
Statistical learning

Chapter 20 (plus 18.1-2)

Chapter 20 (plus 18.1-2) 1

Outline

♦ Forms of Learning

♦ Bayesian learning

♦ Maximum likelihood and linear regression

♦ Expectation Maximization

Chapter 20 (plus 18.1-2) 2

Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Chapter 20 (plus 18.1-2) 3

Learning agents

Performance standard

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

Chapter 20 (plus 18.1-2) 4

Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional component is represented
♦ what kind of feedback is available

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Chapter 20 (plus 18.1-2) 5

Types of learning

Supervised learning: learn a function from examples labeled with the correct
answers (requires “teacher”)

Unsupervised learning: learn patterns in the input when no specific output
(or answers) are given (no “teacher”)

Reinforcement learning: learn from occasional rewards (harder, but does not
require a teacher)

Chapter 20 (plus 18.1-2) 6

Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)

f is the target function

An example is a pair x, f(x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes a deterministic, observable “environment”
– Assumes examples are given
– Assumes that the agent wants to learn f—why?)

Chapter 20 (plus 18.1-2) 7

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 20 (plus 18.1-2) 8

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 20 (plus 18.1-2) 9

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 20 (plus 18.1-2) 10

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 20 (plus 18.1-2) 11

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 20 (plus 18.1-2) 12

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity

Chapter 20 13

Moving on to: Statistical learning

Chapter 20

Chapter 20 14

Full Bayesian learning

(This is a form of unsupervised learning.)

View learning as Bayesian updating of probability distribution
over the hypothesis space

Prior P(H), data evidence given as d = d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:

P (hi|d) = αP (d|hi)P (hi)

Predictions use a likelihood-weighted average over the hypotheses:

P(X|d) = Σi P(X|d, hi)P (hi|d) = Σi P(X|hi)P (hi|d)

Assume observations are independently and identically distributed (i.e., i.i.d):

P(d|hi) = Πj P (dj|hi)

Chapter 20 15

Example

Suppose there are five kinds of bags of candies:
10% are h1: 100% lime candies
20% are h2: 75% lime candies + 25% cherry candies
40% are h3: 50% lime candies + 50% cherry candies
20% are h4: 25% lime candies + 75% cherry candies
10% are h5: 100% cherry candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavor will the next candy be?

Chapter 20 16

Posterior probability of hypotheses

For example, since here we have 10 cherry candies in a row, the likelihood
that this was generated by a given hypothesis is:

P (d|h1) = 010 = 0

P (d|h2) = 0.2510 = 0.954× 10−7

P (d|h3) = 0.510 = 0.001

P (d|h4) = 0.7510 = 0.0563

P (d|h5) = 110 = 1

Then, we take into account the prior probabilities of each hypothesis.

Assume that the prior distribution over h1, ..., h5 (i.e., P (hi)) is given by:
< 0.1, 0.2, 0.4, 0.2, 0.1 >

Computing P (d|hi)P (hi) and normalizing, we have ...

Chapter 20 17

Posterior probability of hypotheses

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P(
h_

i|e
_1

...
e_

t)

Number of samples

Posteriors given data generated from h_5

P(h_1|E)
P(h_2|E)
P(h_3|E)
P(h_4|E)
P(h_5|E)

Chapter 20 18

Prediction probability

Let’s say we now want to know the probability that the next candy is lime,
given that we’ve seen 10 limes so far. Here our unknown quantity, X , is
“next candy is lime”.

As we’ve already seen, we calculate predictions using a likelihood-weighted
average over the hypotheses:

P(X|d) = Σi P(X|hi)P (hi|d)

After 10 lime candies, we have:

P(dN+1 = lime|d1...dN = lime)

= Σi P(dN+1 = lime|hi)P(hi|d1...dN = lime)

Chapter 20 19

Prediction probability

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
(n

ex
t c

an
dy

 is
 li

m
e

| d
)

Number of samples in d

Chapter 20 20

MAP approximation for predictions

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing P (hi|d)

Remember: P (hi|d) = αP (d|hi)P (hi)

So, maximize P (d|hi)P (hi) or, equivalently,
minimize − log P (d|hi)− log P (hi)

[By taking logarithms, we reduce the product to a sum over the data, which
is usually easier to optimize.]

Log terms can be viewed as:
bits to encode data given hypothesis + bits to encode hypothesis

This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P (d|hi) is 1 if consistent, 0 otherwise
⇒ MAP = simplest consistent hypothesis

Chapter 20 21

ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose hML maximizing P (d|hi)

I.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method

Chapter 20 22

Summarizing these 3 types of learning

Bayesian learning:

Calculate P (hi|d) = αP (d|hi)P (hi).

MAP (Maximum a posteriori) learning:

Choose hMAP that maximizes P (d|hi)P (hi) or, equivalently, minimizes
− log P (d|hi)− log P (hi).

(This avoids summing over all hypotheses.)

ML (Maximum likelihood) learning:

Choose hML maximizing P (d|hi).

(This assumes uniform prior for hypotheses, which is reasonable for large
data sets.)

Chapter 20 23

Maximum Likelihood Parameter Learning

Objective: Find numerical parameters for a probability model whose structure
is fixed.

Example: A bag of candy

• Unknown fraction of lime/cherry

• Parameter = θ = proportion of cherry candies

• Hypothesis = hθ = proportion of cherry candies

• If assume all proportions are equally likely a priori, then ML approach is
feasible

• If model as Bayesian network, just need one random variable, Flavor

Chapter 20 24

Problem Modeled as a Bayesian Network

Chapter 20 25

Example: Bags of Candy

Suppose unwrap N candies, of which c are cherries, and l are limes.

Remember, we have likelihood of data (assuming i.i.d.) is:

P(d|hi) = Πj P (dj|hi)

So, P(d|hθ) = ΠN
j=1 P (dj|hθ) = θc × (1− θ)l

The maximum-likelihood hypothesis is given by the value of θ that maximizes
this expression. This is equivalent to maximizing the log likelihood:

L(d|hθ) = log P (d|hθ) = ΣN
j=1P (dj|hθ) = c log θ + l log(1− θ)

To find maximum-likelihood value of θ, differentiate L wrt θ, and set result
to zero:

dL(d|hθ)

dθ
=

c

θ
− l

1− θ
= 0⇒ θ =

c

c + l
=

c

N

Thus, hML says proportion of cherries in bag = proportion observed so far.

Chapter 20 26

Standard Method for ML Parameter Learning

1. Write down an expression for the likelihood of the data as a function of
the parameter(s).

2. Write down the derivative of the log likelihood with respect to each pa-
rameter.

3. Find the parameter values such that the derivatives are zero.

Problem: When data set is small enough so that some events have not yet
been observed, the maximum likelihood hypothesis assigns zero probability
to those events.

Possible solutions: initialize counts for each event to 1 instead of 0.

Chapter 20 27

Another Example: Add Wrappers

Red and green wrappers assigned probabilistically, depending on flavor.

Now have 3 parameters: θ, θ1, θ2.

Corresponding Bayesian network:

Chapter 20 28

Another Example: Add Wrappers

Remember standard semantics of Bayesian Nets... (Note that here we’re
showing the parameters as given info, just to make it explicit; normally, the
parameters are implicitly assumed as given info.)

P (Flavor = cherry,Wrapper = green|hθ, hθ1, hθ2)

Chapter 20 29

Another Example: Add Wrappers

Remember standard semantics of Bayesian Nets... (Note that here we’re
showing the parameters as given info, just to make it explicit; normally, the
parameters are implicitly assumed as given info.)

P (Flavor = cherry,Wrapper = green|hθ, hθ1, hθ2)

= P (Flavor = cherry|hθ, hθ1, hθ2)
×P (Wrapper = green|Flavor = cherry, hθ, hθ1, hθ2)

Chapter 20 30

Another Example: Add Wrappers

Remember standard semantics of Bayesian Nets... (Note that here we’re
showing the parameters as given info, just to make it explicit; normally, the
parameters are implicitly assumed as given info.)

P (Flavor = cherry,Wrapper = green|hθ, hθ1, hθ2)

= P (Flavor = cherry|hθ, hθ1, hθ2)
×P (Wrapper = green|Flavor = cherry, hθ, hθ1, hθ2)

= θ · (1− θ1)

Chapter 20 31

Another Example: Add Wrappers

Now, unwrap N candies, of which c are cherry and l are lines.

rc of cherries have red wrappers;
gc of cherries have green wrappers;
rl of limes have red wrappers;
gl of limes have green wrappers.

Likelihood of data:

P (d|hθ, hθ1, hθ2) = θc(1− θ)l · θrc
1 (1− θ1)

gc · θrl
2 (1− θ2)

gl

Taking logs gives us:

L = [c log θ + l log(1− θ)] + [rc log θ1 + gc log(1− θ1)]
+[rl log θ2 + gl log(1− θ2)]

Chapter 20 32

Another Example: Add Wrappers

L = [c log θ + l log(1− θ)] + [rc log θ1 + gc log(1− θ1)]
+[rl log θ2 + gl log(1− θ2)]

Take derivatives wrt each parameter and set to 0 gives us:

∂L

∂θ
=

c

θ
− l

1− θ
= 0⇒ θ =

c

c + l

∂L

∂θ1
=

rc

θ1
− gc

1− θ1
= 0⇒ θ1 =

rc

rc + gc

∂L

∂θ2
=

rl

θ2
− gl

1− θ2
= 0⇒ θ2 =

rl

rl + gl

Important point 1: with complete data, ML parameter learning for a Bayesian
network decomposes into separate learning problems, one for each parameter.

Important point 2: parameter values for a variable, given its parents, are the
observed freq. of the variable values for each setting of the parent values.

Chapter 20 33

Naive Bayes Models

Naive Bayes Model = Most common Bayesian network model

Representation: “Class” variable (C) is the root, and “attribute” variables
(Xi) are the leaves.

Example of Naive Bayes Model with one attribute:

“Naive”⇒ assumes attributes are conditionally independent, given the class.

Objective: after learning, predict “Class” of new examples

P(C|x1, ...xn) = αP(C)ΠiP(xi|C)

Chapter 20 34

Naive Bayes Models (con’t)

Nice characteristics of Naive Bayes learning:

•Works surprisingly well in wide range of applications

• Scales well to very large problems (n Boolean attributes ⇒ 2n + 1 pa-
rameters)

• No search is required to find hML

• No difficulty with noisy data

• Can give probabilistic predictions when appropriate

Chapter 20 35

Naive Bayes Classifier Example

We want to build a classifier that can classify days according to whether
someone will play tennis. How do we start?

Chapter 20 36

Naive Bayes Classifier Example

Day Outlook Temp Humidty Wind Play?
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Chapter 20 37

Naive Bayes Classifier Example

Now, we have a new instance we want to classify:
(Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong)

Need to predict ’Yes’ or ’No’.

What now?

Chapter 20 38

Naive Bayes Classifier Example

Now, we have a new instance we want to classify:
(Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong)

Need to predict ’Yes’ or ’No’.

What now?

Let v be either ’Yes’ or ’No’.

Then,

v = argmaxvj∈[Y es,No]P (vj)
∏

i
P (xi|vj)

= argmaxvj∈[Y es,No]P (vj)× P (Outlook=Sunny|vj)× P (Temp=Cool|vj)

×P (Humidity=High|vj)× P (Wind=Strong|vj)

Chapter 20 39

Naive Bayes Classifier Example

P (Play?=Yes) =

P (Play?=No) =

P (Outlook=Sunny|Play?=Yes) =

P (Outlook=Sunny|Play?=No) =

P (Temp=Cool|Play?=Yes) =

P (Temp=Cool|Play?=No) =

P (Humidity=High|Play?=Yes) =

P (Humidity=High|Play?=No) =

P (Wind=Strong|Play?=Yes) =

P (Wind=Strong|Play?=No) =

Chapter 20 40

Naive Bayes Classifier Example

P (Play?=Yes) = 9/14 = 0.64

P (Play?=No) = 5/14 = 0.36

P (Outlook=Sunny|Play?=Yes) = 2/9 = 0.22

P (Outlook=Sunny|Play?=No) = 3/5 = 0.60

P (Temp=Cool|Play?=Yes) = 3/9 = 0.33

P (Temp=Cool|Play?=No) = 1/5 = 0.20

P (Humidity=High|Play?=Yes) = 3/9 = 0.33

P (Humidity=High|Play?=No) = 4/5 = 0.80

P (Wind=Strong|Play?=Yes) = 3/9 = 0.33

P (Wind=Strong|Play?=No) = 3/5 = 0.60

Chapter 20 41

Naive Bayes Classifier Example

And, what is decision? Yes or No?

Chapter 20 42

Naive Bayes Classifier Example

And, what is decision? Yes or No?

P (Yes)P (Sunny|Yes)P (Cool|Yes)P (High|Yes)P (Strong|Yes)

= 0.64× 0.22× 0.33× 0.33× 0.33 = 0.0051

P (No)P (Sunny|No)P (Cool|No)P (High|No)P (Strong|No)

= 0.36× 0.60× 0.20× 0.80× 0.60 = 0.0207

Conditional probability that value is “No”:

0.0207

0.0207 + 0.0051
= 0.80

No tennis today.

Chapter 20 43

ML Parameter Learning: Continuous Models

How to learn continuous models from data? Very similar to discrete case.

Data: pairs (x1, y1), . . . , (xN , yN)

Hypotheses: straight lines y = ax + b with Gaussian noise
Want to choose parameters θ = (a, b) to maximize likelihood of data (this is
linear regression)

x

f(x)

Chapter 20 44

Recall: Method for ML Parm Learning

1. Write down an expression for the likelihood of the data as a function of
the parameter(s).

2. Write down the derivative of the log likelihood with respect to each pa-
rameter.

3. Find the parameter values such that the derivitives are zero.

Chapter 20 45

ML Parameter Learning: Cont. Models (con’t.)

Data assumed i.i.d. (independently and identically distributed)
⇒ likelihood P (d|hi) = Πj P (dj|hi)

Maximizing likelihood P (d|hi) ⇔ maximizing log likelihood

L = log P (d|hi) = log Πj P (dj|hi) = Σj log P (dj|hi)

For a continuous hypothesis space, set ∂L/∂θ = 0 and solve for θ

For Gaussian noise, P (dj|hi) = α exp
(

−(yj − (axj + b))2/2σ2
)

, so

L = Σj log P (dj|hi) = −α′Σj (yj − (axj + b))2

so maximizing L = minimizing sum of squared errors

Note: This is just standard linear regression! That is, linear regression is
the same thing as maximum-likelihood (ML) learning (as long as data are
generated with Gaussian noise of fixed variance).

Chapter 20 46

ML Parameter Learning: Cont. Models (con’t.)

To find the maximum, set derivatives to zero:

∂L

∂a
= −α′Σj 2(yj − (axj + b)) · (−xj) = 0

∂L

∂b
= −α′Σj 2(yj − (axj + b)) · (−1) = 0

Solve for parameters a and b. Solutions are:

a =
Σj xjΣj yj −NΣj xjyj

(

Σj xj

)2 −NΣj x2
j

; b =
(

Σj yj − aΣj xj

)

/N

Chapter 20 47

ML learning with Continuous Models

Let’s assume we have m data points (xj, yj), where yj’s generated from xj’s
according to the following linear Gaussian model:

P (y|x) =
1√
2πσ

e
−(y−(θ1x+θ2))2

2σ2

Find the values of θ1, θ2, and σ that maximize the conditional log likelihood
of the data.

Chapter 20 48

ML learning with Continuous Models

Let’s assume we have m data points (xj, yj), where yj’s generated from xj’s
according to the following linear Gaussian model:

P (y|x) =
1√
2πσ

e
−(y−(θ1x+θ2))2

2σ2

Find the values of θ1, θ2, and σ that maximize the conditional log likelihood
of the data.

Likelihood of this data set is:
m
∏

j=1
P (yj|xj)

Then, compute log likelihood, take derivative, set equal to 0, and solve for
the 3 parameters.

Chapter 20 49

Learning Bayes Net structures

What if structure of Bayes net is not known?

Techniques for learning are not well-established.

General idea: search for good model, then measure its quality.

Searching for a good model

Option 1: Start with no links, and add parents for each node, fitting the
parameters, and then measuring the accuracy of the result.

Option 2: Guess a structure, then use hill-climbing, simulated annealing,
etc., to improve, re-tuning the parameters after each step.

Chapter 20 50

Learning Bayes Net structures (con’t.)

How to measure quality of structure?

Option 1: Test whether conditional independence assertions implicit in the
structure are actually satisfied in the data.

Option 2: Measure the degree to which model explains the data (probabilis-
tically).

Problem: fully connected network will have high correlation to data. So, need
to penalize for complexity. Usually, use MCMC for sampling over structures.

Chapter 20 51

Learning with Hidden Variables

Hidden (or latent) variables: not observable in data

Hidden variables can dramatically reduce number of parameters needed to
specify a Bayesian network ⇒ dramatically reduce amount of data needed
to learn parameters

Smoking Diet Exercise

Symptom 1 Symptom 2 Symptom 3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom 1 Symptom 2 Symptom 3

2 2 2

54

6 6 6

2 2 2

54 162 486

Chapter 20 52

Expectation-Maximization (EM) Algorithm

Solves problem in general way

Applicable to huge range of learning problems

2-step process in each iteration (i.e., repeat until convergence):

• E-step (i.e., Expectation step): compute expected values of hidden vari-
ables (below, it’s the summation)

•M-step (i.e., Maximization step): find new values of parameters that
maximize log likelihood of data, given expected values of hidden variables

General form of EM algorithm:

x: all observed values in examples
Z: all hidden variables for all examples
θ: all parameters for probability model

θ(i+1) = argmaxθΣzP (Z = z|x, θ(i))L(x,Z = z|θ)

Chapter 20 53

Using EM Algorithm

Starting from the general form, it is possible to derive an EM algorithm
for a specific application once the appropriate hidden variables have been
identified.

Examples:

♦ Learning mixtures of Gaussians (unsupervised clustering)

♦ Learning Bayesian networks with hidden variables

♦ Learning hidden Markov models

Chapter 20 54

EM Ex. 1: Unsupervised Clustering

Unsupervised clustering: discerning multiple categories in a collection of
objects

Mixtures of Gaussians: combination of Gaussian “component” distributions

Example of Gaussian mixture model with 2 components:

Chapter 20 55

Unsupervised Clustering (con’t.)

Data are generated from mixture distribution P .

Distribution P has k components, each of which is itself a distribution

Let C = component, with values 1, ..., k.

Let x = values of attributes of data point.

Then, mixture distribution is:

P (x) = Σk
i=1P (C = i)P (x|C = i)

Parameters of a mixture of Gaussians:
wi = P (C = i): the weight of each component
µi: mean of each component
Σi: the covariance of each component

Unsupervised clustering objective: learn mixture model from raw data.

Chapter 20 56

Unsupervised Clustering Challenge

If we knew which component generated each data point, then it is easy to
recover the component Gaussians – just select all the data points from a
given component and apply ML parameter learning (like eqn. (20.4)).

Or, if we know the parameters of each component, we could probabilistically
assign each data point to a component.

Problem:

Chapter 20 57

Unsupervised Clustering Challenge

If we knew which component generated each data point, then it is easy to
recover the component Gaussians – just select all the data points from a
given component and apply ML parameter learning (like eqn. (20.4)).

Or, if we know the parameters of each component, we could probabilistically
assign each data point to a component.

Problem: We don’t know either.

Chapter 20 58

Unsupervised Clustering (con’t.)

Approach:

• Pretend we know the parameters of the model, and infer the probability
that each data point belongs to each component

• Then, retrofit the components to the data, where each component is
fitted to entire data set with each point weighted by the probability that
it belongs to that component.

Iterate until convergence.

What is “hidden” in unsupervised clustering?

Chapter 20 59

Unsupervised Clustering (con’t.)

Approach:

• Pretend we know the parameters of the model, and infer the probability
that each data point belongs to each component

• Then, retrofit the components to the data, where each component is
fitted to entire data set with each point weighted by the probability that
it belongs to that component.

Iterate until convergence.

What is “hidden” in unsupervised clustering?

We don’t know which component each data set belongs to.

Chapter 20 60

Unsupervised Clustering (con’t.)

Two-step algorithm:

1. E-step: Compute pij = P (C = i|xj) (i.e., probability that xj was gener-
ated by component i)

pij = αP (xj|C = i)P (C = i)

2. M-step: Compute new mean, covariance, and component weights:

µi ← Σjpijxj/pi

Σi ← Σjpijxjx
⊤
j /pi

wi ← pi

Iterate until converge to a solution.

Chapter 20 61

Some potential problems

♦ One Gaussian component could shrink to cover just a single data point;
then, variance goes to 0 and its likelihood goes to infinity!

♦ Two components can merge, acquiring identical means and variances,
and sharing data points.

Possible solutions:

♦ Place priors on model parameters and apply the MAP version of EM.

♦ Restart a component with new random parameters if it gets too small or
too close to another component.

♦ Initialize the parameters with reasonable values.

Chapter 20 62

EM Ex. 2: Bayesian NW with Hidden Vars

Two bags of candies mixed together.

Three features of candy: Flavor, Wrapper, Hole.

Distribution of candies in each bag described by Naive Bayes model (i.e.,
features are independent, given the bag, but CPT depends on bag)

(a) (b)

WrapperFlavor

Bag

P(1)Bag=

Bag

1

2

1F

2F

P(F=cherry | B)
C

XHoles

Chapter 20 63

Learning Bayesian NW with HV, con’t.

Parameters:

θ: prior probability that candy comes from Bag 1

θF1, θF2: probabilities that flavor is cherry, given it comes from Bag 1 and
Bag 2, respectively

θW1, θW2: probabilities that wrapper is red, given it comes from Bag 1 and
Bag 2, respectively

θH1, θH2: probabilities that candy has hole, given it comes from Bag 1 and
Bag 2, respectively

Hidden variable: the bag

Objective: Learn the descriptions of the two bags by observing candies from
mixture

Chapter 20 64

Learning Bayesian NW with HV, con’t.

Let’s step through iteration of EM.

Data: 1000 samples from model whose true parameters are:
θ = 0.5
θF1 = θW1 = θH1 = 0.8
θF2 = θW2 = θH2 = 0.3

Data counts:

W=red W=green
H=1 H=0 H=1 H=0

F = cherry 273 93 104 90
F = lime 79 100 94 167

Chapter 20 65

Learning Bayesian NW with HV, con’t.

First, initialize parameters:
θ(0) = 0.6
θ

(0)
F1 = θ

(0)
W1 = θ

(0)
H1 = 0.6

θ
(0)
F2 = θ

(0)
W2 = θ

(0)
H2 = 0.4

Now, work on θ.
Because the bag is a hidden variable, we estimate this from expected counts:
N̂(Bag = 1) = sum, over all candies, of probability that candy came from
bag 1:

θ(1) = N̂(Bag = 1)/N

= ΣN
j=1P (B = 1|fj, wj, hj)/N

θ(1) =
1

N
ΣN

j=1

P (fj|B = 1)P (wj|B = 1)P (hj|B = 1)P (B = 1)

ΣiP (fj|B = i)P (wj|B = i)P (hj|B = i)P (B = i)

Chapter 20 66

Learning Bayesian NW with HV, con’t.

Apply to the 273 red-wrapped cherry candies with holes:

273

1000
· θ

(0)
F1θ

(0)
W1θ

(0)
H1θ

(0)

θ
(0)
F1θ

(0)
W1θ

(0)
H1θ(0) + θ

(0)
F2θ

(0)
W2θ

(0)
H2(1− θ(0))

≈ 0.22797

Applying to remaining 7 kinds of candy, we get θ(1) = 0.6124.

Now, look at θF1. Expected count of cherry candies from Bag 1 is:

Σj:Flavorj=cherryP (Bag = 1|Flavorj = cherry, wrapperj, holesj)

Calculate these probabilities (using inference alg. for Bayes net):

θ(1) = 0.6124
θ

(1)
F1 = 0.6684 θ

(1)
W1 = 0.6483 θ

(1)
H1 = 0.6558

θ
(1)
F2 = 0.3887 θ

(1)
W2 = 0.3817 θ

(1)
H2 = 0.3827

Chapter 20 67

Main Lesson from Bayesian NW Learning

Main points:

• Parameter updates for Bayesian network learning with hidden variables
are directly available from the results of inference on each example (so,
no extra computations specific to learning).

• Only local posteriori probabilities are needed for each parameter.

In general, for learning conditional probability parameters for each variable
Xi, given its parents (i.e., θijk ← P (Xi = xij, Pai = paik)), the update is
given by normalized expected counts:

θijk ← N̂P (Xi = xij, Pai = paik)/N̂(Pai = paik)

Expected counts are obtained by summing over the examples and comput-
ing the probabilities P (Xi = xij, Pai = paik) using a Bayes net inference
algorithm.

Chapter 20 68

EM Ex. 3: Learning HMMs

In Hidden Markov Models, hidden variables are the i→ j transitions.

Each data point: finite observation sequence

Objective: learn transition probabilities from sequences

Similar to learning Bayesian nets with hidden variables.

Complication: In Bayes nets, each parameter is distinct. In HMM, individual
transition probabilities from state i to state j are repeated across time (i.e.,
θijt = θij for all t)

Thus, to estimate transition probability from state i to state j, we calculate
expected proportion of times that the system undergoes transition to state
j when in state i:

θij ← ΣtN̂(Xt+1 = j, Xt=i)/ΣtN̂(Xt=i)

Chapter 20 69

Learning HMMs (con’t.)

Similar to learning Bayesian NWs, here we can compute expected counts by
any HMM inference algorithm.

E.g., the forward-backward algorithm of smoothing (Fig. 15.4) can be used
(modified easily to compute the required probabilities). This algorithm is
also known as Baum-Welch algorithm.

Note: we’re making use of smoothing instead of filtering, since we need
to pay attention to subsequent evidence in estimating the probability that a
particular transition occurred.

The forward-backward (Baum-Welch) algorithm is a particular case of the
generalized EM. It computes maximum likelihood estimate of the parameters
of the HMM given a sequence of outputs.

Chapter 20 70

Summarizing: General EM Algorithm

Expectation Maximization algorithm:

2-step process:

• E-step (i.e., Expectation step): compute expected values of hidden vari-
ables (below, it’s the summation)

•M-step (i.e., Maximization step): find new values of parameters that
maximize log likelihood of data, given expected values of hidden variables

General form of EM algorithm:

x: all observed values in examples
Z: all hidden variables for all examples
θ: all parameters for probability model

θ(i+1) = argmaxθΣzP (Z = z|x, θ(i))L(x,Z = z|θ)

Chapter 20 71

Summary

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

ML for continuous spaces using gradient of log likelihood

Regression with Gaussian noise → minimize sum-of-squared errors

When some variables are hidden, local maximum likelihood solutions can be
found using Expectation Maximization algorithm.

Applications of EM: clustering using mixtures of Gaussians, learning Bayesian
networks, learning hidden Markov models

Chapter 20 72

