
CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 1 of 11 

Final Project (for Graduate Students): 
Multi-Robot Predator-Prey 

 
Assigned:  Tuesday, October 28, 2008 

Due:  Tuesday, November 25, 2008, 12:00:00 
In-class Competition (in the Hydra lab):  Tuesday, November 25, 2008, 17:05:00 

  
 
In this final project assignment, you will develop multi-robot predator-prey software, and your 
software will be put in a head-to-head contest with other student’s software (in the Hydra lab).  
(However, nearly all of your grade will be based on an evaluation of your code on its own, not 
how well it performs against other students’ code).  You will have 2 predator robots and 1 prey 
robot.  The objective for the prey robot is to avoid “capture” as long as possible.  The objective 
for the two predator robots is to “capture” the prey.  Here, we define “capture” as meaning that 
both predator robots are simultaneously within 2 meters of the prey.  The prey is successfully 
escaping as long as it avoids having both predator robots within this range.  In this assignment, 
we assume that the environment is known to the robots, and to you, the designer.  Thus, you are 
allowed to make use of the known environment, by either giving the robot the ability to plan 
paths in the environment, or even by hardcoding predator search strategies (i.e., to visit 
waypoints that you pre-specify.)  However, your predator robot behavior cannot know anything 
about how your prey robot behavior works, and vice versa. 
 
In this assignment, you will write code for 2 separate kinds of robots – (1) predator robots, and 
(2) a prey robot.  These will be separately-compiled programs that will run as separate processes.   
Much of this assignment will make use of code you have written for previous assignments.  The 
new aspects for this assignment are:  combining multiple behaviors, multi-robot communication, 
re-invoking your path planner for multiple path plans, and hunt and evasion behaviors. 
 
As previously noted, your software will be graded as if it were a stand-alone assignment, 
meaning that you will turn in results like always, this time showing how your own predator 
robots work to catch your own prey robot.  In addition, you will also use your software for head-
to-head robot competitions with your classmates in class on Tuesday, November 25th.  In these 
competitions, you will pit your predators against a classmate’s prey, and vice versa.  If your 
robots do well in these competitions, then you’ll get extra credit over and above your regular 
grade on this assignment (as well as bragging rights!).  [If your robots do not do well in this 
competition, your grade will not be penalized just because your robot lost in the competition.]    
More details of how we’ll conduct this competition will come later.   Because we will be 
interchanging predator and prey code from different people for these competitions, it is critical 
that you follow the instructions below exactly, to ensure that the software is interchangeable.   
 
Note that this is not a BattleBot competition, where you dream up subversive ideas for how to 
crush your enemy.  It is expected that you will abide by the spirit of this competition, where 
predators and prey square off head-to-head in a “fair” match.  You are not allowed to make use 
of any dirty tricks that are against the spirit of a true predator-prey competition. 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 2 of 11 

.cfg and .world files, plus Predator and Prey robot configurations 
 
To ensure uniformity, I am providing you with the .cfg file and the .world file to use for this 
assignment;  these files are called, creatively, FinalProj.cfg and FinalProj.world.  They are 
available from the class website, here:  http://www.cs.utk.edu/~parker/Courses/CS594-
fall08/Labs.html.   (Look under the Final Project section.)  You must use these files for this 
assignment.  Something that can vary in this configuration, however, are the starting positions of 
the robots.  You will want to test your approach with different robot starting positions.  For the 
competition, we will start the predator robots somewhere in the region bounded by (-10.5, 5),     
(-10.5, -2), (-7, -2), (-7, 5).  We will start the prey robots somewhere in the region bounded by   
(-4.5, 5), (-4.5, -2), (-1, -2), (-1, 5).  The starting orientations will be random.  Be sure your code 
works with any starting positions and orientations in these regions.  
 
Sensors: 
In this assignment, your predators and prey will have fiducials on them that make them distinct 
from one another.  Your predator and prey robots are set up in the .world file to have the 
following fiducial return values: 
 
 Predator robot fiducial_return  � 1 
 Prey robot fiducial_return � 2 
 
These fiducial returns allow your software to make distinctions between predator robots and the 
prey robot.  Your predator and prey robots will also have a laser scanner, as usual. 
 
Max Speeds: 
In this exercise, we are going to allow the prey to move a little bit faster than the predators.  To 
ensure uniformity among all robots, you must abide by the following maximum speed 
constraints: 
 
 Predator robot maximum speed  � 0.4 
 Prey robot maximum speed � 0.5 
 
This means, obviously, that the prey can outrun the predator.  But, since we’ll be operating in a 
closed environment, it is possible for the two predator robots to try to trap the prey robot if you 
properly coordinate the predator robots.  Also, the prey will be disadvantaged in that it can only 
see the predator if the predator is in front of it (i.e., in the direction the laser is facing).  It can’t 
see in all directions, because its laser only has a 180o field of view.   
 
The Environment 
 
For this exercise, we will be using the “autolab” bitmap.  Below is what the environment looks 
like, along with possible starting positions of the robots.  Here, the two predator robots are in the 
left room; the prey robot is in the middle room.  (In the simulation, the predator robots are red, 
while the prey robot is green.) 
 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 3 of 11 

 
 
 
Predator Robot Design 
 
As a suggestion, the overall behavior design of a predator robot is shown in the figure below 
(you don’t have to implement this design exactly, although you may find it useful).  The predator 
robot will combine aspects of your HW #2 robot, which sensed fiducials, with parts of your HW 
#3 (Part 2), which moved to a waypoint position (although you are free to change this previous 
code as you like).   There are some differences, though:   
 

• First, the “beacon” (which in this assignment is on a prey robot) is moving.  So, your 
predator robot has to be able to navigate toward a moving prey, using the behavior 
“Go_to_seen_prey”.   

 
• Second, you need to incorporate a behavior (“Hunt_unseen_prey”) for seeking out the 

prey.  This could just be a random wander algorithm.  Or, maybe this behavior would 
make use of your wavefront path planner from HW #4.  Or, you may hardcode a series 
of waypoints to visit, if you want to give the predator robot a fixed path to take for 
searching.  This will likely result in finding the prey faster than through a simple 
wander behavior.  However, you are not required to make a “smart” behavior for 
hunting unseen prey.  You may just have the robot randomly wander.  In either case, 
the “Detect_prey” triggering function will inform this behavior when the prey is found 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 4 of 11 

(i.e., based on fiducial detection), which will act to de-trigger the hunt, and instead just 
make use of the “Go_to_seen_prey” behavior to head toward the seen prey. 

 
• Third, you are required to have your two predator robots communicate with each other 

when one of them finds the prey.  The predator robot that finds the prey reports the 
prey’s position to the other predator periodically, as long as that prey is being 
detected.  The predator robot that receives this report must then move methodically 
toward the reported position of the prey, using the behavior 
“Move_to_prey_location_reported_by_other_predator” (which you may definitely 
rename to something shorter; I’m just using this here so that it is descriptive).  This 
behavior will make use of your path planner from HW #4 to move methodically 
toward the current prey position.  Since the prey is still probably moving, the location 
being reported will also change, meaning that you’ll have to occasionally re-plan paths 
to different prey locations. 

 
 

Detect_prey

Hunt_unseen_prey
OR  Wander

Go_to_seen_prey

Combine

Σ(g×v)

Output 
vector

S
eq

ue
nc

er

Translate

Steering,
velocity

Laser

Fiducial
detector

Trigger Relative (x,y)

vector

vector

vector

Predator Behavior

Avoid_obstaclesAvoid_obstacles

COMMUNICATE
With Other Predator

“Remote Prey Found” 
signal;  (x,y)

Location of prey

(x,y) Location
of prey

Move-to_prey_location_
reported_by_other_predator

vector

De-Trigger

Wavefront path planner

OPTIONAL**

** You might want to use the path planner to hunt unseen prey if you want to do something more sophisticated than wandering

“Prey Found” signal;
Global (x,y) location

of detected prey

 
 
 
 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 5 of 11 

For this assignment, we will just the automated referee tool, referee.cc (on the course website) to 
determine when the predators have capture the prey, along with the elapsed time. 
 
NOTE:  Your two predator robots MUST RUN THE EXACT SAME CODE!  If you want the 
two predator robots to perform different activities, then you must have them communicate with 
each other to coordinate who does what.   
 
 
Inter-robot communication 
 
In the appendix, we give instructions on how to have robots communicate with each other in 
these simulations.  The idea is simply to use sockets to communicate between processes.  We’re 
giving you code for this communication (on the course webpage), so that you don’t have to 
spend time hacking sockets.  If you don’t want to use this code, you don’t have to.  It’s your 
option. 
 
 
Prey Robot Design 
 
At a minimum, your prey robot must avoid obstacles and move away from the sensed predators.  
Note that the prey robot has a problem, in that if it turns to run from predators, it can no longer 
see the predators, because the laser that detects the predator fiducial is pointing forward.  You’ll 
have to come up with a behavioral strategy for dealing with this.  Perhaps you’ll implement 
something like rabbit behavior:  when the predator is first seen, you run like heck for a while 
away from the predator, then stop and look behind you to see if you have escaped.  Keep in mind 
that there are 2 predators, so your prey robot will want to take both into account in deciding 
which way to escape (think vector summation).  You may also give your prey robot strategies for 
avoiding capture as long as possible, such as trying to find a good pace to hide.  You may use 
your own knowledge of the environment to design specific strategies.  However, as already 
stated, you may not use any knowledge of the predator’s strategy in designing the prey’s strategy 
(or vice versa).  Your prey robot will not communicate with any other robot.  The figure below 
gives the general outline of the prey robot behavior construction.  (As with the predator behavior 
construction, this design is given to you as a suggestion that you should find helpful; however, 
you are not required to implement this design exactly.) 
 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 6 of 11 

Detect_predator

Evade 
capture

Avoid_seen_predators

Combine

Σ(g×v)

Output 
vector

S
eq

ue
nc

er

Translate

Steering,
velocity

Laser

Fiducial
detector

Trigger Relative (x,y)

vector

vector

vector

Prey Behavior

Avoid_obstacles

De-Trigger

Wavefront path planner

OPTIONAL**

** You might want to use the path planner to plan paths for evading capture, although it isn’t required

Detect_predator

Evade 
capture

Avoid_seen_predators

Combine

Σ(g×v)

Output 
vector

S
eq

ue
nc

er

Translate

Steering,
velocity

Laser

Fiducial
detector

Trigger Relative (x,y)

vector

vector

vector

Prey Behavior

Avoid_obstaclesAvoid_obstacles

De-Trigger

Wavefront path planner

OPTIONAL**

** You might want to use the path planner to plan paths for evading capture, although it isn’t required  
 
 
Running your code with multiple robots 
 
(You’ve already seen most of the information in this section in HW #2, but I’ll repeat it here for 
completeness.)   When you run your experiments, each of the 3 robots will be running a separate 
process.   Both predators will run copies of the same program (called “yourlastname-predator-
FinalProj”); the prey robot will run its own program (called “yourlastname-prey-FinalProj”).  To 
control multiple robots in the same simulation, do the following.  Open up 3 separate windows, 
one for each robot.  Connect each window to the directory where you have your compiled robot 
control codes.  Start up Player/Stage as always (i.e., “robot-player FinalProj.cfg”).  Then, enter 
the following commands, each in its own separate window: 
 

• For controlling predator robot #1:   
linux> ./yourlastname-predator-FinalProj –p 6666 
 

• For controlling predator robot #2: 
linux> ./yourlastname-predator-FinalProj –p 6667 
 

• For controlling prey robot: 
linux> ./yourlastname-prey-FinalProj –p 6668 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 7 of 11 

Note that the “-p” option specifies the port number being used by that robot.  These port numbers 
are defined in the FinalProj.cfg file.  These commands will then connect to each of the 3 separate 
robots, and your 3 robots will execute their respective control codes. 
 
Example binaries for predator and prey 
 
To help you test and debug your own code, example binaries of the predator and prey are 
available on the course website. 
 
Design notes 
 
This project is open for you to achieve the robot behaviors as you like.  As discussed, the 
software design ideas given in the figures above are suggestions, not requirements.  Some 
specific design points are: 
 

• You are free to use the vfh and wavefront drivers that are provided for you in 
Player/Stage for the purposes of obstacle avoidance, going to goals, and path 
planning.  You do not have to write your own.  Just be sure to abide by the maximum 
velocity requirements. 

• No noise needs to be added to any of the sensors. 
• You are not allowed to change the hardware configuration. 
• Crashing into another robot constitutes a dirty trick. 
• Essentially, you are free to use whatever software techniques you like to achieve the 

predator and prey behaviors that are specified, as long as the code is yours, or is 
provided to you through Player/Stage.  If you want to use any other publicly available 
software, ask Dr. Parker for permission first. 

 
Automated referee for determining capture:  referee.cc 

and  
Inputting the autolab map into your code 
 
Thanks to two of your enthusiastic classmates (Bobby Coop and Richard Edwards), we now 
have an automated referee tool for determining when capture is made.  This tool is called 
referee.cc, and is available on the homework website for the course, along with some supporting 
files (args.h, inputMap_v2, and a makefile called MakeReferee).  You’ll also need to download 
the map file “autolab.pnm”, which is converted for you to a p6 format of pnm, which is now 
readable by the updated utility inputMap_v2.cc.  To compile this code, simply enter “make –f 
MakeReferee”. 
 
The referee tool will automatically set the positions of the two predators and prey within the pre-
defined starting boundaries outlined in this write-up.  To use this tool, simply run it in a separate 
window on the same machine as the predators and prey.  (You’ll also need to be sure that the 
“autolab.pnm” file we provide you (i.e,. pnm p6 format) is in the same directory as your referee 
executable.  The tool will prompt you to start the simulation (by pressing enter), at which point 
the robots will be randomly positioned.  Then, you should start your robot’s predator and prey 
code; whenever the predators are both within the specified distance of the prey, the referee will 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 8 of 11 

declare capture, along with the elapsed time.  Use this tool while you are developing your code, 
so that you can take advantage of the random starting positions. 
 
This referee tool needs to access the map in order to ensure that the predators and prey are on the 
same side of the wall as the others (i.e., it doesn’t count to capture the prey if it is on the other 
side of the wall!).  So, the referee.cc code makes use of the inputMap_v2 utility, which reads in 
the pnm p6 file “autolab.pnm” (which is provided for you).  You can also make use of this 
updated inputMap_v2 utility (with the p6 version of autolab.pnm) to input the map into your own 
robot control code.   
 
(If you are curious, you can find more reading on pnm files here:  
https://people.scs.fsu.edu/~burkardt/data/pnm/pnm.html.) 
 
How we’ll grade your code 

 
Because you are writing both the predator and the prey code, it may be hard to judge how good 
your code is.  For example, if your predators are always able to catch the prey quickly, then does 
this mean you have really good predator code, or does it instead mean that you have really lousy 
prey code?  It’s hard to say.  This is why we’ll have the in-class competition (in the Hydra lab) to 
pit your predator robots against someone else’s prey robots (and vice versa).  Over a series of 
head-to-head competitions, we’ll be able to see what the best strategies are for predators and 
prey.  In the competition, the predator robots will get more points the more quickly they capture 
the prey, while the prey robot will get more points the longer it avoids capture.  Specifically, the 
score of both the predator and the prey will be the number of elapsed seconds until the prey is 
captured, within a maximum time period (such as 4 minutes; the specific time TBA).  However, 
in the case of the predator, lower scores are better, and in the case of the prey, higher scores are 
better.  We will rank order the winning predators and preys to decide winners in each category.    
You are required to participate in the competition (-10 points on your final project grade if you 
don’t participate).  However, otherwise, this competition will be for extra credit points for you 
(and bragging rights!).  Details on the competition will be announced later. 
 
For your individual code grading, we’ll look to make sure that your predators and prey are 
designed as outlined in this assignment.  We want to see the ability for the prey to escape for 
some period of time, but for the predators to eventually be able to capture the prey.  We want to 
see that you’ve integrated your path planner with your predator hunting behavior, and that you 
have implemented and use inter-robot communication between the predator robots.   
 
 
WRITE UP THE FOLLOWING (written up in a single pdf file called yourlastname-
FinalProj.pdf):   
a)  A brief discussion of your predator behavior strategy.  (Just point out the aspects of the 

behavior where you had a choice; don’t re-iterate the required parts of the design.) 
 
b)   A brief discussion of your prey behavior strategy.  (Just point out the aspects of the behavior 

where you had a choice; don’t re-iterate the required parts of the design.) 
 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 9 of 11 

c)  1 screenshot of your predator and prey robots moving from their starting positions to the final 
position where the prey is captured.  Be sure your screenshot includes the robot traces.  The 
starting robot positions for this screenshot must be as follows (these are the same as in the 
FinalProj.cfg file provided to you): 

 
• Predator robot #1:  starts at (-7, 4.5, 10) 
• Predator robot #2:  starts at (-10, -2, 100) 
• Prey robot:  starts at (-2, 5, 250). 
 

NOTE once again:  Your predator code may in no way make use of the knowledge of the prey’s 
starting location, or vice versa. 
 
SUBMITTING YOUR HOMEWORK: 

Place all your files in a single directory.  These files should include: 
 

• Your pdf file as described above, called “yourlastname-FinalProj.pdf” 
• Your makefile, called “makefile” or “Makefile” 
• Your predator robot control code, called “yourlastname-predator-FinalProj.cc”.   
• Your prey robot control code, called “yourlastname-prey-FinalProj.cc”. 
• Any additional include files or other code you created (called whatever you want them 

to be called). 
 
Remove all other unnecessary files.  Use the submit script 594mr_submit to submit your 
files.  (These will be emailed to Dr. Parker.) 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 10 of 11 

Appendix:  Communication Between Robots 
 
Note: You are not required to use these utilities. Or, if you want to change them, you may. They 
are just provided for your convenience, in case you want to use them.  
 
 
On the course website are two files provided for you: communicate.h and commsExample.cc:  
 
http://www.cs.utk.edu/~parker/Courses/CS594-fall08/Homeworks/communicate.h  
 
http://www.cs.utk.edu/~parker/Courses/CS594-fall08/Homeworks/commsExample.cc  
 
These files give you the basic routines needed to communicate between multiple processes, such 
as robots in Player/Stage. These routines are set up to send UDP datagrams between two robot 
processes. (The reason why this uses UDP rather than TCP is that, in general, UDP offers better 
performance than TCP on real robots, which can break. We can have problems with hung 
processes on real robots if, for example, one robot fails during the application. We won’t go into 
the details here.)  
 
The commsExample.cc file shows you how to use these communications messages. The gist is 
this: You enter (as command line parameters) the ID and PORT number of the current robot’s 
process, as well as the ID and PORT number of the 2nd (“friend”) robot’s process. Then, the code 
sets up the socket for communication. When you want the current robot to send a message to the 
other robot, your code must format that message (using the “send_cmd” process). When you 
want the current robot to receive a message from the other robot, your code must use the 
“recv_cmd” process to read and decode the message.  
 
About message formats  
The provided code does not provide the complete message format that you’ll need for this 
homework. Instead, it shows you how you can create messages according to your own format. 
The basic message format is as follows:  
 
TS$R!  

 
where:  
 
T:  1 character message type (currently ‘F’ means t arget found, and ‘C’  
 means application is complete (stop the program))  
S:  ID of sender (converted to characters)  
$:  special delimiter symbol separating fields  
R:  ID of recipient (converted to characters)  
!:  special delimiter symbol denoting end of messag e  
 
So, for example, the actual message sent/received might be:  
 
F1$2!  

 



CS494/594:  Autonomous Mobile Robots, Fall 2008 

Page 11 of 11 

However, for this assignment, you’ll need to beef up this message format to add in the x,y 
position of the target position. So, ultimately, your sent/received messages would look something 
like:  
 
TS$R$xxx.xx$yy.y!  
 
A specific message might be:  
 
F1$2$10.5$-1.4!  

 
where xxx.xx is the x position of the target and yy.y is the y position of the target. It is 
your job to add this additional information to your messages. You may want to make use of 
functions such as atof  for this purpose. You’ll need to make these changes in 2 places: in 
send_cmd to format the message to be sent, and in recv_cmd to decode the received message. 
You can add in any message types as you like and find useful.  
 
Note that in processing the messages, the code is set up to only accept messages from the 
“friend” robot, and only if the message has the current robot’s ID in the recipient field. This is a 
good safeguard, to ensure that the robot only responds to valid messages intended for itself.  
 
Command line parameters  
To run this code, you’ll need to enter in the current robot’s ID and port number, and the “friend” 
robot’s ID and port number as command line arguments. So, for one process, you’ll have 
something like:  
 
linux> ./commsExample 1 6000 2 6001  
 
and for the second process, you’ll have something like:  
 
linux> ./commsExample 2 6001 1 6000  
 
These command lines will allow these two processes to send and receive messages from each 
other. 


