Adversarial Search

CHAPTER 6

Outline

- ♦ Perfect play
- Resource limits
- $\Diamond \quad \alpha \text{--}\beta \text{ pruning}$
- ♦ Games of chance
- ♦ Games of imperfect information

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)

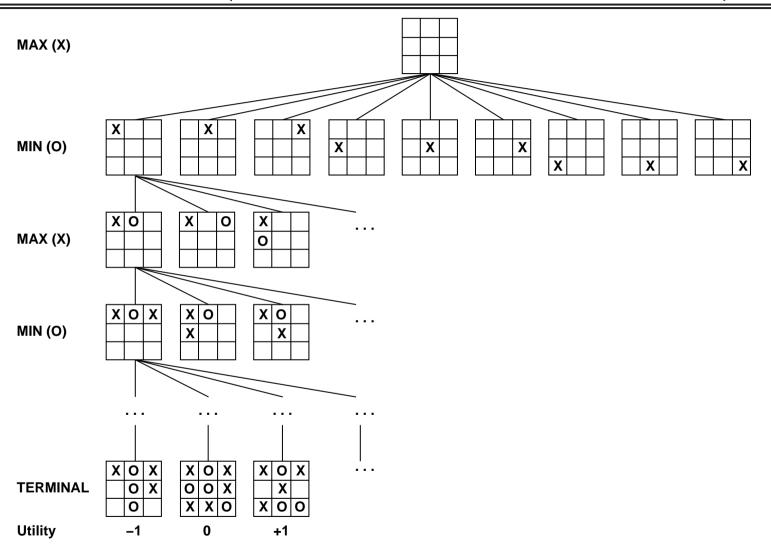
Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers, go, othello	backgammon monopoly
	bridge, poker, scrabble nuclear war

Game tree (2-player, deterministic, turns)

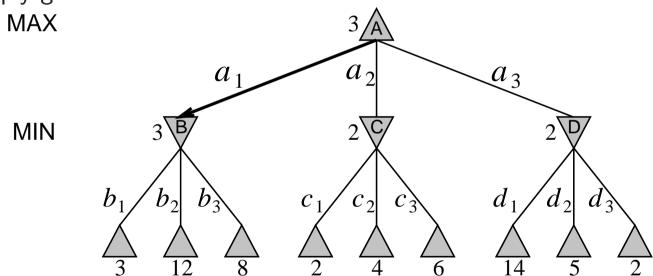


Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play



Minimax algorithm

```
function MINIMAX-DECISION(state, game) returns an action

action, state ← the a, s in Successors(state)
such that MINIMAX-VALUE(s, game) is maximized
return action

function MINIMAX-VALUE(state, game) returns a utility value

if Terminal-Test(state) then
return Utility(state)
else if Max is to move in state then
return the highest MINIMAX-VALUE of Successors(state)
else
return the lowest MINIMAX-VALUE of Successors(state)
```

Complete??

Complete?? Yes, if tree is finite (chess has specific rules for this). A finite strategy can exist even in an infinite tree!

Optimal??

Complete?? Yes, if tree is finite (chess has specific rules for this).

A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this).

A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this).

A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

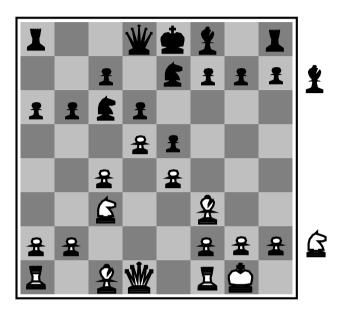
Resource limits

Suppose we have 100 seconds, explore 10^4 nodes/second $\Rightarrow 10^6$ nodes per move

Standard approach:

- cutoff test
 e.g., depth limit (perhaps add quiescence search)
- evaluation function
 - = estimated desirability of position

Evaluation functions



Black to move

White slightly better

White to move

Black winning

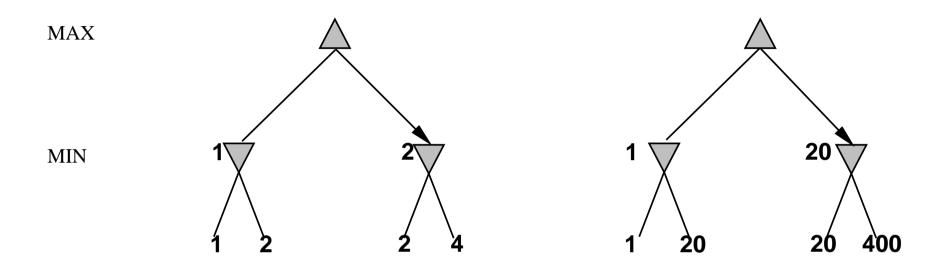
For chess, typically *linear* weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Digression: Exact values don't matter



Behavior is preserved under any $\emph{monotonic}$ transformation of Eval

Only the order matters:

payoff in deterministic games acts as an *ordinal utility* function (i.e., *ranking* of states, rather than meaningful numeric values)

Cutting off search

MINIMAXCUTOFF is identical to MINIMAXVALUE except

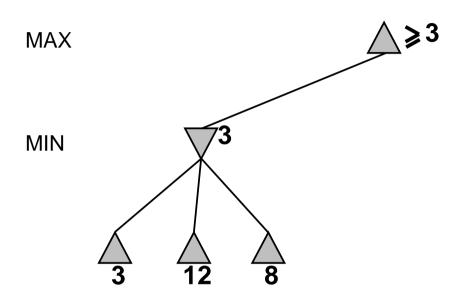
- 1. TERMINAL? is replaced by CUTOFF?
- 2. Utility is replaced by Eval

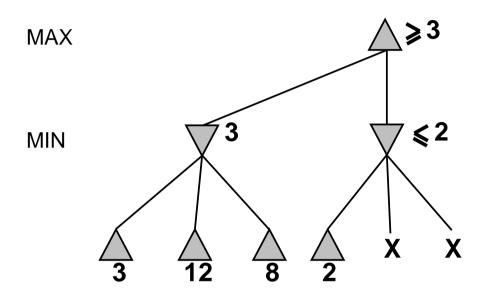
Does it work in practice?

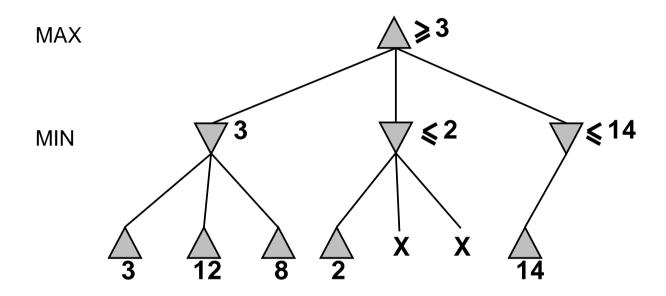
$$b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4$$

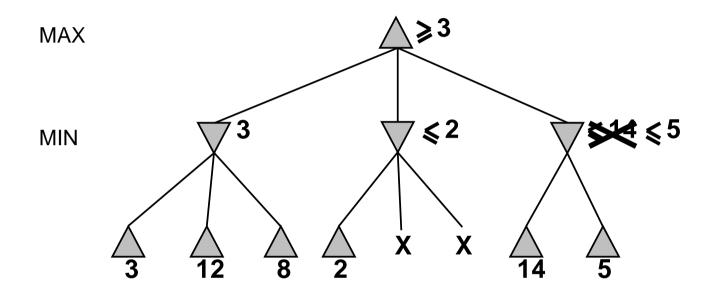
4-ply lookahead is a hopeless chess player!

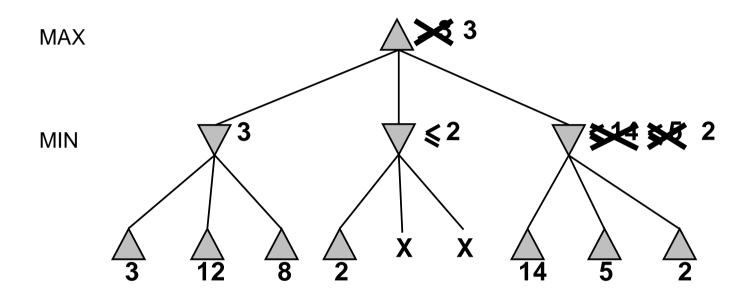
4-ply \approx human novice 8-ply \approx typical PC, human master 12-ply \approx Deep Blue, Kasparov











Properties of α - β

Pruning does not affect final result

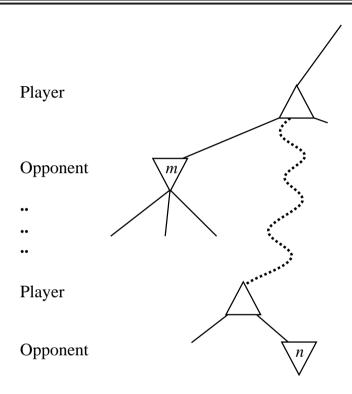
Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$

- ⇒ *doubles* depth of search
- ⇒ can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are relevant (a form of *metareasoning*)

Why is it called $\alpha-\beta$?



 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

The α - β algorithm

```
function Alpha-Beta-Search(state, game) returns an action
   action, state \leftarrow \text{the } a, s \text{ in } Successors[game](state)
             such that MIN-VALUE(s, game, -\infty, +\infty) is maximized
   return action
function MAX-VALUE(state, game, \alpha, \beta) returns the minimax value of state
   if CUTOFF-TEST(state) then return EVAL(state)
   for each s in Successors(state) do
        \alpha \leftarrow \max(\alpha, \text{MIN-VALUE}(s, game, \alpha, \beta))
        if \alpha \geq \beta then return \beta
   return \alpha
function MIN-VALUE(state, game, \alpha, \beta) returns the minimax value of state
   if CUTOFF-TEST(state) then return EVAL(state)
   for each s in Successors(state) do
        \beta \leftarrow \min(\beta, \text{MAX-VALUE}(s, game, \alpha, \beta))
        if \beta \leq \alpha then return \alpha
   return \beta
```

Deterministic games in practice

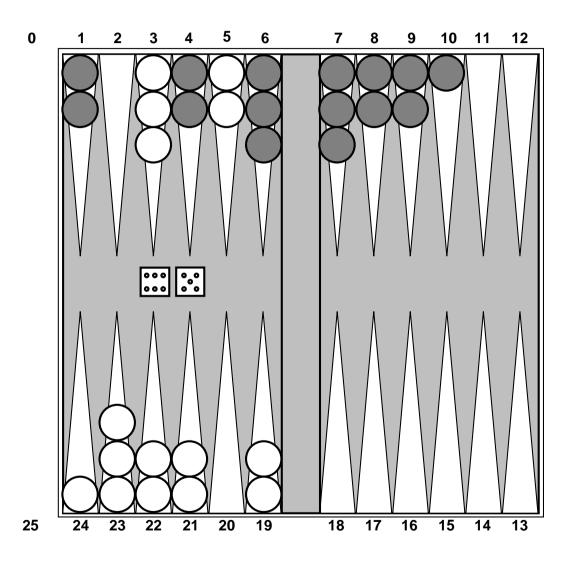
Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

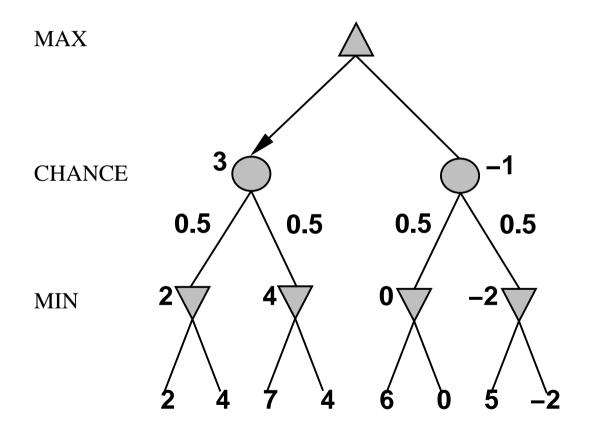
Go: human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon



Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:



Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

. . .

if state is a MAX node then

return the highest ExpectiMinimax-Value of Successors(state)

if state is a MIN node then

return the lowest ExpectiMinimax-Value of Successors(state)

if *state* is a chance node then

return average of ExpectiMinimax-Value of Successors(state)

. . .

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

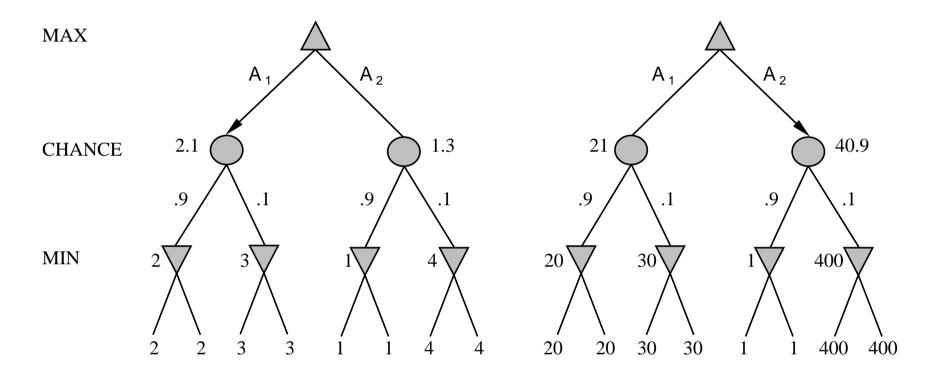
depth
$$4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished

 α - β pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL \approx world-champion level

Digression: Exact values DO matter



Behavior is preserved only by *positive linear* transformation of EVAL

Hence Eval should be proportional to the expected payoff

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game*

Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by

- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average

Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is WRONG

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- ♦ Acting to obtain information
- \Diamond Signalling to one's partner
- ♦ Acting randomly to minimize information disclosure

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

- \Diamond perfection is unattainable \Rightarrow must approximate
- ♦ good idea to think about what to think about
- ♦ uncertainty constrains the assignment of values to states

Games are to Al as grand prix racing is to automobile design

Remember: Thought Discussion for next time

- \Diamond (Read pages 947-949 of our text)
- "Weak Al: Can machines act intelligently?"
 - ♦ Specifically: Consider argument from disability i.e., "A machine can never do X"