Informed search algorithms

Chapter 4, Sections 1-3 (through GAs)

Outline

\diamond Best-first search
$\diamond A^{*}$ search
\diamond Heuristics
\diamond Hill-climbing
\diamond Simulated annealing
\diamond Local (and stochastic) beam search
\diamond Genetic algorithms

Review: Tree search

function TREE-SEARCH (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{InsertAlL}(E x P A N D($ node, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node
Implementation:
fringe is a queue sorted in decreasing order of desirability
Special cases:
greedy search
A* search

Romania with step costs in km

Greedy search

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to the closest goal
E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

\square

Greedy search example

Greedy search example

Properties of greedy search
Complete??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement Space??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$ —keeps all nodes in memory
Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$ —keeps all nodes in memory
Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal
(A* search example
\square

Arad

Timisoara
$447=118+329$

Zerind $449=75+374$

A* search example

| \mathbf{A}^{*} search example |
| :--- | :--- |

A* search example

A* search example

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

$$
\begin{array}{rlr}
f\left(G_{2}\right) & =g\left(G_{2}\right) \quad \text { since } h\left(G_{2}\right)=0 \\
& >g\left(G_{1}\right) \quad \text { since } G_{2} \text { is suboptimal } \\
& \geq f(n) \quad \text { since } h \text { is admissible }
\end{array}
$$

Since $f\left(G_{2}\right)>f(n), \mathrm{A}^{*}$ will never select G_{2} for expansion

Optimality of A^{*} (more useful)

Lemma: A^{*} expands nodes in order of increasing f value*
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Properties of A*
Complete??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time??

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space??

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal??

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f_{i+1} until f_{i} is finished
A* expands all nodes with $f(n)<C^{*}$
A* expands some nodes with $f(n)=C^{*}$
A* expands no nodes with $f(n)>C^{*}$

Proof of lemma: Consistency

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

I.e., $f(n)$ is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1
		1

Start State

	1	2
3	4	5
6	7	8
		1

Goal State

$$
\begin{aligned}
& h_{1}(S)=? ? \\
& \begin{array}{c}
h_{2}(S)=? ?
\end{array}
\end{aligned}
$$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1
		1

Start State

	1	2
3	4	5
6	7	8
		1

Goal State

$$
\begin{aligned}
& h_{1}(S)=? ? ~ \\
& \hline h_{2}(S)=? ? ~ \\
& \underline{h_{2}}=1+2+2+2+3+3+2=18
\end{aligned}
$$

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \text { IDS } \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space $=$ set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem
Start with any complete tour, perform pairwise exchanges

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"
function Hill-Climbing(problem) returns a state that is a local maximum inputs: problem, a problem
local variables: current, a node
neighbor, a node
current \leftarrow Make-Node $($ Initial-State $[$ problem] $)$
loop do
neighbor \leftarrow a highest-valued successor of current
if Value[neighbor] < Value[current] then return State[current]
current \leftarrow neighbor
end

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

In continuous spaces, problems w/ choosing step size, slow convergence

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SimULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
                    next, a node
                            T, a "temperature" controlling prob. of downward steps
    current \leftarrow Make-Node(Initial-STate[problem])
    for }t\leftarrow1\mathrm{ to }\infty\mathrm{ do
        T
        if T=0 then return current
        next \leftarrowa randomly selected successor of current
        \DeltaE\leftarrowVALUE[next] - Value[current]
        if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
        else current \leftarrow next only with probability e}\mp@subsup{e}{}{\DeltaE/T
```


Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

T decreased slowly enough \Longrightarrow always reach best state
Is this necessarily an interesting guarantee??
Devised by Metropolis et al., 1953, for physical process modelling
Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Keeps track of k states, rather than just one.
Start with k randomly generated states.
At each step, all successors of all k states are generated.
If any is the goal, halt.
Otherwise, select k best successors from the complete list.
NOTE: Useful information is shared among the k parallel threads
\diamond Variant: Stochastic beam search - choose k successors at random, with probability of choosing a successor being an increasing function of its value

Genetic algorithms (GA)

A GA is a variant of stochastic beam search
Successors are generated by combining 2 parent states
Begin with population of k randomly generated states
Rate individuals in population based on fitness function
Choose two members (i.e., parents) for reproduction, based on fitness function

Crossover point randomly chose between 2 parents and swap
Mutate at randomly chosen points of individuals, with small probability
Create new population based on some function of fitness
Repeat for some number of generations

Thought Discussion for next time
\diamond (Read pages 947-949 of our text)
\diamond "Weak AI: Can machines act intelligently?"
\diamond Specifically: Consider argument from disability
i.e., "A machine can never do X "

