CS494/594: Autonomous Mobile Robots, Fall 2008

Final Project (for Graduate Students):
Multi-Robot Predator-Prey

Assigned: Tuesday, October 28, 2008
Due: Tuesday, November 25, 2008, 12:00:00
In-class Competition (in the Hydra lab): TuesdayNovember 25, 2008, 17:05:00

In this final project assignment, you will developulti-robot predator-prey software, and your
software will be put in a head-to-head contest wither student’'s software (in the Hydra lab).
(However, nearly all of your grade will be basedamevaluation of your code on its own, not
how well it performs against other students’ cod¥pu will have 2 predator robots and 1 prey
robot. The objective for the prey robot is to avttapture” as long as possible. The objective
for the two predator robots is to “capture” theypréHere, we define “capture” as meaning that
both predator robots are simultaneously within 2emseof the prey. The prey is successfully
escaping as long as it avoids having both predatoots within this range. In this assignment,
we assume that the environment is known to thetsplamd to you, the designer. Thus, you are
allowed to make use of the known environment, higegigiving the robot the ability to plan
paths in the environment, or even by hardcodingdgied search strategies (i.e., to visit
waypoints that you pre-specify.) However, yourdater robot behavior cannot know anything
about how your prey robot behavior works, and vieesa.

In this assignment, you will write code for 2 segtarkinds of robots — (1) predator robots, and
(2) a prey robot. These will be separately-congppgeograms that will run as separate processes.
Much of this assignment will make use of code yauehwritten for previous assignments. The
new aspects for this assignment are: combiningdiphelbehaviors, multi-robot communication,
re-invoking your path planner for multiple pathiqdaand hunt and evasion behaviors.

As previously noted, your software will be gradesl iit were a stand-alone assignment,
meaning that you will turn in results like alwayhjs time showing how your own predator
robots work to catch your own prey robot. In aidaif you will also use your software for head-
to-head robot competitions with your classmateslass on Tuesday, November 25th. In these
competitions, you will pit your predators againstlassmate’s prey, and vice versa. If your
robots do well in these competitions, then you#t g@xtra credit over and above your regular
grade on this assignment (as well as bragging gight[If your robots do not do well in this
competition, your grade will not be penalized jbstause your robot lost in the competition.]
More details of how we’ll conduct this competitiavill come later. Because we will be
interchanging predator and prey code from diffeqggnple for these competitions, it is critical
that you follow the instructions below exactly,eisure that the software is interchangeable.

Note that this is not a BattleBot competition, whgou dream up subversive ideas for how to
crush your enemy. It is expected that you willdgbby the spirit of this competition, where

predators and prey square off head-to-head inig ‘tfeatch. You are not allowed to make use
of any dirty tricks that are against the spiriadfue predator-prey competition.

Page 1 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

.cfqg and .world files, plus Predator and Prey robotonfigurations

To ensure uniformity, | am providing you with thefg file and the .world file to use for this
assignment; these files are called, creativelypalFroj.cfg and FinalProj.world. They are
available from the class website, here:http://www.cs.utk.edu/~parker/Courses/CS594-
fall08/Labs.html (Look under the Final Project section.) Youstuse these files for this
assignment. Something that can vary in this coméigon, however, are the starting positions of
the robots. You will want to test your approachhwdifferent robot starting positions. For the
competition, we will start the predator robots sarmere in the region bounded by (-10.5, 5),
(-10.5, -2), (-7, -2), (-7, 5). We will start tipeey robots somewhere in the region bounded by
(-4.5, 5), (-4.5, -2), (-1, -2), (-1, 5). The siag orientations will be random. Be sure youre&od
works with any starting positions and orientationghese regions.

Sensors:

In this assignment, your predators and prey willehBducials on them that make them distinct
from one another. Your predator and prey robots st up in the .world file to have the
following fiducial return values:

Predator robot fiducial_retur 1
Prey robot fiducial_retur& 2

These fiducial returns allow your software to mak&inctions between predator robots and the
prey robot. Your predator and prey robots wilbdisve a laser scanner, as usual.

Max Speeds:

In this exercise, we are going to allow the preynive a little bit faster than the predators. To
ensure uniformity among all robots, you must ablge the following maximum speed
constraints:

Predator robot maximum speed 0.4
Prey robot maximum spee&g 0.5

This means, obviously, that the prey can outrunptieelator. But, since we’ll be operating in a
closed environment, it is possible for the two @ted robots to try to trap the prey robot if you
properly coordinate the predator robots. Also,ghey will be disadvantaged in that it can only
see the predator if the predator is in front df.d., in the direction the laser is facing). #n&
see in all directions, because its laser only hE&thfield of view.

The Environment

For this exercise, we will be using the “autolalithriap. Below is what the environment looks
like, along with possible starting positions of tiebots. Here, the two predator robots are in the
left room; the prey robot is in the middle roonin the simulation, the predator robots are red,
while the prey robot is green.)

Page 2 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

Predator Robot Design

As a suggestion, the overall behavior design ofeslgtor robot is shown in the figure below
(you don’t have to implement this design exactlihaigh you may find it useful). The predator
robot will combine aspects of your HW #2 robot, ethsensed fiducials, with parts of your HW
#3 (Part 2), which moved to a waypoint positiorif@ligh you are free to change this previous
code as you like). There are some differencesigh:

* First, the “beacon” (which in this assignment isaoprey robot) is moving. So, your
predator robot has to be able to navigate towandoging prey, using the behavior
“Go_to_seen_prey”.

* Second, you need to incorporate a behavior (“Humdean_prey”) for seeking out the
prey. This could just be a random wander algoritidr, maybe this behavior would
make use of your wavefront path planner from HW &4, you may hardcode a series
of waypoints to visit, if you want to give the pegdr robot a fixed path to take for
searching. This will likely result in finding therey faster than through a simple
wander behavior. However, you are not requirednetke a “smart” behavior for
hunting unseen prey. You may just have the roaotlomly wander. In either case,
the “Detect_prey” triggering function will infornhis behavior when the prey is found

Page 3 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

(i.e., based on fiducial detecti

on), which will &atde-trigger the hunt, and instead just

make use of the “Go_to_seen_prey” behavior to headrd the seen prey.

when one of them finds the
prey’s position to the other

Third, you are required to have your two predatdrots communicate with each other

prey. The predator rdobat finds the prey reports the
predator periodicalas long as that prey is being

detected. The predator robot that receives tlpsrtemust then move methodically

toward the reported

position

of the prey, using théehavior

“Move_to_prey_location_reported_by other_predat@which you may definitely
rename to something shorter; I'm just using thisehso that it is descriptive). This
behavior will make use of your path planner from H¥ to move methodically
toward the current prey position. Since the peestill probably moving, the location
being reported will also change, meaning that ydale to occasionally re-plan paths

to different prey locations.

Predator Behavior

Wavefront path planner signal: (x.y)

“Remote Prey Found”

Location of prey .

(x,y) Location

With Other Predator

¥
N

v
b

“Prey Found” signal;

.

Move-to_prey_location_
reported_by_other_predato

Global (x,y) location
of detected prey

OPTIONAL**
OR Wander

Hunt_unseen_prg

3% vector

Combine

vector

De-Trigger A

Output Steering,

Fiducial >

Detect_prey

-
e,

vector velocit
rarsiae |-

detector]
Trigger ; ¢ Relativ

A A 4

Sequencer

Go_to_seen_pre

vector

Laser

—>

Avoid_obstacles

**You might want to use the path planner to hunseen

prey if you want to do something more somlaitd than wandering

Page 4 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

For this assignment, we will just the automateéne tool, referee.cc (on the course website) to
determine when the predators have capture the alayy with the elapsed time.

NOTE: Your two predator robots MUST RUN THE EXACGAME CODE! If you want the

two predator robots to perform different activitié#sen you must have them communicate with
each other to coordinate who does what.

Inter-robot communication

In the appendix, we give instructions on how toeéhawbots communicate with each other in

these simulations. The idea is simply to use gsdcecommunicate between processes. We're
giving you code for this communication (on the caumwebpage), so that you don’t have to

spend time hacking sockets. If you don’t want $e this code, you don’t have to. It's your

option.

Prey Robot Design

At a minimum, your prey robot must avoid obsta@ded move away from the sensed predators.
Note that the prey robot has a problem, in thdttiirns to run from predators, it can no longer
see the predators, because the laser that ddtegsddator fiducial is pointing forward. You'll
have to come up with a behavioral strategy for idgawith this. Perhaps you’ll implement
something like rabbit behavior: when the predaddiirst seen, you run like heck for a while
away from the predator, then stop and look behoultp see if you have escaped. Keep in mind
that there are 2 predators, so your prey robot waht to take both into account in deciding
which way to escape (think vector summation). Yiay also give your prey robot strategies for
avoiding capture as long as possible, such asgnyrfind a good pace to hide. You may use
your own knowledge of the environment to designcsjmestrategies. However, as already
stated, you may not use any knowledge of the poedattrategy in designing the prey’s strategy
(or vice versa). Your prey robot will not commuetie with any other robot. The figure below
gives the general outline of the prey robot behagtmstruction. (As with the predator behavior
construction, this design is given to you as a sestign that you should find helpful; however,
you are not required to implement this design dyact

Page 5 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

Prey Behavior

Wavefront path planner

OPTIONAL** Evade
capture Combine

\vect:
De-Trigger A

Fiducial _____gp! petect_predato
detector]
Trigger; *Relative (xy) vector
Avoid_seen_predato/

Mr’
LaSer ———————Jpi Ay0id_obstacles

**You might want to use the path planner to plaths for evading capture, although it isn’t reqaiire

Output Steering,

vector velocit
s |

Sequencer
yvyy

Running your code with multiple robots

(You've already seen most of the information irsteection in HW #2, but I'll repeat it here for

completeness.) When you run your experiments) eaithe 3 robots will be running a separate
process. Both predators will run copies of theegrogram (called “yourlastname-predator-
FinalProj”); the prey robot will run its own progna(called “yourlastname-prey-FinalProj”). To

control multiple robots in the same simulation,tbe following. Open up 3 separate windows,
one for each robot. Connect each window to thecttiry where you have your compiled robot
control codes. Start up Player/Stage as alwags (robot-player FinalProj.cfg”). Then, enter

the following commands, each in its own separateloiv:

« For controlling predator robot #1:
linux> ./yourlastname-predator-FinalProj —p 6666

« For controlling predator robot #2:
linux> ./yourlastname-predator-FinalProj —p 6667

« For controlling prey robot:
linux> ./yourlastname-prey-FinalProj —p 6668

Page 6 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

Note that the “-p” option specifies the port numbemg used by that robot. These port numbers
are defined in the FinalProj.cfg file. These comaswill then connect to each of the 3 separate
robots, and your 3 robots will execute their resipeacontrol codes.

Example binaries for predator and prey

To help you test and debug your own code, exampliaries of the predator and prey are
available on the course website.

Design notes

This project is open for you to achieve the robehdviors as you like. As discussed, the
software design ideas given in the figures abowe sarggestions, not requirements. Some
specific design points are:

« You are free to use the vfh and wavefront drivdrat tare provided for you in
Player/Stage for the purposes of obstacle avoidagoeng to goals, and path
planning. You do not have to write your own. Justsure to abide by the maximum
velocity requirements.

- No noise needs to be added to any of the sensors.

« You are not allowed to change the hardware corditgom.

- Crashing into another robot constitutes a dirtgktri

« Essentially, you are free to use whatever softwacbniques you like to achieve the
predator and prey behaviors that are specifiedprag as the code is yours, or is
provided to you through Player/Stage. If you wantise any other publicly available
software, ask Dr. Parker for permission first.

Automated referee for determining capture: refereecc
and
Inputting the autolab map into your code

Thanks to two of your enthusiastic classmates (BoBbop and Richard Edwards), we now
have an automated referee tool for determining wbapture is made. This tool is called

referee.cc, and is available on the homework welfsitthe course, along with some supporting
files (args.h, inputMap_v2, and a makefile calledkgReferee). You'll also need to download
the map file “autolab.pnm”, which is converted fgru to a p6 format of pnm, which is now

readable by the updated utility inputMap_v2.cc. cbonpile this code, simply enter “make —f

MakeReferee”.

The referee tool will automatically set the posismf the two predators and prey within the pre-
defined starting boundaries outlined in this wrife- To use this tool, simply run it in a separate
window on the same machine as the predators arnyd giou’ll also need to be sure that the
“autolab.pnm” file we provide you (i.e,. pnm p6 fwat) is in the same directory as your referee
executable. The tool will prompt you to start gimulation (by pressing enter), at which point
the robots will be randomly positioned. Then, y&hould start your robot’s predator and prey
code; whenever the predators are both within tleeipd distance of the prey, the referee will

Page 7 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

declare capture, along with the elapsed time. tbisetool while you are developing your code,
so that you can take advantage of the randomrsggutisitions.

This referee tool needs to access the map in todamsure that the predators and prey are on the
same side of the wall as the others (i.e., it doesunt to capture the prey if it is on the other
side of the wall!). So, the referee.cc code malsesof the inputMap_v2 utility, which reads in
the pnm p6 file “autolab.pnm” (which is providedr fgou). You can also make use of this
updated inputMap_v2 utility (with the p6 versionaaftolab.pnm) to input the map into your own
robot control code.

(If you are curious, you can find more reading omgdiles here:
https://people.scs.fsu.edu/~burkardt/data/pnm/pmmi.ht

How we’'ll grade your code

Because you are writing both the predator and thg pode, it may be hard to judge how good
your code is. For example, if your predators &neags able to catch the prey quickly, then does
this mean you have really good predator code, es @oinstead mean that you have really lousy
prey code? It's hard to say. This is why we’ll’edhe in-class competition (in the Hydra lab) to
pit your predator robots against someone else’g mkots (and vice versa). Over a series of
head-to-head competitions, we’ll be able to seetwina best strategies are for predators and
prey. In the competition, the predator robots @ét more points the more quickly they capture
the prey, while the prey robot will get more poitite longer it avoids capture. Specifically, the
score of both the predator and the prey will berttmber of elapsed seconds until the prey is
captured, within a maximum time period (such asidutes; the specific time TBA). However,
in the case of the predator, lower scores areheitel in the case of the prey, higher scores are
better. We will rank order the winning predatonsl oreys to decide winners in each category.
You are required to participate in the competitiehO points on your final project grade if you
don’t participate). However, otherwise, this competition will be fortrexcredit points for you
(and bragging rights!). Details on the competitiati be announced later.

For your individual code grading, we’ll look to nealsure that your predators and prey are
designed as outlined in this assignment. We warsee the ability for the prey to escape for
some period of time, but for the predators to evalht be able to capture the prey. We want to
see that you've integrated your path planner wiahrypredator hunting behavior, and that you
have implemented and use inter-robot communicdt&iween the predator robots.

WRITE UP_THE FOLLOWING (written up in_a single pdffile called yourlastname-

FinalProj.pdf):

a) A brief discussion of your predator behavior t&tgy. (Just point out the aspects of the
behavior where you had a choice; don’t re-iteragerequired parts of the design.)

b) A brief discussion of your prey behavior strateyust point out the aspects of the behavior
where you had a choice; don't re-iterate the reglparts of the design.)

Page 8 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

c) 1 screenshot of your predator and prey robotsimgdvom their starting positions to the final
position where the prey is captured. Be sure wooveenshot includes the robot traces. The
starting robot positions for this screenshot mestb follows (these are the same as in the
FinalProj.cfg file provided to you):

* Predator robot #1: starts at (-7, 4.5, 10)
* Predator robot #2: starts at (-10, -2, 100)
* Preyrobot: starts at (-2, 5, 250).

NOTE once again: Your predator code may in no make use of the knowledge of the prey’s
starting location, or vice versa.

SUBMITTING YOUR HOMEWORK:
Place all your files in a single directory. Thées should include:

« Your pdf file as described above, called “yourlaste-FinalProj.pdf”

« Your makefile, called “makefile” or “Makefile”

« Your predator robot control code, called “yourlastre-predator-FinalProj.cc”.

« Your prey robot control code, called “yourlastnaprey-FinalProj.cc”.

« Any additional include files or other code you ¢egh(called whatever you want them
to be called).

Remove all other unnecessary files. Use the sukenpt594mr_submitto submit your
files. (These will be emailed to Dr. Parker.)

Page 9 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

Appendix: Communication Between Robots

Note: You are not required to use these utilit@s. if you want to change them, you may. They
are just provided for your convenience, in case waut to use them.

On the course website are two files provided far:y@mmunicate.h and commsExample.cc:

http://www.cs.utk.edu/~parker/Courses/CS594-fall@gfteworks/communicate.h

http://lwww.cs.utk.edu/~parker/Courses/CS594-fall@gftéworks/commsExample.cc

These files give you the basic routines neede@maoncunicate between multiple processes, such
as robots in Player/Stage. These routines arepstet send UDP datagrams between two robot
processes. (The reason why this uses UDP ratheM@® is that, in general, UDP offers better
performance than TCP on real robots, which cankoi@ can have problems with hung
processes on real robots if, for example, one réblistduring the application. We won’t go into
the details here.)

The commsExample.cc file shows you how to use thesemunications messages. The gist is
this: You enter (as command line parameters) thenil® PORT number of the current robot’s
process, as well as the ID and PORT number of th¢fdiend”) robot’s process. Then, the code
sets up the socket for communication. When you wanturrent robot to send a message to the
other robot, your code must format that messagaedubke “send_cmd” process). When you
want the current robot to receive a message frenother robot, your code must use the
“recv_cmd” process to read and decode the message.

About message formats

The provided coddoes noprovide the complete message format that you’ldrfee this
homework. Instead, it shows you how you can cre@ssages according to your own format.
The basic message format is as follows:

TS$R!

where:

T: 1 character message type (currently ‘F' means t arget found, and ‘C’
means application is complete (stop the program))

S: ID of sender (converted to characters)

$: special delimiter symbol separating fields

R: ID of recipient (converted to characters)

I: special delimiter symbol denoting end of messag e

So, for example, the actual message sent/receivgit ve:

F13$2!

Page 10 of 11

CS494/594: Autonomous Mobile Robots, Fall 2008

However, for this assignment, you’ll need to bgethis message format to add in the X,y
position of the target position. So, ultimatelypysent/received messages would look something
like:

TSEREXXX.XX$yY.Y!

A specific message might be:

F1$2$10.5%-1.4!

wherexxx.xx is thex position of the target angd/.y is they position of the target. It is
your job to add this additional information to youessages. You may want to make use of
functions such aatof for this purpose. You’'ll need to make these change places: in
send_cmd to format the message to be sent, ardwvnemd to decode the received message.
You can add in any message types as you like addugeful.

Note that in processing the messages, the cod igpd0 only accept messages from the
“friend” robot, and only if the message has theaeutrrobot’s ID in the recipient field. This is a
good safeguard, to ensure that the robot only redpto valid messages intended for itself.

Command line parameters

To run this code, you’'ll need to enter in the catn@bot’s ID and port number, and the “friend”
robot’s ID and port number as command line argumes, for one process, you'll have
something like:

linux> ./commsExample 1 6000 2 6001
and for the second process, you’ll have somethkeg |
linux> ./commsExample 2 6001 1 6000

These command lines will allow these two processasgnd and receive messages from each
other.

Page 11 of 11

