Practical Applications of FOL, Resolution Theorem Provers

- Applied to synthesis and verification of both HW and SW
 - Used in fields of HW design, programming languages, and SW engineering (in addition to AI)
- For HW:
 - Axioms describe interactions between signals and circuit elements
 - Have been used to verify entire CPUs, including timing properties
- For SW:
 - Reasoning about programs is similar to reasoning about actions
 - Formal synthesis of algorithms was an early use of theorem provers
 - SW verification is commonly done with theorem proving
 - E.g., for spacecraft control, verification of RAS public key encryption, string matching, etc.
 - Fully automated techniques for general-purpose programming are not yet feasible
 - But, some algorithms have been generally deduced using theorem proving

(1) HW Example: Verifying Circuits (Sect. 8.4.2)

- Given a circuit, we could ask:
 - Does it work properly?
 - Given certain inputs, what is the output
 - Does the circuit contain feedback loops?
 - Etc.

Digital circuit, purporting to be a 1-bit full adder. First 2 inputs are bits to be added; 3rd bit is carry bit. First output is sum, 2nd output is carry bit for the next adder.

- To design, first decide what the relevant knowledge is:
 - Circuits consist of wires and gates
 - Signals flow along wires to input terminals of gates
 - Each gate produces a signal on the output terminal that flows along another wire
 - There are 4 types of gates that transform their inputs differently: AND, OR, XOR, NOT
 - All gates have 1 output terminal
- To reason about functionality and connectivity:
 - We just need to talk about the connections between terminals
 - Don't have to bother with paths of wires, or junctions where they come together
- If we wanted to verify timing, or faulty circuits, etc., then we would add that info to our knowledge base

- Next, decide on vocabulary:
 - Constants:
 - AND, OR, NOT, XOR, 1, 0, Nothing
 - Predicates:
 - Gate(x)
 - Type(x)
 - Circuit(x)
 - In(1, x) // refers to first input terminal for gate x
 - Out(1, x) // refers to first output terminal for gate x
 - Arity(c,i,j) // circuit c has i input and j output terminals
 - Connected(t₁, t₂) // says terminals t₁ and t₂ are connected
 - Signal(t) // denotes signal value (0 or 1) for terminal t

- Next, encode general domain knowledge (should be just a few general rules):
 - Gates, terminals, signals, gate types, and Nothing are all distinct:
 - \forall g,t Gate(g) \land Terminal(t) \Rightarrow g \neq t \neq 1 \neq 0 \neq 2 \neq OR \neq AND \neq XOR \neq NOT \neq Nothing
 - If 2 terminals are connected, then they have the same signal:
 - $\forall t_1, t_2$ Terminal(t_1) \land Terminal(t_2) \land Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2)
 - The signal at every terminal is either 1 or 0:
 - $\forall t \text{ Terminal}(t) \Rightarrow \text{Signal}(t) = 1 \lor \text{Signal}(t) = 0$
 - Connected is commutative:
 - $\forall t_1, t_2$ Connected(t_1, t_2) \Leftrightarrow Connected(t_2, t_1)
 - There are 4 types of gates:
 - \forall g Gate(g) \land k = Type(g) \Rightarrow k = AND \lor k = OR \lor k = XOR \lor k = NOT

- An AND gate's output is 0 iff any of its inputs is 0:
 - \forall g Gate(g) \land Type(g) = AND \Rightarrow Signal(Out(1,g)) = 0 $\Leftrightarrow \exists$ n Signal(In(n,g)) = 0
- An OR gate's output is 1 iff any of its inputs is 1:
 - \forall g Gate(g) \land Type(g) = OR \Rightarrow Signal(Out(1,g)) = 1 $\Leftrightarrow \exists$ n Signal(In(n,g)) = 1
- An XOR gate's output is 1 iff its inputs are different:
 - \forall g Gate(g) \land Type(g) = XOR \Rightarrow
 - Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1, g)) \neq Signal(In(2,g))
- A NOT gate's output is different from its input:
 - \forall g Gate(g) \land Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g))
- The gates (except for NOT) have 2 inputs and 1 output:
 - \forall g Gate(g) \land Type(g) = NOT \Rightarrow Arity(g,1,1)
 - \forall g Gate(g) \land k = Type(g) \land (k = AND \lor k = OR \lor k = XOR) \Rightarrow Arity(g,2,1)
- A circuit has terminals, up to its input and output arity, and nothing beyond its arity:
 - \forall c, i, j Circuit(c) \land Arity(c,i,j) \Rightarrow
 - $\forall \ n \ (n \leq i \implies \text{Terminal}(\text{In}(c,n))) \ \land \ (n > i \implies \text{In}(c,n) = \text{Nothing}) \ \land$
 - \forall n (n \leq j \Rightarrow Terminal(Out(c,n))) \land (n > j \Rightarrow Out(c,n) = Nothing)
- Gates are circuits:
 - \forall g Gate(g) \Rightarrow Circuit(g)

• Now, encode specific problem instance:

Circuit(C₁) \land Arity(C₁, 3, 2) Gate(X₁) \land Type(X₁) = XOR Gate(X₂) \land Type(X₂) = XOR Gate(A₁) \land Type(A₁) = AND Gate(A₂) \land Type(A₂) = AND Gate(O₁) \land Type(O₁) = OR

Connected(Out(1, X_1), In(1, X_2)) Connected(Out(1, X_1), In(2, A_2)) Connected(Out(1, A_2), In(1, O_1)) Connected(Out(1, A_1), In(2, O_1)) Connected(Out(1, X_2), Out(1, C_1)) Connected(Out(1, O_1), Out(2, C_1))

Connected(In(1, C_1), In(1, X_1)) Connected(In((1, C_1), In(1, A_1)) Connected(In((2, C_1), In(2, X_1)) Connected(In((2, C_1), In(2, A_1)) Connected(In((3, C_1), In(2, X_2)) Connected(In((1, C_1), In(1, A_2))

- Finally, we can pose queries to inference procedure:
 - What combinations of inputs would cause the first output of C_1 (the sum bit) to be 0 and the second output of C2 (the carry bit) to be 1?

 $\exists i_1, i_2, i_3 \text{ Signal}(\ln(1, C_1)) = i_1 \land \text{ Signal}(\ln(2, C_1)) = i_2 \land \text{ Signal}(\ln(3, C_1)) = i_3$

 \land Signal(Out(1, C₁)) = 0 \land Signal(Out(2, C₁)) = 1

• The answers are substitutions to variables such that the resulting sentence is entailed by the knowledge base:

- Answers are $\{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}$

- What are the possible sets of values of all the terminals for the adder circuit? $\exists i_1, i_2, i_3, o_1, o_2$ Signal(In(1, C₁)) = $i_1 \land$ Signal(In(2, C₁)) = $i_2 \land$ Signal(In(3, C₁)) = $i_3 \land$ Signal(Out(1, C₁)) = $o_1 \land$ Signal(Out(2, C₁)) = o_2
 - The answers give a complete I/O table for the device, which can be used to confirm that it properly adds its inputs.

Practical Applications of FOL, Resolution Theorem Provers

- Applied to synthesis and verification of both HW and SW
 - Used in fields of HW design, programming languages, and SW engineering (in addition to AI)
- For HW:
 - Axioms describe interactions between signals and circuit elements
 - Have been used to verify entire CPUs, including timing properties
- For SW:
 - Reasoning about programs is similar to reasoning about actions
 - Formal synthesis of algorithms was an early use of theorem provers
 - SW verification is commonly done with theorem proving
 - E.g., for spacecraft control, verification of RAS public key encryption, string matching, etc.
 - Fully automated techniques for general-purpose programming are not yet feasible
 - But, some algorithms have been generally deduced using theorem proving

- Havelund, et al (2000), NASA Ames Research Center
 - Used formal methods to verify deep space autonomy flight software
 - Approach found several concurrency errors
 - Developers believe these errors would *not* have been found through "usual" testing
- Remote Agent (RA) autonomous spacecraft controller, successfully demonstrated in flight on Deep Space 1 (1999)
 - RA is complex, concurrent SW system employing several automated reasoning engines using AI
 - Formal verification is critical to SW acceptance by science mission managers

Deep Space 1 – conducted fly-by of asteroid 9969 Braille

Asteroid 9969 Braille, as imaged by Deep Space 1

- During development (1997), a *subset* of the RA executive was modeled and verified, discovering several concurrency errors
- But, during flight, another concurrency error occurred:
 - Activation of error depended on a priori unlikely scheduling conditions between concurrent tasks
 - Error had not appeared in over 300 hours of system-level testing on JPL's flight system testbed
 - Flight conditions under which error occurred were not anticipated during testing
 - Problem was solved by engineers
 - However, lesson learned was that full code verification is needed, along with easy-to-use tools to do so

• Remote Agent (RA) controller:

- Planner and Scheduler: Given a mission goal, it produces sequences of tasks for achieving the goal using available system resources.
- Smart Executive: Receives plan from planner/scheduler, and then commands spacecraft to take necessary actions to achieve and maintain specified spacecraft states
- Mode Identification and Recovery: Monitors state of spacecraft, detects and diagnoses failures, and suggests recovery actions to Executive
- Verification work: focused on Smart Executive
 - Includes multi-threaded operating systems
 - Prolog-like AI languages based on sub-goals
 - Written in multi-threaded LISP

• RA Executive:

- Supports execution of tasks, which often require specific properties to hold during its execution
- When task is started, it tries to achieve properties on which it depends; then it begins
- Several tasks may try to achieve conflicting properties
 - E.g., one task might turn on a camera; another task might turn it off
- To prevent conflicts, a task has to lock (in a lock table) any property it wants to achieve
 - Once a property is locked, it can be achieved by the task locking the property
- Problem: property by be unexpectedly broken during execution
 - Thus, during execution, a database is maintained of all properties that are actually true at any time
 - Inconsistency can be detected by comparing database with lock table
 - Tasks depending on broken property must be interrupted
- A daemon monitors this consistency
 - This daemon contained the concurrency errors

• Daemon code:

```
(defun daemon ()
 (loop
  (if (check-locks)
      (do-automatic-recovery))
  (unless
      (changed?
      (+ (event-count *database-event*)
           (event-count *lock-event*)))
  (wait-for-events
      (list *database-event*
           *lock-event*)))))
```

- Code checked for two properties:
 - Release property: A task releases all of its locks before it terminates
 - Abort property: If an inconsistency occurs between the database and an entry in the lock table, then all tasks that rely on the lock will be terminated, either by themselves or by the daemon

- Verification of the two properties led to direct discovery of 5 programming errors:
 - One breaking the release property
 - Three breaking the abort property
 - One being a non-serious efficiency problem where code was executed twice instead of once
- Example of error:
 - Daemon is prompted to perform check of lock table
 - Finds everything consistent and checks the event counters to see if there have been any new events
 - This isn't the case, and the daemon decides to wait for events
 - At this point, an inconsistency is introduced, and a signal is sent by the environment, causing event counter for the database event to be increased
 - Change in counter is not detected by daemon, since it has already decided to wait
 - A solution would be to enclose test and wait in same critical section
 - But, how to detect these sorts of errors when not coded properly to begin with?

- Tools used for model checking:
 - PROMELA verification modeling language
 - Used to model the software
 - SPIN model checker
 - General tool for verifying correctness of distributed SW
 - Verifies properties stated using Linear Temporal Logic

- Boyer and Moore, 1984, used Proof Checking to verify the RSA encryption algorithm
- Statement of problem:
 - CRYPT(M, e, n) is encryption of message M with key (e,n).
 - CRYPT has 3 important properties:
 - 1) It is easy to compute CRYPT(M, e, n) = M^e mod n
 - 2) CRYPT is invertible

i.e., if M is encrypted with key (e, n) and then decrypted with key (d, n), the result is M; precisely: CRYPT(CRYPT(M, e, n),d,n) = M

- 3) Publicly revealing CRYPT and (e, n) does not reveal an easy way to compute (d, n).
- Rivest, Shamir, and Adleman (1978) proved first 2 properties, but not 3rd.
 (Instead, they stated informally that, since there is no known algorithm for efficiently factoring large composites, the security property of CRYPT is obtained by constructing n as the product of two very large primes)
- Work of Boyer and Moyer was to show a mechanical proof of properties 1 and 2

- Theorem-prover used:
 - Quantifier-free first order logic:
 - With equality, recursively defined functions, mathematical induction, and inductively constructed objects such as natural numbers and finite sequences
- Main proof techniques:
 - Simplification use rewrite rules to simplify expressions
 - Example: prime(p) \rightarrow [p | a*b \leftrightarrow (p | a \vee p | b)]
 - Elimination of undesirable function symbols
 - Example: For natural number i and positive integer j, there exist natural numbers r < j and q such that i = r + qj. Thus, can replace (i mod j) with r and i/j with q
 - Strengthening the conjecture to be proved
 - Induction

- Property 1: Rivest, Shamir, and Adelman proved that M^e mod n is easy to compute by exhibiting an algorithm for computing it in order lg(e) steps.
- Boyer and Moore used rules of math (in logic form) to verify the algorithm

```
We define the encryption algorithm as the recursive function CRYPT:
 DEFINITION.
 CRYPT(M, e, n)
 if e is not a natural number or is 0,
 then 1:
 else if e is even,
 then
   (\operatorname{CRYPT}(M, e/2, n))^2 \mod n;
                                                               Not part of
 else
    (M^*(\operatorname{CRYPT}(M, e/2, n)^2 \mod n)) \mod n.
                                                               original RSA
                                                               proof
 LEMMA. (x^*(y \mod n)) \mod n = (x^*y) \mod n.
 COROLLARY. (a^*(b^*(y \mod n))) \mod n = (a^*(b^*y)) \mod n.
 (Hint: let x be a^*b in the preceding lemma.)
 THEOREM. CRYPT(M, e, n) is equal to M^e \mod n provided n is not 1.
```

• Sample input to theorem prover:

```
DEFINITION.
(CRYPT M E N)
(IF (ZEROP E)
   (IF (EVEN E)
   (REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
                 N)
   (REMAINDER
     (TIMES M
       (REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
                    N))
     N)))
THEOREM. TIMES.MOD.1 (rewrite):
(EQUAL (REMAINDER (TIMES X (REMAINDER Y N)) N)
        (REMAINDER (TIMES X Y) N))
THEOREM. TIMES.MOD.2 (rewrite):
(EOUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))
                     N)
        (REMAINDER (TIMES A B Y) N))
Hint: Use TIMES.MOD.1 with X replaced by (TIMES A B).
THEOREM. CRYPT.CORRECT (rewrite):
(IMPLIES (NOT (EQUAL N 1))
         (EQUAL (CRYPT M E N) (REMAINDER (EXP M E) N)))
```

 Property 2: Boyer and Moore used rules of math (in logic form) to verify the invertibility of CRYPT

LEMMA 2. For all primes p, $(M^*M^{k^*(p-1)}) \mod p = M \mod p$.

COROLLARY. If p and q are prime, then

$$(M^*M^{k^*(p-1)^*(q-1)}) \mod p = M \mod p$$

and

$$(M^*M^{k^*(p-1)^*(q-1)}) \mod q = M \mod q$$

(Hint: take two instantiations of (2).)

LEMMA 3. If p and q are distinct primes, M is a natural number less than p^*q , and $x \mod (p-1)^*(q-1)$ is 1, then $M^x \mod p^*q = M$.

RSA THEOREM. If p and q are distinct primes, n is p^*q , M is a natural number less than n and $e^*d \mod(p-1)^*(q-1)$ is 1, CRYPT(CRYPT(M, e, n), d, n) = M.

- Main point of Boyer and Moore:
 - Can use automated techniques to verify proofs and software

More on Automated Theorem Proving

- CADE Conference (Conference on Automated Deduction) holds an annual World Championship for Automated Theorem Proving (http://www.cs.miami.edu/~tptp/CASC/24/)
- Derives problems from the TPTP library (Thousands of Problems for Theorem Provers, http://www.cs.miami.edu/~tptp/)
 - Domains include:
 - » Logic
 - » Mathematics (e.g., set theory, graph theory, number theory, geometry, etc.)
 - Computer science (e.g., computing theory, NLP, planning, commonsense reasoning, software verification, etc.)
 - Science and engineering (e.g., HW verification, medicine)
 - » Social sciences (e.g., social choice theory, management, geography, etc.)

International Joint Conference on Automated Reasoning (held bi-annually)

Topics include:

- Logics: propositional, first-order, classical, equational, higher-order, nonclassical, constructive, modal, temporal, many-valued, substructural, description, metalogics, type theory, set theory
- Methods: tableaux, sequent calculi, resolution, model-elimination, connection method, inverse method, paramodulation, term rewriting, induction, unification, constraint solving, decision procedures, model generation, model checking, semantic guidance, interactive theorem proving, logical frameworks, AI-related methods for deductive systems, proof presentation, efficient data structures and indexing, integration of computer algebra systems and automated theorem provers, and combination of logics or decision procedures.
- Applications: of interest include: verification, formal methods, program analysis and synthesis, computer mathematics, declarative programming, deductive databases, knowledge representation, natural language processing, linguistics, robotics, and planning.

Journal of Automated Reasoning

- The spectrum of coverage ranges from the presentation of a new inference rule with proof of its logical properties to a detailed account of a computer program designed to solve industrial problems
- Topics include:
 - automated theorem proving
 - logic programming
 - expert systems
 - program synthesis and validation
 - artificial intelligence
 - computational logic
 - robotics
 - various industrial applications.
- The contents focus on several aspects of automated reasoning, a field whose objective is the design and implementation of a computer program that serves as an assistant in solving problems and in answering questions that require reasoning.

