(version without (potentially) copyrighted images)

CS494/594: Artificial Intelligence

Fall 2009 Tuesday/Thursday, 12:40 – 1:55

Instructor: Dr. Lynne E. Parker

TA: Nick Overfield

"Artificial Intelligence is the study of how to make real computers act like the ones in the movies." --Anonymous

Outline

- Overview syllabus and class policies
- Course Overview
- Introduction to AI (Chapter 1)
 - What is AI?
 - A brief history
 - The state of the art
- Intelligent Agents (Chapter 2.1-2.3)
 - Agents and environments
 - Rationality
 - PEAS (Performance measure, Environment, Actuators, Sensors)
 - Environment types
 - Agent types (next time)

Overview of Syllabus and Class Policies

(See handout)

Course Overview

- Introduction to AI
- Intelligent Agents
- Problem-solving by search
- Logical systems
- Planning systems
- Uncertainty probability and decision theory
- Learning
- Perception and robotics
- Philosophical issues

What is Al?

Systems that think like humans	Systems that think rationally
"The automation of activities that we associate with human thinking – activities such as decision-making, problem solving, learning, …" (Bellman, 1978)	"The study of mental faculties through the use of computational models." (Charniak and McDermott, 1985)
Systems that act like humans	Systems that act rationally
"The art of creating machines that perform functions that require intelligence when performed by people", (Kurzweil, 1990)	"AIis concerned with intelligent behavior in artifacts." (Nilsson, 1998)

Acting humanly: The Turing Test

Turing (1950) "Computing machinery and intelligence":

- "Can machines think?" \rightarrow "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested 6 major components of AI: knowledge representation, automated reasoning, natural language understanding, machine learning, computer vision, robotics

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking humanly: Cognitive science

- 1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism
- Requires scientific theories of internal activities of the brain
 - What level of abstraction? "Knowledge" or "circuits?
 - How to validate? Requires:
 - 1) Predicting and testing behavior of human subjects (top-down)
 - 2) or, Direct identification from neurological data (bottom-up)
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are
 now distinct from AI
- Both share with AI the following characteristic:
 - The available theories do not explain (or engender) anything resembling human-level general intelligence
- Hence, all three fields share one principal direction!

Thinking rationally: Laws of Thought

- Normative (or prescriptive) rather than descriptive
- Aristotle: what are *correct* arguments/thought processes?
- Several Greek schools developed various forms of logic:
 - Notation and rules of derivation for thoughts;
 - may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern AI

Problems:

- 1) Not all intelligent behavior is mediated by logical deliberation
- 2) What is the purpose of thinking? What thoughts should I have?

Acting Rationally

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex but thinking should be in the service of rational action
- Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

- An agent is an entity that perceives and acts
- This course is about designing rational agents
- Abstractly, an agent is a function from percept histories to actions:

$$f: P^* \to A$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make perfect rationality unachievable
 → design best program for given machine resources

Foundations of Al

- Philosophy (428 BC Present)
 - Can formal rules be used to draw valid conclusions?
 - How does the mental mind arise from a physical brain?
 - Where does knowledge come from?
 - How does knowledge lead to action?

• Aristotle, Leonardo da Vinci, Pascal, Descartes, etc.

- Mathematics (~800 present)
 - What are the formal rules to draw valid conclusions?
 - What can be computed?
 - How do we reason with uncertain information?

• Logic, computation (algorithms), probability

- Economics (1776-present)
 - How should we make decisions so as to maximize profit?
 - How should we do this when others may not go along?
 - How should we do this when the payoff may be far in the future?

 Utility, decision theory, game theory, operations research, Markov decision processes

- Neuroscience (1861-present)
 - How do brains process information?

- Moore's law predicts that CPU's gate count will equal brain's neuron count around 2020.
- But, even though a computer is a million times faster in raw switching speed, the brain is actually 100,000 times faster at what it does.

- Psychology (1879 present)
 - How do humans and animals think and act?

• Behaviorism, cognitive psychology, cognitive science

- Computer engineering (1940 present)
 - How can we build an efficient computer?

• Al requires: (1) intelligence, (2) an artifact (i.e., a computer upon which the intelligence is generated)

- Control theory and Cybernetics (1948 – present)
 - How can artifacts operate under their own control?
- Control theory: Maximizing an objective function over time
 - Uses calculus and matrix algebra, which lend themselves to systems that are describable by fixed sets of continuous variables;
 - Exact analysis typically feasible only for linear systems
- AI: Designing systems that behave optimally
 - Founded as a way to "escape" from limitations of the mathematics of control theory
 - Use of logical inference and computation allows AI to consider problems such as language, vision, and planning, which are outside the field of control theory

- Linguistics (1957-present)
 - How does language relate to thought?

 Computational linguistics, natural language processing, knowledge representation

Summary of AI Prehistory

Philosophy	logic, methods of reasoning mind as physical system
Mathematics	 foundations of learning, language, rationality formal representation and proof algorithms, computation, (un)decidability, (in)tractability probability
Economics	formal theory of rational decisions
Neuroscience	plastic physical substrate for mental activity
Psychology	adaptation
	phenomena of perception and motor control
	 experimental techniques (psychophysics, etc.)
Control theory	 homeostatic systems, stability
	 simple optimal agent designs
Linguistics	 knowledge representation

-- grammar

Potted history of Al

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1952-69 Look, Ma, no hands!
- 1950s Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1966-74 AI discovers computational complexity Neural network research almost disappears
- 1969-79 Early development of knowledge-based systems
- 1980-88 Expert systems industry booms
- 1988-93 Expert systems industry busts: "AI Winter"
- 1985-95 Neural networks return to popularity
- 1988- Resurgence of probability; general increase in technical depth "Nouvelle AI": Artificial life, GAs, soft computing
- 1995- Agents, agents everywhere ...

What can AI do today?

- Autonomous planning and scheduling:
 - NASA's Remote Agent program became 1st onboard autonomous planning program to control the scheduling of operations for a spacecraft

What can Al do today?

- Game playing:
 - IBM's Deep Blue became 1st computer to defeat world champion in a chess match

What can AI do today?

- Autonomous control:
 - ALVINN computer vision system was trained to steer a car and keep it following in a lane; used to drive the CMU NavLab minivan across U.S. (98% of the time)

What can AI do today?

- Diagnosis:
 - Medical diagnosis programs based on probabilistic analysis have been able to perform at the level of an expert physician in several areas of medicine

What can AI do today? (con't.)

• Logistics Planning:

 U.S. military deployed a Dynamic Analysis and Replanning Tool (DART) in 1991, for automated logistics planning and scheduling, generating plans in hours that previously would have taken weeks

What can Al do today? (con't.)

- Robotics:
 - Many surgeons now use robotic devices in surgery (e.g., da Vinci robot)

What can AI do today? (con't.)

- Language understanding and problem solving:
 - PROVERB (1999) is a computer program that can solve crossword puzzles better than most humans

State of the art

"Thought Discussion" for next class:

Which of the following can currently be done autonomously (by intelligent machine or agent)?

- Play a decent game of table tennis
- Drive along a curving mountain road
- Drive in the center of Cairo
- Buy a week's worth of groceries at Kroger
- Buy a week's worth of groceries on the web
- Play a decent game of bridge
- Discover and prove a new mathematical theorem
- Write an intentionally funny story
- Give a competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time
- Perform a complex surgical operation

Your assignment for next time: Research these topics for discussion! What are the difficulties? When do you predict they will be overcome?

Intelligent Agents

• Outline:

- Agents and environments
- Rationality
- -PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents and environments

- Agents include humans, robots, softbots, thermostats, etc.
- The agent function maps from percept histories to actions

$$f: P^* \to A$$

• The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

- Percepts: location and contents, e.g., [A, Dirty]
- Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck

function REFLEX-VACUUM-AGENT([location, status]) returns an action
if status == Dirty then return Suck
else if location == A then return Right
else if location == B then return Left

What is the correct function?

Can it be implemented in a small agent program?

Rationality

- Fixed performance measure evaluates the environment sequence
 - Most dirt cleaned up in time *T*?
 - One point per square cleaned up in time *T*?
 - One point per clean square per time step, minus one per move?
 - Penalize for > *k* dirty squares?
- A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date and its prior knowledge
- Rational ≠ omniscient
- Rational ≠ clairvoyant
- Rational ≠ successful
- Rational \Rightarrow exploration, learning, autonomy

Next time...

- Agent types
- And remember "Thought Discussion" for next time: State of the Art in AI – what currently can, and can't, be done.