Adversarial SEarch

Chapter 6

Outline

\diamond Perfect play
\diamond Resource limits
$\diamond \alpha-\beta$ pruning
\diamond Games of chance
\diamond Games of imperfect information

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate
Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information		bridge, poker, scrabble nuclear war

Game tree (2-player, deterministic, turns)

Minimax

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value
= best achievable payoff against best play
E.g., 2-ply game:

MAX

MIN


```
function Minimax-DEcision(state, game) returns an action
    action, state }\leftarrow\mathrm{ the a,s in SUCCESSORS(state)
        such that Minimax-ValuE(s,game) is maximized
    return action
```

function Minimax-VaLUE(state, game) returns a utility value
if Terminal-Test(state) then
return UTility(state)
else if MAX is to move in state then
return the highest Minimax-Value of Successors(state)
else
return the lowest Minimax-Value of Successors(state)

Properties of minimax
Complete??

Properties of minimax
Complete?? Yes, if tree is finite (chess has specific rules for this). A finite strategy can exist even in an infinite tree!

Optimal??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this). A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this). A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this). A finite strategy can exist even in an infinite tree!

Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity?? $O(b m)$ (depth-first exploration)
For chess, $b \approx 35, m \approx 100$ for "reasonable" games
\Rightarrow exact solution completely infeasible

Resource limits

Suppose we have 100 seconds, explore 10^{4} nodes/second $\Rightarrow 10^{6}$ nodes per move

Standard approach:

- cutoff test
e.g., depth limit (perhaps add quiescence search)
- evaluation function
$=$ estimated desirability of position

Evaluation functions

Black to move
White slightly better

White to move
Black winning

For chess, typically linear weighted sum of features

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

Digression: Exact values don't matter

MAX

MIN

Behavior is preserved under any monotonic transformation of Eval
Only the order matters:
payoff in deterministic games acts as an ordinal utility function (i.e., ranking of states, rather than meaningful numeric values)

Cutting off search

MinimaxCutoff is identical to MinimaxValue except 1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?

$$
b^{m}=10^{6}, \quad b=35 \quad \Rightarrow \quad m=4
$$

4-ply lookahead is a hopeless chess player!
4-ply \approx human novice
8-ply \approx typical PC, human master
12-ply \approx Deep Blue, Kasparov
\square

$\alpha-\beta$ pruning example

$\alpha-\beta$ pruning example

MAX

MIN

$\alpha-\beta$ pruning example

MAX

MIN

$\alpha-\beta$ pruning example

Properties of $\alpha-\beta$

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
\Rightarrow doubles depth of search
\Rightarrow can easily reach depth 8 and play good chess
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path If V is worse than α, max will avoid it \Rightarrow prune that branch

Define β similarly for MIN

The $\alpha-\beta$ algorithm

function Alpha-Beta-SEARch(state, game) returns an action
action, state \leftarrow the a, s in SUCCESSORS $[$ game $]$ (state)
such that $\operatorname{Min}-\operatorname{ValuE}(s$, game $,-\infty,+\infty)$ is maximized
return action
function MAX-VALUE(state, game, α, β) returns the minimax value of state if Cutoff-Test(state) then return Eval(state)
for each s in SUCCESSORS(state) do
$\alpha \leftarrow \max (\alpha, \operatorname{Min}-\operatorname{Value}(s$, game, $\alpha, \beta))$
if $\alpha \geq \beta$ then return β
return α
function Min-Value(state, game, α, β) returns the minimax value of state
if Cutoff-TEst(state) then return Eval(state)
for each s in SUCCESSORS(state) do
$\beta \leftarrow \min (\beta, \operatorname{Max}-\operatorname{VaLUE}(s$, game $, \alpha, \beta))$
if $\beta \leq \alpha$ then return α
return β

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a sixgame match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b>300$, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
if state is a MAX node then
return the highest ExpectiMinimax-ValuE of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Dice rolls increase b : 21 possible rolls with 2 dice Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

$$
\text { depth } 4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}
$$

As depth increases, probability of reaching a given node shrinks
\Rightarrow value of lookahead is diminished
$\alpha-\beta$ pruning is much less effective
TDGammon uses depth -2 search + very good Eval \approx world-champion level

Digression: Exact values DO matter

MAX

CHANCE

MIN

Behavior is preserved only by positive linear transformation of EvAL
Hence Eval should be proportional to the expected payoff

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*
Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is WRONG

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states
Leads to rational behaviors such as
\diamond Acting to obtain information
\diamond Signalling to one's partner
\diamond Acting randomly to minimize information disclosure

Summary

Games are fun to work on! (and dangerous)
They illustrate several important points about AI
\diamond perfection is unattainable \Rightarrow must approximate
\diamond good idea to think about what to think about
\diamond uncertainty constrains the assignment of values to states
Games are to Al as grand prix racing is to automobile design

Remember: Thought Discussion for next time

\diamond (Read pages 947-949 of our text)
\diamond "Weak AI: Can machines act intelligently?"
\diamond Specifically: Consider argument from disability
i.e., "A machine can never do X "

