$
- Recall : no negative-weight cycles $\Rightarrow \mathrm{L}^{m}=\mathrm{L}^{\mathrm{n}-1}$ for all $m \geq|V|-1$
- We can compute L^{n-1} with only $\left.\| g(n-1)\right]$ matrix products as

$$
\begin{aligned}
& \mathrm{L}^{1}=\mathrm{W} \\
& \mathrm{~L}^{2}=\mathrm{W}^{2}=\mathrm{W} \times \mathrm{W} \\
& \mathrm{~L}^{4}=\mathrm{W}^{4}=\mathrm{W}^{2} \times \mathrm{W}^{2} \\
& \mathrm{~L}^{8}=\mathrm{W}^{8}=\mathrm{W}^{4} \times \mathrm{W}^{4} \\
& \vdots \\
& \mathrm{~L}^{2 \lg (n-1\rceil}=\mathrm{L}^{2} \stackrel{\lceil\lg (n-1)\rceil}{=} \mathrm{L}^{2} \stackrel{[\lg (n-1)-1}{ } \times \mathrm{L}^{2^{\lceil\lg (n-1)-1}}
\end{aligned}
$$

- This technique is called repeated squaring.

Improving Running Time Through Repeated Squaring

- FASTER-APSP (W)

$$
\begin{aligned}
& \mathrm{L}^{1} \leftarrow \mathrm{~W} \\
& m \leftarrow 1 \\
& \text { while } m<n-1 \text { do } \\
& \quad \mathrm{L}^{2 \mathrm{~m}} \leftarrow \operatorname{EXTEND}\left(\mathrm{~L}^{m}, \mathrm{~L}^{m}\right) \\
& \quad m \leftarrow 2 m
\end{aligned}
$$

return L^{m}

- Final iteration computes $L^{2 m}$ for some $n-1 \leq 2 m \leq 2 n-2 \Rightarrow L^{2 m}=L^{n-1}$
- Running time : $\Theta\left(n^{3} \operatorname{lgn}\right)=\Theta\left(V^{3} \lg V\right)$
- each matrix product : $\Theta\left(n^{3}\right)$
- \# of matrix products: $\lceil\lg (n-1)\rceil$
- simple code, no complex data structures, small hidden constants in Θ-notation.

Exercise

Give an efficient algorithm to find the length (number of edges) of a minimum-length negativeweight cycle in a graph.

Floyd-Warshall Algorithm

Assumption : negative-weight edges, but no negative-weight cycles
(Step 1) The Structure of a Shortest Path (yet another optimal substructure argument):

- Definition : intermediate vertex of a path $p=\left\langle v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\rangle$
- any vertex of p other than v_{1} or v_{k}.
- $\mathrm{p}_{\mathrm{ij}}{ }^{m}$: a shortest path from v_{i} to v_{j} with all intermediate vertices from $V_{m}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
- Relationship between $\mathrm{p}_{\mathrm{ij}}{ }^{m}$ and $\mathrm{p}_{\mathrm{ij}}{ }^{m-1}$
- depends on whether v_{m} is an intermediate vertex of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{m}}$
- Case 1: v_{m} is not an intermediate vertex of $p_{i j}^{m}$
\Rightarrow all intermediate vertices of $p_{i j}^{m}$ are in V_{m-1}

$$
\Rightarrow p_{i j}^{m}=p_{i j}^{m-1}
$$

Floyd-Warshall Algorithm

- Case 2: v_{m} is an intermediate vertex of $p_{i j}^{m}$
- decompose path as $v_{i} \sim v_{m} \sim v_{j}$

$$
\Rightarrow p_{1}: v_{i} \sim v_{m} \quad \& \quad p_{2}: v_{m} \sim v_{j}
$$

- by opt. structure property both $\mathrm{p}_{1} \& \mathrm{p}_{2}$ are shortest paths.
- v_{m} is not an intermediate vertex of $p_{1} \& p_{2}$

$$
\Rightarrow p_{1}=p_{i m}^{m-1} \quad \& \quad p_{2}=p_{m j}^{m-1}
$$

Floyd-Warshall Algorithm

(Step 2) A Recursive Solution to APSP Problem :

- $d_{i j}{ }^{m}=\omega\left(p_{i j}\right)$: weight of a shortest path from v_{i} to v_{j} with all intermediate vertices from

$$
V_{m}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} .
$$

- Note: $d_{i j}{ }^{n}=\delta(i, j)$ since $V_{n}=V$
- i.e., all vertices are considered for being intermediate vertices of $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{n}}$.

Floyd-Warshall Algorithm

- Compute $\mathrm{d}_{\mathrm{ij}}{ }^{m}$ in terms of $\mathrm{d}_{\mathrm{ij}}{ }^{k}$ with smaller $k<m$
- $\mathrm{m}=0: \mathrm{V}_{0}=$ empty set
\Rightarrow path from v_{i} to v_{j} with no intermediate vertex.
i.e., v_{i} to v_{j} paths with at most one edge $\Rightarrow d_{i j}{ }^{0}=\omega_{i j}$
- $m \geq 1: d_{i j}^{m}=\min \left\{d_{i j}^{m-1}, d_{i m}{ }^{m-1}+d_{m j}{ }^{m-1}\right\}$

Floyd-Warshall Algorithm

(Step 3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL (W)
$-D^{0}, D^{1}, \ldots, D^{n}$ are $n \times n$ matrices for $m \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do
$d_{i j}{ }^{m} \leftarrow \min \left\{d_{i j}^{m-1}, d_{i m}{ }^{m-1}+d_{m j}{ }^{m-1}\right\}$
return D^{n}

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)

- D is an $n \times n$ matrix
$\mathrm{D} \leftarrow \mathrm{W}$
for $m \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if $d_{i j}>d_{i m}+d_{m j}$ then $\mathrm{d}_{\mathrm{ij}} \leftarrow \mathrm{d}_{\mathrm{im}}+\mathrm{d}_{\mathrm{mj}}$
return D

Floyd-Warshall Algorithm

- Maintaining n D matrices can be avoided by dropping all superscripts.
- m-th iteration of outermost for-loop
begins with $D=D^{m-1}$
ends with $D=D^{m}$
- computation of $d_{i j}^{m}$ depends on $d_{i m}^{m-1}$ and $d_{m j}{ }^{m-1}$. no problem if $d_{i m} \& d_{m j}$ are already updated to $d_{i m}{ }^{m} \& d_{m j}{ }^{m}$ since $d_{i m}{ }^{m}=d_{i m}{ }^{m-1} \& d_{m j}^{m}=d_{m j}^{m-1}$.
- Running time : $\Theta\left(n^{3}\right)=\Theta\left(V^{3}\right)$
simple code, no complex data structures, small hidden constants

Reading Assignments

- Reading assignment for next class:
- Chapter 16.1-16.2
- Announcement: Exam 1 is on Tues, Feb. 18
- Will cover everything up through dynamic programming

