Planning

Chapter 11

First, some examples from Logic

Suppose a knowledge base contains just one sentence: $\exists x \operatorname{AsHigh} A s(x$, Everest).
Which of the following are legitimate results of applying Existential Instantiation?
\diamond AsHighAs(Everest, Everest)
\diamond AsHighAs(Kilimanjaro, Everest)
\diamond AsHighAs(Kilimanjaro, Everest) \wedge AsHighAs(BenNevis, Everest) (after 2 applications)

First, some examples from Logic

Suppose a knowledge base contains just one sentence: $\exists x \operatorname{AsHigh} A s(x$, Everest).
Which of the following are legitimate results of applying Existential Instantiation?
\diamond AsHighAs(Everest, Everest)
\diamond AsHighAs(Kilimanjaro, Everest)
\diamond AsHighAs(Kilimanjaro, Everest) \wedge AsHighAs(BenNevis, Everest) (after 2 applications)

Numbers 2 and 3 are correct.
Why isn't number 1 correct?
Does number 3 mean there are now 2 mountains as high as Everest?

Another Logic example

"Brothers and sisters have I none, but that man's father is my father's son". Who is that man?

Another Logic example

"Brothers and sisters have I none, but that man's father is my father's son". Who is that man?

Let $\operatorname{Rel}(r, x, y)$ say that family relationship r holds between x and y.
$M e=$ me, and $M r X=$ "that man".
(1) $\operatorname{Rel}($ Sibling $, \mathrm{Me}, x) \Rightarrow$ False
(2) Male (MrX)
(3) $\operatorname{Rel}($ Father, $F X, M r X)$
(4) $\operatorname{Rel}($ Father, $F M, M e)$
(5) $\operatorname{Rel}(S o n, F X, F M)$

Another Logic example, con't.

Want to show that $M e$ is the only son of my father, and therefore that $M e$ is the father of MrX, who is male, and therefore that "that man" is my son.
(6) $\operatorname{Rel}($ Parent, $x, y) \wedge \operatorname{Male}(x) \Longleftrightarrow \operatorname{Rel}($ Father, $x, y)$
(7) $\operatorname{Rel}($ Son $, x, y) \Longleftrightarrow \operatorname{Rel}($ Parent $, y, x) \wedge \operatorname{Male}(x)$
(8) $\operatorname{Rel}($ Sibling $, x, y) \Longleftrightarrow x \neq y \wedge \exists \operatorname{Rel}($ Parent $, p, x) \wedge \operatorname{Rel}($ Parent $, p, y)$
(9) $\operatorname{Rel}\left(\right.$ Father, $\left.x_{1}, y\right) \wedge \operatorname{Rel}\left(\right.$ Father $\left., x_{2}, y\right) \Rightarrow x_{1}=x_{2}$

Our query: (Q) $\operatorname{Rel}(r, \operatorname{MrX}, y)$

We want the answer: $\{r / S o n, y / M e\}$

Another Logic example, con't.

Translating 1-9, we get:
(6a) $\operatorname{Rel}($ Parent $, x, y) \wedge \operatorname{Male}(x) \Rightarrow \operatorname{Rel}($ Father, $x, y)$
(6b) $\operatorname{Rel}($ Father $, x, y) \Rightarrow \operatorname{Male}(x)$
(6c) $\operatorname{Rel}($ Father $, x, y) \Rightarrow \operatorname{Rel}($ Parent, $x, y)$
(7a) $\operatorname{Rel}(S o n, x, y) \Rightarrow \operatorname{Rel}($ Parent $, y, x)$
(7b) $\operatorname{Rel}(S o n, x, y) \Rightarrow \operatorname{Male}(x)$
(7c) $\operatorname{Rel}($ Parent, $y, x) \wedge \operatorname{Male}(x) \Rightarrow \operatorname{Rel}(\operatorname{Son}, x, y)$
(8a) $\operatorname{Rel}($ Sibling $, x, y) \Rightarrow x \neq y$
(8b) $\operatorname{Rel}($ Sibling $, x, y) \Rightarrow \operatorname{Rel}($ Parent $, P(x, y), x)$
(8c) $\operatorname{Rel}($ Sibling $, x, y) \Rightarrow \operatorname{Rel}($ Parent $, P(x, y), y)$
(8d) $\operatorname{Rel}($ Parent, $P(x, y), x) \wedge \operatorname{Rel}($ Parent $, P(x, y), y) \wedge x \neq y \Rightarrow \operatorname{Rel}($ Sibling, $x, y)$
(9) $\operatorname{Rel}\left(\right.$ Father, $\left.x_{1}, y\right) \wedge \operatorname{Rel}\left(\right.$ Father $\left., x_{2}, y\right) \Rightarrow x_{1}=x_{2}$
(N) True $\Rightarrow x=y \vee x \neq y$
(N') $x=y \wedge x \neq y \Rightarrow$ False
(Q') $\operatorname{Rel}(r, \operatorname{MrX}, y) \Rightarrow$ False

Another Logic example, con't.

Using resolution to prove Q^{\prime} is a contradiction, we get the following:

```
(10: 4,6c) Rel(Parent,FM,Me)
(11: 5,7a) Rel(Parent,FM,FX)
(12: 10,8d) Rel(Parent, FM,y)\wedgeMe\not=y=>\operatorname{Rel(Sibling, Me,y)}
(13: 12,1) Rel(Parent,FM,y)\wedgeMe\not=y => False
(14: 13,11) Me\not=FX => False
(15: 14,N) Me=FX
(16: 15,3) Rel(Father, Me, MrX)
(17: 16,6c) Rel(Parent, Me, MrX)
(18: 17,2,7c) Rel(Son, MrX,Me)
(19: 18,Q') False{r/Son,y/Me}
```


Outline of Planning

\diamond Search vs. planning
\diamond STRIPS operators
\diamond Partial-order planning

Search vs. planning

Consider the task get milk, bananas, and a cordless drill Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Search vs. planning contd.

Planning systems do the following:

1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

	Search	Planning
States	Lisp data structures	Logical sentences
Actions	Lisp code	Preconditions/outcomes
Goal	Lisp code	Logical sentence (conjunction)
Plan	Sequence from S_{0}	Constraints on actions

STRIPS operators

Tidily arranged actions descriptions, restricted language
Action: Buy (x)
Precondition: $\operatorname{At}(p), \operatorname{Sells}(p, x)$
Effect: Have (x)
[Note: this abstracts away many important details!]
At(p) Sells(p,x)

$\operatorname{Buy}(\mathbf{x})$
$\operatorname{Have}(x)$

Restricted language \Rightarrow efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals
A complete set of STRIPS operators can be translated into a set of successor-state axioms

Shakey Example

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: $\operatorname{At}($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b) EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(\mathrm{b}, \mathrm{y}) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(\mathrm{b}, \mathrm{y}) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(\mathrm{b}, \mathrm{y}) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND: At $($ Shakey,$x) \wedge \operatorname{At}(b, x) \wedge$ Climbable(b) EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: $\operatorname{At}($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(b, y) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND: At $($ Shakey,$x) \wedge \operatorname{At}(b, x) \wedge$ Climbable(b)
EFFECT: On(Shakey,b) $\wedge \neg$ On(Shakey,Floor)

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(b, y) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND: At $($ Shakey,$x) \wedge \operatorname{At}(b, x) \wedge$ Climbable(b)
EFFECT: On(Shakey,b) $\wedge \neg$ On(Shakey,Floor)
ACTION: ClimbDown(b):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(b, y) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND: At $($ Shakey,$x) \wedge \operatorname{At}(b, x) \wedge$ Climbable(b)
EFFECT: On(Shakey,b) $\wedge \neg$ On(Shakey,Floor)
ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT:

Shakey Example, con't.

ACTION: Go(x,y):
PRECOND: At $($ Shakey,$x) \wedge \ln (x, r) \wedge \ln (y, r)$
EFFECT: At (Shakey,y) $\wedge \neg($ At $($ Shakey,$x))$
ACTION: Push(b,x,y):
PRECOND: At(Shakey, x) \wedge Pushable(b)
EFFECT: At $(b, y) \wedge \operatorname{At}($ Shakey, y$) \wedge \neg \mathrm{At}(\mathrm{b}, \mathrm{x}) \wedge \neg \mathrm{At}($ Shakey, x$)$
ACTION: ClimbUp(b):
PRECOND: At $($ Shakey,$x) \wedge \operatorname{At}(b, x) \wedge$ Climbable(b)
EFFECT: On(Shakey,b) $\wedge \neg$ On(Shakey,Floor)
ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT: On(Shakey,Floor) $\wedge \neg$ On(Shakey,b)

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey,$x) \wedge \operatorname{At}(1, x)$ EFFECT:

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey,$x) \wedge \operatorname{At}(1, x)$
EFFECT: TurnedOn(I)

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND: On (Shakey,b) $\wedge \operatorname{At}($ Shakey,$x) \wedge \operatorname{At}(1, x)$ EFFECT: TurnedOn(I)

ACTION: TurnOff(I):
PRECOND:
EFFECT:

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey,$x) \wedge \operatorname{At}(1, x)$ EFFECT: TurnedOn(I)

ACTION: TurnOff(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey, $x) \wedge \operatorname{At}(1, x)$ EFFECT:

Shakey Example, con't.

ACTION: TurnOn(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey, $x) \wedge \operatorname{At}(1, x)$ EFFECT: TurnedOn(I)

ACTION: TurnOff(I):
PRECOND: On $($ Shakey, $b) \wedge \operatorname{At}($ Shakey,$x) \wedge \operatorname{At}(1, x)$ EFFECT: \neg TurnedOn(I)

Shakey Example, con't.

INITIAL STATE:
In(...) Climbable(...) Pushable(...) At(...) TurnedOn(...)

Shakey Example, con't.

INITIAL STATE:
$\ln ($ Switch1,Room1 $) \wedge \ln ($ Door1,Room1 $) \wedge \ln ($ Door1,Corridor $)$
$\ln ($ Switch1,Room2 $) \wedge \ln ($ Door2,Room2 $) \wedge \ln ($ Door2,Corridor $)$
$\ln ($ Switch1,Room3) $\wedge \ln ($ Door3,Room3) $\wedge \ln ($ Door3,Corridor $)$
$\ln ($ Switch1,Room4 $) \wedge \ln ($ Door4,Room4) $\wedge \operatorname{In}($ Door4,Corridor $)$
$\ln ($ Shakey,Room3) \wedge At(Shakey, XS)
$\ln ($ Box1,Room1 $) \wedge \operatorname{In}($ Box2,Room1 $) \wedge \operatorname{In}($ Box3,Room1 $) \wedge \operatorname{In}($ Box4,Room1 $)$

Shakey Example, con't.

INITIAL STATE (con't.):
Climbable (Box1) \wedge Climbable (Box2) \wedge Climbable (Box3) \wedge Climbable(Box4)
Pushable(Box1) \wedge Pushable(Box2) \wedge Pushable(Box3) \wedge Pushable(Box4)
At (Box1, X1) \wedge At (Box2, X2) $\wedge \operatorname{At}($ Box3, X3 $) \wedge \operatorname{At}($ Box4, X4)
TurnedOn(Switch1) \wedge TurnedOn(Switch4)

Shakey Example, con't.

Plan to achieve goal of getting Box2 into Room2:

Shakey Example, con't.

Plan to achieve goal of getting Box2 into Room2:

```
Go(XS,Door3)
Go(Door3,Door1)
Go(Door1,X2)
Push(Box2, X2, Door1)
Push(Box2, Door1, Door2)
Push(Box2, Door2, Switch2)
```


Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect Finish step has the goal description as its precondition causal links from outcome of one step to precondition of another temporal ordering between pairs of steps

Open condition $=$ precondition of a step not yet causally linked
A plan is complete iff every precondition is achieved
A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it
\square

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)
Finish

Example

Example

Planning process

Operators on partial plans:
add a link from an existing action to an open condition add a step to fulfill an open condition order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans
Backtrack if an open condition is unachievable or
if a conflict is unresolvable

POP algorithm sketch

```
function POP(initial, goal, operators) returns plan
    plan }\leftarrow\mathrm{ Make-Minimal-PlaN(initial, goal)
    loop do
        if Solution?( plan) then return plan
        Sneed, c}\leftarrow\mathrm{ Select-Subgoal( plan)
        Choose-Operator(plan, operators, S Seed, c)
        Resolve-Threats(plan)
    end
```

function SELECT-SUBGOAL(plan) returns $S_{\text {need }}, c$
pick a plan step $S_{\text {need }}$ from $\operatorname{Steps}($ plan $)$
with a precondition c that has not been achieved
return $S_{\text {need }}, c$

POP algorithm contd.

```
procedure Choose-Operator(plan, operators, S Seed, c)
    choose a step S Sadd from operators or STEPS( plan) that has c as an effect
    if there is no such step then fail
    add the causal link Sadd }\xrightarrow{}{c}\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to LiNks( plan)
    add the ordering constraint Sadd }\prec\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to OrdERINGS( plan)
    if Sadd is a newly added step from operators then
        add S Sadd to STEPs( plan)
        add Start }\prec\mp@subsup{S}{\mathrm{ add }}{}\prec\mathrm{ Finish to OrdERINGS( plan)
```

procedure Resolve-Threats(plan)
for each $S_{\text {threat }}$ that threatens a link $S_{i} \xrightarrow{c} S_{j}$ in Links(plan) do choose either

Demotion: Add $S_{\text {threat }} \prec S_{i}$ to Orderings (plan)
Promotion: Add $S_{j} \prec S_{\text {threat }}$ to Orderings (plan) if not Consistent(plan) then fail
end

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:

- choice of $S_{\text {add }}$ to achieve $S_{\text {need }}$
- choice of demotion or promotion for clobberer
- selection of $S_{\text {need }}$ is irrevocable

POP is sound, complete, and systematic (no repetition)
Extensions for disjunction, universals, negation, conditionals
Can be made efficient with good heuristics derived from problem description
Particularly good for problems with many loosely related subgoals

Example: Blocks world

+ several inequality constraints


```
FINISH
```

Example contd.

且

Example contd.

\section*{| | C |
| :--- | :--- |
| B | A |}

PutOn(A,B) clobbers $\mathrm{Cl}(\mathrm{B})$ => order after PutOn(B,C)

Example contd.

(A,B) clobbers $\mathrm{Cl}(\mathrm{B})$ => order after PutOn(B,C)

PutOn(B,C) clobbers $\mathrm{Cl}(\mathrm{C})$ => order after PutOnTable(C)

Heuristics for Planning

Most obvious Heuristic: Number of distinct open preconditions.
Overestimates: When actions achieve multiple goals
Underestimates: When negative interactions between plan steps
Better way: Use planning graph for generating better heuristic estimates.

Planning Graphs

Levels: Correspond to time steps in the plan ($0=$ initial state $)$
Each level contains literals + actions: those that could be true or executed
Number of planning steps in planning graph is good estimate of how difficult it is to acheive a given literal from initial state

Can be constructed very efficiently
Works only for propositionalized problems

Planning Graph - Have Cake

```
Init(Have(Cake))
Goal(Have(Cake) ^ Eaten(Cake))
Action(Eat(Cake)
    Precond: Have(Cake)
    Effect: \negHave(Cake) ^ Eaten(Cake))
Action(Bake(Cake)
    Precond: \negHave(Cake)
    Effect:Have(Cake))
```


Persistence actions
Mutual exclusion (mutex) links

Mutex Links

A mutex relation holds between two actions at a given level if any of the following is true:
\diamond Inconsistent effects: one action negates another.
\diamond Interference: one of effects of action is negation of precondition of another action.
\diamond Competing needs: one of preconditions of action is mutually exclusive with precondition of other.

A mutex relation holds between two literals at a given level if:
\diamond One is negation of other.
\diamond Each possible pair of actions that could achieve the literals is mutex.

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost?

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost? 1

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost? $1 \quad$ Level sum cost?

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost? $1 \quad$ Level sum cost? 1

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost? $1 \quad$ Level sum cost? $1 \quad$ Set-level Cost?

Heuristics from Planning Graphs

Estimate cost of goal literal $=$ level it first appears $=$ Level Cost
Use serial planning graphs to allow only one action at a time.
Cost of conjunction of goals:
\diamond Max-level: Maximum level cost of any goal
\diamond Level sum: Sum of level costs of goals (note: inadmissible)
\diamond Set-level: Level at which all literals appear without mutex

Max-level cost? $1 \quad$ Level sum cost? $1 \quad$ Set-level Cost? 2

GraphPlan algorithm

Extracting a plan from planning graph...

```
function Graphplan(problem) returns solution or failure
    graph}\leftarrow\mathrm{ Initial-Planning-Graph(problem)
    goals }\leftarrow\mathrm{ Goals[problem]
    loop do
        if goals all non-mutex in last level of graph, then do
        solution }\leftarrow\mathrm{ Extract-Solution(graph, goals, Length(graph))
        if solution }=\mathrm{ failure then return solution
        else if No-Solution-Possible(graph) then return failure
    graph}\leftarrow\mathrm{ Expand-Graph(graph, problem)
```


Spare Tire Problem

$\operatorname{Init}($ At (Flat,Axle) \wedge At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk),
Precond: At(Spare,Trunk)
Effect: $\neg A t($ Spare, Trunk $) \wedge$ At(Spare, Ground))
Action(Remove(Flat,Axle),
Precond: At(Flat,Axle)
Effect: $\neg A t($ Flat, Axle $) \wedge$ At (Flat, Ground) $)$
Action(PutOn(Spare,Axle),
Precond: $\operatorname{At}($ Spare, Ground $) \wedge \neg \operatorname{At}($ Flat, Axle)
Effect: $\neg A t($ Spare, Ground) $\wedge A t($ Spare,Axle $))$
Action(LeaveOvernight,
Precond:
Effect: \neg At (Spare, Ground) $\wedge \neg$ At (Spare,Axle) $\wedge \neg$ At(Spare, Trunk) $\wedge \neg \operatorname{At}($ Flat, Ground $) \wedge \neg$ At(Flat,Axle))

Planning Graph - Spare Tire

(Not all mutex's shown.)

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects?

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference?

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference? Remove(Flat,Axle) LeaveOvernight

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference? Remove(Flat,Axle) LeaveOvernight Example of Competing Needs?

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference? Remove(Flat,Axle) and LeaveOvernight Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference? Remove(Flat,Axle) and LeaveOvernight Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle) Example of Inconsistent Support?

Planning Graph - Spare Tire

(Not all mutex's shown.)

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight Example of Interference? Remove(Flat,Axle) and LeaveOvernight Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle) Example of Inconsistent Support? At(Spare,Axle) and At(Flat,Axle)

Summary of Planning Graphs

\diamond Yield useful heuristics of state-space and partial order planners
\diamond Consists of multiple layers of literals and actions that can occur at each time step
\diamond Includes mutex relations to exclude co-occurrences
\diamond Plan can be extracted directly from graph

Summary

\diamond Planning systems operate on explicit representations of states and actions
\diamond STRIPS language describes actions in terms of preconditions and effects.
\diamond Partial-order planning (POP) algorithms explore space of plans without committing to a totally ordered sequence of actions.
\diamond POP algorithms work backwards from goal, and are particularly effective on problems amenable to divide-and-conquer.
\diamond No consensus on any specific planning approach being the best.

