Inference in Bayesian networks

Chapter 14.4-5
\square
\diamond Exact inference by enumeration
\diamond Exact inference by variable elimination
\diamond Approximate inference by stochastic simulation
\diamond Approximate inference by Markov chain Monte Carlo

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$ e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=$ on, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \sum_{e} \Sigma_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Enumeration algorithm

```
function Enumeration- }\operatorname{Ask}(X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
            e, observed values for variables E
            bn, a Bayesian network with variables {X}\cup\mathbf{E}\cup\mathbf{Y}
    Q}(X)\leftarrow\mathrm{ a distribution over }X\mathrm{ , initially empty
    for each value }\mp@subsup{x}{i}{}\mathrm{ of }X\mathrm{ do
        extend e with value }\mp@subsup{x}{i}{}\mathrm{ for }
        Q (xi)\leftarrow Enumerate-AlL(Vars[bn], e)
    return Normalize(Q (X))
```

function Enumerate-AlL(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow \operatorname{Finst}(v a r s)$
if Y has value y in \mathbf{e}
then return $P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), e)
else return $\Sigma_{y} P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), $\left.\mathbf{e}_{y}\right)$
where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Evaluation tree

But, enumeration is inefficient; computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation. (This is a form of dynamic programming, working from the bottom up.)

$$
\begin{aligned}
\mathbf{P}(B \mid j, & m) \\
& =\alpha \underbrace{\mathbf{P}(B)}_{B} \Sigma_{e} \underbrace{P(e)}_{E} \Sigma_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M} \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \Sigma_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) f_{\bar{A} J M}(b, e)(\text { sum out } A) \\
& =\alpha \mathbf{P}(B) f_{\bar{E} \bar{A} J M}(b)(\text { sum out } E) \\
& =\alpha f_{B}(b) \times f_{\bar{E} \bar{A} J M}(b)
\end{aligned}
$$

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors
$\Sigma_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \Sigma_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$
assuming f_{1}, \ldots, f_{i} do not depend on X
Example:

$$
\begin{aligned}
f_{\bar{A} J M} & (B, E)=\sum_{a} f_{A}(a, B, E) \times f_{J}(a) \times f_{M}(a) \\
& =f_{A}(a, B, E) \times f_{J}(a) \times f_{M}(a) \\
& +f_{A}(\neg a, B, E) \times f_{J}(\neg a) \times f_{M}(\neg a)
\end{aligned}
$$

Pointwise product of factors f_{1} and f_{2} :

$$
\begin{aligned}
& \quad f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \text { E.g., } f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)
\end{aligned}
$$

Variable elimination algorithm

```
function Elimination-Ask( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
            e, evidence specified as an event
            bn, a belief network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors }\leftarrow[]; vars \leftarrow REVERSE(VARS[bn]
    for each var in vars do
        factors }\leftarrow[MAKE-FACTOR(var, e)|factors
        if var is a hidden variable then factors }\leftarrow\operatorname{Sum-OUT(var, factors)
    return Normalize(Pointwise-Product(factors))
```


Irrelevant variables

Consider the query $P($ JohnCalls \mid Burglary $=$ true $)$

$$
P(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically $1 ; M$ is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in$ Ancestors $(\{X\} \cup \mathbb{E})$
Here, $X=$ JohnCalls, $\mathrm{E}=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-hard

1. $A \vee B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

```
function Prior-SAMPLE \((b n)\) returns an event sampled from \(b n\)
    inputs: \(b n\), a belief network specifying joint distribution \(\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)\)
    \(\mathrm{x} \leftarrow\) an event with \(n\) elements
    for \(i=1\) to \(n\) do
        \(x_{i} \leftarrow\) a random sample from \(\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)\)
            given the values of \(\operatorname{Parents}\left(X_{i}\right)\) in \(\mathbf{x}\)
    return x
```

Must sample each variable in turn, in topological order.

The probability distribution from which the value is sampled is conditioned on the values already assigned to the variable's parents.

Example

Example

Example

Example

Example

Example

Example

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}
Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent
Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with e
function Rejection-SAmpling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: \mathbf{N}, a vector of counts over X, initially zero

$$
\begin{aligned}
& \text { for } j=1 \text { to } N \text { do } \\
& \quad \mathbf{x} \leftarrow \text { Prior-Sample }(b n) \\
& \text { if } \mathbf{x} \text { is consistent with } \mathbf{e} \text { then } \\
& \quad \mathbf{N}[x] \leftarrow \mathbf{N}[x]+1 \text { where } x \text { is the value of } X \text { in } \mathbf{x} \\
& \text { return Normalize }(\mathbf{N}[X])
\end{aligned}
$$

E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples 27 samples have Sprinkler $=$ true

Of these, 8 have Rain=true and 19 have Rain=false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormalizE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{aligned}
& \hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& \left.\quad=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \quad \text { (normalized by } N_{P S}(\mathbf{e})\right) \\
& \quad \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PRIORSAMPLE) } \\
& \quad=\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{aligned}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e $)$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function Likelihood-Weighting \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathbf{W}\), a vector of weighted counts over \(X\), initially zero
    for \(j=1\) to \(N\) do
        \(\mathbf{x}, w \leftarrow\) Weighted-Sample \((b n)\)
        \(\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathbf{W}[X]\) )
```

function Weighted-SAMPLE($b n, \mathbf{e}$) returns an event and a weight
$\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in e
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
return x, w

Likelihood weighting example

$w=1.0$

Likelihood weighting example

$w=1.0$

Likelihood weighting example

$w=1.0$

Likelihood weighting example

$w=1.0 \times 0.1$

Likelihood weighting example

$w=1.0 \times 0.1$

Likelihood weighting example

$w=1.0 \times 0.1$

Likelihood weighting example

$w=1.0 \times 0.1 \times 0.99=0.099$. Weight is low because the event describes a cloudy day, which makes the sprinkler unlikely to be on.

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{z}, \mathbf{e}) \text { (by standard global semantics of network) }
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

"State" of network = current assignment to all variables.
Generate next state by sampling one non-evidence variable given its Markov blanket; Sample each variable in turn, keeping evidence fixed

```
function \(\operatorname{MCMC}-\operatorname{Ask}(X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathbf{N}[X]\), a vector of counts over \(X\), initially zero
                    \(\mathbf{Z}\), the nonevidence variables in \(b n\)
                            \(\mathbf{x}\), the current state of the network, initially copied from e
    initialize x with random values for the variables in Z
    for \(j=1\) to \(N\) do
        for each \(Z_{i}\) in Z do
            sample the value of \(Z_{i}\) in \(\mathbf{x}\) from \(\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)\)
            given the values of \(M B\left(Z_{i}\right)\) in \(\mathbf{x}\)
            \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathbf{N}[X])\)
```

Can also choose a variable to sample at random each time
\square
Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

The Markov chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain=true, 69 have Rain = false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=\operatorname{Normalize}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \text { parents }\left(X_{i}\right)\right) \Pi_{Z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \text { parents }\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
$P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

