
Planning

Chapter 11

Chapter 11 1

First, some examples from Logic

Suppose a knowledge base contains just one sentence: ∃xAsHighAs(x, Everest).

Which of the following are legitimate results of applying Existential Instan-
tiation?

♦ AsHighAs(Everest, Everest)

♦ AsHighAs(Kilimanjaro,Everest)

♦ AsHighAs(Kilimanjaro,Everest)∧AsHighAs(BenNevis, Everest)
(after 2 applications)

Chapter 11 2

First, some examples from Logic

Suppose a knowledge base contains just one sentence: ∃xAsHighAs(x, Everest).

Which of the following are legitimate results of applying Existential Instan-
tiation?

♦ AsHighAs(Everest, Everest)

♦ AsHighAs(Kilimanjaro,Everest)

♦ AsHighAs(Kilimanjaro,Everest)∧AsHighAs(BenNevis, Everest)
(after 2 applications)

Numbers 2 and 3 are correct.
Why isn’t number 1 correct?
Does number 3 mean there are now 2 mountains as high as Everest?

Chapter 11 3

Another Logic example

“Brothers and sisters have I none, but that man’s father is my father’s son”.
Who is that man?

Chapter 11 4

Another Logic example

“Brothers and sisters have I none, but that man’s father is my father’s son”.
Who is that man?

Let Rel(r, x, y) say that family relationship r holds between x and y.

Me = me, and MrX = “that man”.

(1) Rel(Sibling,Me, x) ⇒ False
(2) Male(MrX)
(3) Rel(Father, FX, MrX)
(4) Rel(Father, FM, Me)
(5) Rel(Son, FX, FM)

Chapter 11 5

Another Logic example, con’t.

Want to show that Me is the only son of my father, and therefore that Me
is the father of MrX , who is male, and therefore that “that man” is my
son.

(6) Rel(Parent, x, y) ∧Male(x) ⇐⇒ Rel(Father, x, y)
(7) Rel(Son, x, y) ⇐⇒ Rel(Parent, y, x) ∧Male(x)
(8) Rel(Sibling, x, y) ⇐⇒ x 6= y∧∃pRel(Parent, p, x)∧Rel(Parent, p, y)
(9) Rel(Father, x1, y) ∧Rel(Father, x2, y) ⇒ x1 = x2

Our query: (Q) Rel(r, MrX, y)

We want the answer: {r/Son, y/Me}

Chapter 11 6

Another Logic example, con’t.

Translating 1-9, we get:

(6a) Rel(Parent, x, y) ∧Male(x) ⇒ Rel(Father, x, y)
(6b) Rel(Father, x, y) ⇒ Male(x)
(6c) Rel(Father, x, y) ⇒ Rel(Parent, x, y)
(7a) Rel(Son, x, y) ⇒ Rel(Parent, y, x)
(7b) Rel(Son, x, y) ⇒ Male(x)
(7c) Rel(Parent, y, x) ∧Male(x) ⇒ Rel(Son, x, y)
(8a) Rel(Sibling, x, y) ⇒ x 6= y
(8b) Rel(Sibling, x, y) ⇒ Rel(Parent, P (x, y), x)
(8c) Rel(Sibling, x, y) ⇒ Rel(Parent, P (x, y), y)
(8d) Rel(Parent, P (x, y), x)∧Rel(Parent, P (x, y), y)∧x 6= y ⇒ Rel(Sibling, x, y)
(9) Rel(Father, x1, y) ∧Rel(Father, x2, y) ⇒ x1 = x2

(N) True ⇒ x = y ∨ x 6= y
(N’) x = y ∧ x 6= y ⇒ False
(Q’) Rel(r, MrX, y) ⇒ False

Chapter 11 7

Another Logic example, con’t.

Using resolution to prove Q’ is a contradiction, we get the following:

(10: 4,6c) Rel(Parent, FM, Me)
(11: 5,7a) Rel(Parent, FM,FX)
(12: 10,8d) Rel(Parent, FM, y) ∧Me 6= y ⇒ Rel(Sibling,Me, y)
(13: 12,1) Rel(Parent, FM, y) ∧Me 6= y ⇒ False
(14: 13,11) Me 6= FX ⇒ False
(15: 14,N) Me = FX
(16: 15,3) Rel(Father, Me, MrX)
(17: 16,6c) Rel(Parent,Me, MrX)
(18: 17,2,7c) Rel(Son,MrX, Me)
(19: 18,Q’) False{r/Son, y/Me}

Chapter 11 8

Outline of Planning

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning

Chapter 11 9

Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate

Chapter 11 10

Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Chapter 11 11

STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p) Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Chapter 11 12

Shakey Example

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Chapter 11 13

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND:
EFFECT:

Chapter 11 14

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT:

Chapter 11 15

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

Chapter 11 16

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND:
EFFECT:

Chapter 11 17

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT:

Chapter 11 18

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

Chapter 11 19

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND:
EFFECT:

Chapter 11 20

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT:

Chapter 11 21

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

Chapter 11 22

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND:
EFFECT:

Chapter 11 23

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT:

Chapter 11 24

Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT: On(Shakey,Floor) ∧¬ On(Shakey,b)

Chapter 11 25

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND:
EFFECT:

Chapter 11 26

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT:

Chapter 11 27

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

Chapter 11 28

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND:
EFFECT:

Chapter 11 29

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT:

Chapter 11 30

Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: ¬TurnedOn(l)

Chapter 11 31

Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE:
In(...) Climbable(...) Pushable(...) At(...) TurnedOn(...)

Chapter 11 32

Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE:
In(Switch1,Room1) ∧ In(Door1,Room1) ∧ In(Door1,Corridor)
In(Switch1,Room2) ∧ In(Door2,Room2) ∧ In(Door2,Corridor)
In(Switch1,Room3) ∧ In(Door3,Room3) ∧ In(Door3,Corridor)
In(Switch1,Room4) ∧ In(Door4,Room4) ∧ In(Door4,Corridor)
In(Shakey,Room3) ∧ At(Shakey,XS)
In(Box1,Room1) ∧ In(Box2,Room1) ∧ In(Box3,Room1) ∧ In(Box4,Room1)

Chapter 11 33

Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE (con’t.):
Climbable(Box1) ∧ Climbable(Box2) ∧ Climbable(Box3) ∧ Climbable(Box4)
Pushable(Box1) ∧ Pushable(Box2) ∧ Pushable(Box3) ∧ Pushable(Box4)
At(Box1, X1) ∧ At(Box2, X2) ∧ At(Box3, X3) ∧ At(Box4, X4)
TurnedOn(Switch1) ∧ TurnedOn(Switch4)

Chapter 11 34

Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Plan to achieve goal of getting Box2 into Room2:

Chapter 11 35

Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Plan to achieve goal of getting Box2 into Room2:
Go(XS,Door3)
Go(Door3,Door1)
Go(Door1,X2)
Push(Box2, X2, Door1)
Push(Box2, Door1, Door2)
Push(Box2, Door2, Switch2)

Chapter 11 36

Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Chapter 11 37

Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Chapter 11 38

Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Chapter 11 39

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Chapter 11 40

Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable

Chapter 11 41

POP algorithm sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c←Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c

Chapter 11 42

POP algorithm contd.

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

end

Chapter 11 43

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Chapter 11 44

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals

Chapter 11 45

Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Chapter 11 46

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Chapter 11 47

Example contd.

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

Chapter 11 48

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

Chapter 11 49

Example contd.

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Chapter 11 50

Heuristics for Planning

Most obvious Heuristic: Number of distinct open preconditions.
Overestimates: When actions achieve multiple goals
Underestimates: When negative interactions between plan steps

Better way: Use planning graph for generating better heuristic estimates.

Chapter 11 51

Planning Graphs

Levels: Correspond to time steps in the plan (0 = initial state)

Each level contains literals + actions: those that could be true or executed

Number of planning steps in planning graph is good estimate of how difficult
it is to acheive a given literal from initial state

Can be constructed very efficiently

Works only for propositionalized problems

Chapter 11 52

Planning Graph – Have Cake

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

Precond: Have(Cake)
Effect: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
Precond: ¬Have(Cake)
Effect: Have(Cake))

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Persistence actions Mutual exclusion (mutex) links

Chapter 11 53

Mutex Links

A mutex relation holds between two actions at a given level if any of the
following is true:

♦ Inconsistent effects: one action negates another.

♦ Interference: one of effects of action is negation of precondition of another
action.

♦ Competing needs: one of preconditions of action is mutually exclusive
with precondition of other.

A mutex relation holds between two literals at a given level if:

♦ One is negation of other.

♦ Each possible pair of actions that could achieve the literals is mutex.

Chapter 11 54

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Chapter 11 55

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost?

Chapter 11 56

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1

Chapter 11 57

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost?

Chapter 11 58

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1

Chapter 11 59

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1 Set-level Cost?

Chapter 11 60

Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1 Set-level Cost? 2

Chapter 11 61

GraphPlan algorithm

Extracting a plan from planning graph...

function Graphplan(problem) returns solution or failure

graph← Initial-Planning-Graph(problem)

goals←Goals[problem]

loop do

if goals all non-mutex in last level of graph, then do

solution← Extract-Solution(graph, goals, Length(graph))

if solution 6= failure then return solution

else if No-Solution-Possible(graph) then return failure

graph←Expand-Graph(graph, problem)

Chapter 11 62

Spare Tire Problem

Init(At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk),

Precond: At(Spare,Trunk)
Effect: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle),
Precond: At(Flat,Axle)
Effect: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle),
Precond: At(Spare,Ground) ∧ ¬ At(Flat,Axle)
Effect: ¬At(Spare,Ground) ∧ At(Spare,Axle))

Action(LeaveOvernight,
Precond:
Effect: ¬At(Spare,Ground) ∧ ¬At(Spare,Axle) ∧ ¬At(Spare,Trunk)

∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

Chapter 11 63

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Chapter 11 64

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects?

Chapter 11 65

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight

Chapter 11 66

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference?

Chapter 11 67

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) LeaveOvernight

Chapter 11 68

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) LeaveOvernight
Example of Competing Needs?

Chapter 11 69

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)

Chapter 11 70

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)
Example of Inconsistent Support?

Chapter 11 71

Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)
Example of Inconsistent Support? At(Spare,Axle) and At(Flat,Axle)

Chapter 11 72

Summary of Planning Graphs

♦ Yield useful heuristics of state-space and partial order planners

♦ Consists of multiple layers of literals and actions that can occur at each
time step

♦ Includes mutex relations to exclude co-occurrences

♦ Plan can be extracted directly from graph

Chapter 11 73

Summary

♦ Planning systems operate on explicit representations of states and actions

♦ STRIPS language describes actions in terms of preconditions and effects.

♦ Partial-order planning (POP) algorithms explore space of plans without
committing to a totally ordered sequence of actions.

♦ POP algorithms work backwards from goal, and are particularly effective
on problems amenable to divide-and-conquer.

♦ No consensus on any specific planning approach being the best.

Chapter 11 74

