
Today:  
− All Pairs Shortest Paths 
  

COSC 581, Algorithms 
February 6, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 25.1-25.2 

 
• Reading assignment for next class: 

– Chapter 16.1-16.2 
 

 
• Announcement:  Exam 1 is on Tues, Feb. 18 

– Will cover everything up through dynamic 
programming 



All Pairs Shortest Paths (APSP) 

•  given : directed graph G = ( V, E ),  
    weight function ω : E → R,  |V| = n 
  
•  goal   : create an n × n  matrix  L = ( 𝑙ij  ) of shortest path distances  
    i.e., 𝑙ij  =  δ ( i, j ) 
  
•  trivial solution : run a SSSP algorithm n times, one for   
              each vertex as the source. 



All Pairs Shortest Paths (APSP) 

► all edge weights are nonnegative : use Dijkstra’s algorithm 
– Priority Queue = linear array : O ( V3 + VE ) = O ( V3 ) 
– Priority Queue = binary heap : O ( V2lgV + EVlgV ) = O ( V3lgV ) 

                               for dense graphs 
• better only for sparse graphs 

– Priority Queue = Fibonacci heap : O ( V2lgV + EV ) = O ( V3 )  
              for dense graphs 

• better only for sparse graphs 

► negative edge weights : use Bellman-Ford algorithm 
– O ( V2E ) = O ( V4 )  on dense graphs    



 Shortest Paths and Matrix Multiplication 
Assumption : negative edge weights may be present, but no negative weight 

cycles.  
 
(Step 1) Structure of a Shortest Path (new Optimal Substructure argument): 
• Consider a shortest path  pij

m  from vi  to vj such that |pij
m| ≤ m 

   ► i.e., path pij
m has at most m edges. 

 
• no negative-weight cycle  ⇒  all shortest paths are simple  
   ⇒  m  is finite ⇒ m ≤ |V| – 1 
 
•  i = j  ⇒ |pii|= 0  &  ω(pii) = 0 
 
•  i ≠ j  ⇒  decompose path pij

m into pik
m-1 & vk → vj , where|pik

m-1| ≤ m - 1 
       ► pik

m-1 should be a shortest path from vi  to vk by optimal substructure                   
       property. 
   ► Therefore, δ (i, j) = δ (i, k) + ωk j 



 Shortest Paths and Matrix Multiplication 

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem : 
 

•  𝑙ij
m = minimum weight of any path from vi  to vj  that contains 

at most “m” edges. 
 
•  m = 0 : There exists a shortest path from vi  to vj  with no 

        edges ↔ i = j .  
            0    if   i = j 
    ► 𝑙ij

0 = 
           ∞   if   i ≠ j 
•  m ≥ 1 : 𝑙ij

m = min {𝑙ij
m-1 , min1≤k≤n Λ k≠j {𝑙ik

m-1 + ωkj  }} 
               = min1≤k≤n {𝑙ik

m-1 + ωkj } for all vk ∈ V,  
      since ωj j = 0  for all vj ∈ V. 
 



 Shortest Paths and Matrix Multiplication 

• To consider all possible shortest paths with ≤ m edges from vi to vj  
  ► consider shortest path with ≤ m - 1 edges, from vi  to vk  , where  
   (vk ,vj )  ∈ E 
  
 
 
 
 
 
 
 

vi vj 

vk’s 



 Shortest Paths and Matrix Multiplication 
(Step 3) Computing the shortest-path weights bottom-up : 
 
 

• Given W = L1 , compute a series of matrices L2, L3, ..., Ln-1 ,    
      where Lm = ( 𝑙ij

m ) for m = 1, 2,..., |V| -1  
    ► final matrix Ln-1 contains actual shortest path weights,  
         i.e., 𝑙ij

n-1 = δ (i, j)  
 
•    SLOW-APSP( W ) 
 L1 ← W 
 for m ← 2  to n-1  do 
       Lm ← EXTEND( Lm-1 , W ) 
 return Ln-1 

 



 Shortest Paths and Matrix Multiplication 

EXTEND ( L , W )  
 ► L = ( 𝑙ij ) is an n x n matrix 
 for i ← 1  to n  do 
      for j ← 1  to n  do 
   𝑙ij ← ∞ 
   for k ← 1  to n  do 
         𝑙ij ← min{𝑙 ij , 𝑙 ik + ωk j} 
 return L 

 MATRIX-MULT ( A , B ) 
 ► C = ( cij ) is an n x n result matrix 
      for i ←1  to n  do 
            for j ← 1  to n  do 
    cij ← 0 
    for k ← 1 to n  do 
          cij ← cij + aik x bk j 
      return C 



 Shortest Paths and Matrix Multiplication 

• Relation to matrix multiplication C = A   B :  cij = ∑1≤k≤n aik x bk j , 
 ► Lm-1 ↔ A   &   W ↔ B   &   Lm ↔ C  
      “min” ↔ “+”   &   “+” ↔ “x”   &   “∞” ↔ “0” 
 
• Thus, we compute the sequence of matrix products 
  L1 = L0 x W =  W  ;  note L0 = identity matrix,                       0    if   i = j 
  L2 = L1 x W =  W2                    i.e., 𝑙ij

0 =  
  L3 = L2 x W =  W3                            ∞   if   i ≠ j 
   
  Ln-1= Ln-2 x W =  Wn-1 

 

•  Running time :   Θ( V4 ) 
    ► each matrix product :  Θ(|V|3 )  
    ► number of matrix products : |V| -1 

×



 Shortest Paths and Matrix Multiplication 

1 

2 

3 

4 5 

2 

1 

4 3 

8 

-5 

-4 

6 

 7 

Example: 



 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 8 ∞ -4 
2 ∞ 0 ∞ 1 7 
3 ∞ 4 0 ∞ ∞ 
4 2 ∞ -5 0 ∞ 
5 ∞ ∞ ∞ 6 0 

L1= L0W  

1 

2 

3 

4 5 

2 

1 

4 3 

8 
-5 

-4 

6 

 7 



 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 8 2 -4 
2 3 0 -4 1 7 
3 ∞ 4 0 5 11 
4 2 -1 -5 0 -2 
5 8 ∞ 1 6 0 

L2= L1W  

1 

2 

3 

4 5 

2 

1 

4 3 

8 
-5 

-4 

6 

 7 



 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 -3 2 -4 
2 3 0 -4 1 -1 
3 7 4 0 5 11 
4 2 -1 -5 0 -2 
5 8 5 1 6 0 

L3= L2W  

1 

2 

3 

4 5 

2 

1 

4 3 

8 
-5 

-4 

6 

 7 



 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 1 -3 2 -4 
2 3 0 -4 1 -1 
3 7 4 0 5 3 
4 2 -1 -5 0 -2 
5 8 5 1 6 0 

L4= L3W  

1 

2 

3 

4 5 

2 

1 

4 3 

8 
-5 

-4 

6 

 7 



•  Idea : goal is not to compute all Lm  matrices 
      ► we are interested only in matrix Ln-1 
 

•  Recall : no negative-weight cycles ⇒ Lm  = Ln-1  for all m ≥ |V| -1 
 

•  We can compute Ln-1  with only  lg(n-1)  matrix products as 
  L1   =  W 
  L2  =  W2 = W x W 
  L4  =  W4  = W2 x W2  
  L8  =  W8  = W4  x W4  

 
                                                
               =                 =                           

 
• This technique is called repeated squaring. 
 

)1-lg(2L
n)1-lg(2L

n1) -lg(n 2L
)1-lg(2L

n

×
1- 1-

Improving Running Time Through 
Repeated Squaring 



Improving Running Time Through Repeated 
Squaring 

•  FASTER-APSP ( W ) 
       L1 ← W 
       m ← 1 
       while m < n-1 do 
            L2m ← EXTEND ( Lm , Lm ) 
    m ← 2m 
       return Lm 
 

•  Final iteration computes L2m  for some n-1 ≤ 2m ≤ 2n-2 ⇒ L2m  = Ln-1 
 

•  Running time :  Θ( n3lgn ) = Θ( V3lgV ) 
 
  ► each matrix product :  Θ( n3 ) 
  ► # of matrix products :  lg( n-1 ) 
  ► simple code, no complex data structures, small hidden  

      constants in Θ-notation. 
 



Exercise 

Give an efficient algorithm to find the length 
(number of edges) of a minimum-length negative-
weight cycle in a graph.  
 

 



Floyd-Warshall Algorithm 

Assumption : negative-weight edges, but no negative-weight cycles 
 
 

(Step 1) The Structure of a Shortest Path (yet another optimal substructure 
argument): 

 

•  Definition : intermediate vertex of a path p = < v1 , v2 , v3 , ... , vk > 

  ► any vertex of p other than v1 or vk . 
 

•  pij
m  : a shortest path from vi   to vj  with all intermediate vertices 

    from Vm = { v1 , v2 , ... , vm } 
 
•  Relationship between pij

m  and pij
m-1  

  ► depends on whether vm is an intermediate vertex of pij
m    

 

      - Case 1:    vm  is not an intermediate vertex of pij
m 

  ⇒ all intermediate vertices of pij
m  are in Vm -1  

  ⇒ pij
m =  pij

m-1 



Floyd-Warshall Algorithm 

 - Case 2 :    vm  is an intermediate vertex of pij
m   

  - decompose path as vi         vm         vj  

   ⇒ p1 : vi         vm     &    p2 : vm         vj  

  - by opt. structure property both p1 & p2  are shortest paths. 

  - vm    is not an intermediate vertex of p1  & p2   

   ⇒ p1 = pim
m-1    &   p2 = pmj

m-1  

vi vj 

vm p1 p2 

Vm 



Floyd-Warshall Algorithm 

(Step 2) A Recursive Solution to APSP Problem : 
 

• dij
m = ω(pij ) : weight of a shortest path from vi to vj   

with all intermediate vertices from  
  Vm = { v1 , v2 , ... , vm }. 

 
• Note :   dij

n = δ (i, j) since Vn = V  

► i.e., all vertices are considered for being    
intermediate vertices of pij

n . 
  



Floyd-Warshall Algorithm 

•  Compute dij
m in terms of dij

k with smaller k < m  
 

•  m = 0 :  V0 = empty set  
         ⇒ path from  vi  to vj  with no intermediate vertex. 
         i.e., vi  to vj   paths with at most one edge  
              ⇒ dij

0 = ωi j  
 

•  m ≥ 1 :  dij
m  =  min {dij

m-1 , dim
m-1 + dmj

m-1 } 



Floyd-Warshall Algorithm 

(Step 3) Computing Shortest Path Weights Bottom Up : 
 
 FLOYD-WARSHALL( W ) 
  ►D0, D1, ... , Dn are n x n  matrices 
  for m ← 1 to n do 
            for i ← 1 to n do 
            for j ← 1 to n do 
         dij

m  ← min {dij
m-1 , dim

m-1 + dmj
m-1 }  

   return Dn 



Floyd-Warshall Algorithm 
  
  

 FLOYD-WARSHALL ( W ) 
  ► D  is an n x n matrix 
  D ← W 
  for m ← 1 to n do 
           for i ← 1 to n do 
            for j ← 1 to n do 
     if  dij  > dim  + dmj   then  
         dij  ← dim  + dmj   
  return D 



Floyd-Warshall Algorithm 

• Maintaining n  D matrices can be avoided by dropping all superscripts. 
–   m-th iteration of outermost for-loop  

            begins with D = Dm-1    
            ends with D = Dm 

–  computation of dij
m  depends on dim

m-1 and dmj
m-1 . 

   no problem if dim & dmj are already updated to dim
m & dmj

m 
since dim

m = dim
m-1    &   dmj

m = dmj
m-1. 

 
•  Running time :  Θ( n3 ) = Θ( V3 ) 
  simple code, no complex data structures, small hidden constants 



Reading Assignments 

 

• Reading assignment for next class: 
– Chapter 16.1-16.2 

 
 

• Announcement:  Exam 1 is on Tues, Feb. 18 
– Will cover everything up through dynamic 

programming 


	Today: �− All Pairs Shortest Paths�	
	Reading Assignments
	All Pairs Shortest Paths (APSP)
	All Pairs Shortest Paths (APSP)
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	Slide Number 8
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	Slide Number 16
	Improving Running Time Through Repeated Squaring
	Exercise
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Reading Assignments

