
Outline of Planning

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning
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Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate
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Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions
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STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p)  Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms
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Shakey Example

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT:

Chapter 11 15



Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT:
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Shakey Example, con’t.

ACTION: Go(x,y):
PRECOND: At(Shakey,x) ∧ In(x,r) ∧ In(y,r)
EFFECT: At(Shakey,y) ∧¬(At(Shakey,x))

ACTION: Push(b,x,y):
PRECOND: At(Shakey,x) ∧ Pushable(b)
EFFECT: At(b,y) ∧ At(Shakey,y) ∧¬At(b,x) ∧¬At(Shakey,x)

ACTION: ClimbUp(b):
PRECOND: At(Shakey,x) ∧ At(b,x) ∧ Climbable(b)
EFFECT: On(Shakey,b) ∧¬On(Shakey,Floor)

ACTION: ClimbDown(b):
PRECOND: On(Shakey,b)
EFFECT: On(Shakey,Floor) ∧¬ On(Shakey,b)
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT:
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND:
EFFECT:
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT:
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Shakey Example, con’t.

ACTION: TurnOn(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: TurnedOn(l)

ACTION: TurnOff(l):
PRECOND: On(Shakey,b) ∧ At(Shakey,x) ∧ At(l,x)
EFFECT: ¬TurnedOn(l)
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Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE:
In(...) Climbable(...) Pushable(...) At(...) TurnedOn(...)
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Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE:
In(Switch1,Room1) ∧ In(Door1,Room1) ∧ In(Door1,Corridor)
In(Switch1,Room2) ∧ In(Door2,Room2) ∧ In(Door2,Corridor)
In(Switch1,Room3) ∧ In(Door3,Room3) ∧ In(Door3,Corridor)
In(Switch1,Room4) ∧ In(Door4,Room4) ∧ In(Door4,Corridor)
In(Shakey,Room3) ∧ At(Shakey,XS)
In(Box1,Room1) ∧ In(Box2,Room1) ∧ In(Box3,Room1) ∧ In(Box4,Room1)
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Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

INITIAL STATE (con’t.):
Climbable(Box1) ∧ Climbable(Box2) ∧ Climbable(Box3) ∧ Climbable(Box4)
Pushable(Box1) ∧ Pushable(Box2) ∧ Pushable(Box3) ∧ Pushable(Box4)
At(Box1, X1) ∧ At(Box2, X2) ∧ At(Box3, X3) ∧ At(Box4, X4)
TurnedOn(Switch1) ∧ TurnedOn(Switch4)
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Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Plan to achieve goal of getting Box2 into Room2:
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Shakey Example, con’t.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box1

Box2
Box3

Shakey

Ls1

Ls2

Ls3

Ls4

Box4

Corridor

Plan to achieve goal of getting Box2 into Room2:
Go(XS,Door3)
Go(Door3,Door1)
Go(Door1,X2)
Push(Box2, X2, Door1)
Push(Box2, Door1, Door2)
Push(Box2, Door2, Switch2)
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Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it
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Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)
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Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
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Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
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Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals
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Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)
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Example contd.

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

Chapter 11 49



Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)
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Heuristics for Planning

Most obvious Heuristic: Number of distinct open preconditions.
Overestimates: When actions achieve multiple goals
Underestimates: When negative interactions between plan steps

Better way: Use planning graph for generating better heuristic estimates.
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Planning Graphs

Levels: Correspond to time steps in the plan (0 = initial state)

Each level contains literals + actions: those that could be true or executed

Number of planning steps in planning graph is good estimate of how difficult
it is to acheive a given literal from initial state

Can be constructed very efficiently

Works only for propositionalized problems
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Planning Graph – Have Cake

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

Precond: Have(Cake)
Effect: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
Precond: ¬Have(Cake)
Effect: Have(Cake))

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Persistence actions Mutual exclusion (mutex) links
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Mutex Links

A mutex relation holds between two actions at a given level if any of the
following is true:

♦ Inconsistent effects: one action negates another.

♦ Interference: one of effects of action is negation of precondition of another
action.

♦ Competing needs: one of preconditions of action is mutually exclusive
with precondition of other.

A mutex relation holds between two literals at a given level if:

♦ One is negation of other.

♦ Each possible pair of actions that could achieve the literals is mutex.
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost?
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost?
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1 Set-level Cost?
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Heuristics from Planning Graphs

Estimate cost of goal literal = level it first appears = Level Cost

Use serial planning graphs to allow only one action at a time.

Cost of conjunction of goals:
♦ Max-level: Maximum level cost of any goal
♦ Level sum: Sum of level costs of goals (note: inadmissible)
♦ Set-level: Level at which all literals appear without mutex

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

Max-level cost? 1 Level sum cost? 1 Set-level Cost? 2

Chapter 11 61



Spare Tire Problem

Init(At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk),

Precond: At(Spare,Trunk)
Effect: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle),
Precond: At(Flat,Axle)
Effect: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle),
Precond: At(Spare,Ground) ∧ ¬ At(Flat,Axle)
Effect: ¬At(Spare,Ground) ∧ At(Spare,Axle))

Action(LeaveOvernight,
Precond:
Effect: ¬At(Spare,Ground) ∧ ¬At(Spare,Axle) ∧ ¬At(Spare,Trunk)

∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects?
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference?
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) LeaveOvernight
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) LeaveOvernight
Example of Competing Needs?
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)
Example of Inconsistent Support?
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Planning Graph – Spare Tire

(Not all mutex’s shown.)
S0 0A S1 A1 S 2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

Example of Inconsistent Effects? Remove(Spare,Trunk) and LeaveOvernight
Example of Interference? Remove(Flat,Axle) and LeaveOvernight
Example of Competing Needs? PutOn(Spare,Axle) and Remove(Flat,Axle)
Example of Inconsistent Support? At(Spare,Axle) and At(Flat,Axle)
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Review:  Planning Graph 
• Is special data structure used for  

1. Deriving better heuristic estimates 
2. Extract a solution to the planning problem: GRAPHPLAN algorithm 

• Is a sequence 〈S0,A0,S1,A1,…,Si〉 of levels 
– Alternating state levels & action levels 
– Levels correspond to time stamps 
– Starting at initial state 
– State level is a set of (propositional) literals 

• All those literals that could be true at that level 

– Action level is a set of (propositionalized) actions 
• All those actions whose preconditions appear in the state level (ignoring all negative 

interactions, etc.) 

• Propositionalization may yield combinatorial explosion in the presence 
of a large number of objects 

 
 
 
 

  

1 



Example of a Planning Graph (1) 
Init(Have(Cake)) 
Goal(Have(Cake)∧Eaten(Cake)) 

2 

Action(Eat(Cake) 
Precond: Have(Cake) 
Effect: ¬Have(Cake)∧Eaten(Cake)) 

Action(Bake(Cake) 
Precond: ¬Have(Cake) 
Effect: Have(Cake)) 

Propositions true 
at the initial state 

Action is connected to its 
preconds & effects 

Persistence Actions (noop) 



Example of a Planning Graph (2) 
• At each state level, list all literals that may hold at that level 
• At each action level, list all noops & all actions whose preconditions may 

hold at previous levels 
• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1) 
• Building the Planning Graph is a polynomial process 
• Add (binary) mutual exclusion (mutex) links between conflicting actions and 

between conflicting literals 
 

3 

Mutual exclusion links S1 represents multiple states 



Mutex Links between Actions 
1. Inconsistent effects: one action negates an effect of another 

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake) 

2. Interference: An action effect negates the precondition of another 
– Eat(Cake) negates precondition of the noop of Have(Cake):  

3. Competing needs: A precondition on an action is mutex with the 
precondition of another 
– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition 

4 



Mutex Links between Literals 
1. Two literals are negation of each other 
2. Inconsistent support: Each pair of actions that can 

achieve the two literals is mutex.  Examples: 
– In S1, Have(Cake) & Eaten(Cake) are mutex 
– In S2, they are not because Bake(Cake) & the noop of 

Eaten(Cake) are not mutex 
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Planning Graph for Heuristic Estimation 

• A literal that does not appear in the final level cannot be achieved by 
any plan 
– State-space search: Any state containing an unachievable literal has 

cost h(n)=∝ 
– POP: Any plan with an unachievable open condition has cost h(n)=∝ 

• The estimate cost of any goal literal is the first level at which it 
appears 
– Estimate is admissible for individual literals 
– Estimate can be improved by serializing the graph (serial planning 

graph: one action per level) by adding mutex between all actions in a 
given level 

• The estimate of a conjunction of goal literals 
– Three heuristics: max level, level sum, set level  
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Estimate of Conjunction of Goal Literals 

• Max-level 
– The largest level of a literal in the conjunction 
– Admissible, not very accurate 

• Level sum  
– Under subgoal independence assumption, sums the level costs 

of the literals 
– Inadmissible, works well for largely decomposable problems 

• Set level 
– Finds the level  at which all literals appear w/o any pair of them 

being mutex 
– Dominates max-level, works extremely well on problems where 

there is a great deal of interaction among subplans 
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GRAPHPLAN algorithm 
GRAPHPLAN(problem) returns solution or failure 
graph ← INITIALPLANNINGGRAPH(problem) 
goals ← GOALS[problem] 
nogoods ← an empty hash table    // (level, goals) pair that can’t be achieved 
loop do 
    if goals all non-mutex in last level of graph then do 
       solution ← EXTRACTSOLUTION(graph,goals,NUMLEVELS(graph),nogoods) 
       if solution ≠ failure then return solution 
    if  graph and nogoods have both leveld off then return failure 
    graph ← EXPANDGRAPH (graph,problem) 

   
• Two main stages 

1. Extract solution 
2. Expand the graph 

 8 



Example of GRAPHPLAN Execution (1) 

9 

• At(Spare,Axle) is not in S0 

• No need to extract solution 
• Expand the plan 



Example of GRAPHPLAN Execution (2) 

10 

• Three actions 
are applicable 

• 3 actions and 5 
noops are added 

• Mutex links are 
added 

• At(Spare,Axle) 
still not in S1 

• Plan is expanded 



Example of GRAPHPLAN Execution (3) 

11 

• Illustrates well mutex links: inconsistent effects, 
interference, competing needs, inconsistent support 



Solution Extraction (Backward) 

12 

Search problem from last level backward 



Backtrack Search for Solution Extraction 

• Starting at the highest fact level 
– Each goal is put in a goal list for the current fact layer 
– Search iterates thru each fact in the goal list trying to find an action to 

support it which is not mutex with any other chosen action 
– When an action is chosen, its preconditions are added to the goal list of 

the lower level 
– When all facts in the goal list of the current level have a consistent 

assignment of actions, the search moves to the next level 
• Search backtracks to the previous level when it fails to assign an 

action to each fact in the goal list at a given level 

• Search succeeds when the first level is reached. 
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Termination of GRAPHPLAN 
• GRAPHPLAN is guaranteed to terminate 

– Literal increase monotonically 
– Actions increase monotonically 
– Mutexes decrease monotinically 

• A solution is guaranteed not to exist when 
– The graph levels off with all goals present & 

non-mutex, and 
– EXTRACTSOLUTION fails to find solution 

14 



Optimality of GRAPHPLAN  
• The plans generated by GRAPHPLAN  

–  Are optimal in the number of steps needed to 
execute the plan 

– Not necessarily optimal in the number of 
actions in the plan  (GRAPHPLAN produces 
partially ordered plans) 

15 



State-Space Search 

16 



State-Space Search (2) 
• Remember that the language has no functions symbols 
• Thus number of states is finite 
• And we can use any complete search algorithm (e.g., A*) 

– We need an admissible heuristic 
– The solution is a path, a sequence of actions: total-order 

planning 

• Problem: Space and time complexity 
– STRIPS-style planning is PSPACE-complete unless actions 

have  
• only positive preconditions and  
• only one literal effect 

17 



STRIPS in State-Space Search 
• STRIPS representation makes it easy to focus on 

‘relevant’ propositions and  
– Work backward from goal (using EFFECTS) 
– Work forward from initial state (using PRECONDITIONS) 
– Facilitating bidirectional search 
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Heuristics for Planning 
• We can use A*, but we need an admissible 

heuristic 
1. Divide-and-conquer: sub-goal independence 

assumption 
– Problem relaxation by removing 
2. … all preconditions 
3. … all preconditions and negative effects 
4. … negative effects only: Empty-Delete-List  

19 



1. Subgoal Independence Assumption 
• The cost of solving a conjunction of subgoals is the sum 

of the costs of solving each subgoal independently 
• Optimistic 

– Where subplans interact negatively 
– Example: one action in a subplan delete goal achieved by an 

action in another subplan  

• Pessimistic (not admissible) 
– Redundant actions in subplans can be replaced by a single 

action in  merged plan 

20 



2. Problem Relaxation: Removing Preconditions 

• Remove preconditions from action descriptions 
– All actions are applicable 
– Every literal in the goal is achievable in one step  

• Number of steps to achieve the conjunction of 
literals in the goal is equal to the number of 
unsatisfied literals 

• Alert 
– Some actions may achieve several literals 
– Some action may remove the effect of another action 

21 



3. Remove Preconditions & Negative Effects 

• Considers only positive interactions among 
actions to achieve multiple subgoals 

• The minimum number of actions required is the 
sum of the union of the actions’ positive effects 
that satisfy the goal 

• The problem is reduced to a set cover problem, 
which is NP-hard 
– Approximation by a greedy algorithm cannot 

guarantee an admissible heuristic 
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4. Removing Negative Effects (Only) 

23 

• Remove all negative effects of actions (no action 
may destroy the effects of another) 

• Known as the Empty-Delete-List heuristic 
• Requires running a simple planning algorithm 
• Quick & effective 
• Usable in progression or regression planning 



Actions, events, and change 
• Planning requires a representation of time 

– to express & reason about sequences of actions 
– to express the effects of actions on the world 

• Propositional Logic  
– does not offer a representation for time  
– Each action description needs to be repeated for each step 

• Situation Calculus (AIMA Section 10.4.2) 
– Is based on FOL 
– Each time step is a ‘situation’ 
– Allows to represent plans and reason about actions & change 

24 



Situation Calculus: Ontology 
• Situations 
• Fluents 
• Atemporal (or eternal) 

predicates & functions 
• Possibility axioms 

25 



Situation Calculus: Ontology 
• Situations 

– Initial state: S0 
– A function Result(a.s) gives the situation resulting 

from applying action a in situation s 
• Fluents 

– Functions & predicates whose truth values can 
change from one situation to the other 

– Example: ¬Holding(G1,S0) 
• Atemporal (or eternal) predicates and functions 

– Example: Gold(G1), LeftLegOf(Wumpus) 
• Possibility axiom 

– Says when an action can be taken:  Φ(s) ⇒ Poss(a,s) 
 

26 



Situation Calculus 
• Sequence of actions 

– Result([],s)=s 
– Result([a|seq],s)=Result(seq,Result(a,s)) 

• Projection task 
– Deducing the outcome of a sequence of 

actions 
• Planning task 

– Find a sequence of actions that achieves a 
desired effect 

27 



Example: Wumpus World 
• Fluents 

– At(o,p,s), Holding(o,s) 
• Agent is in [1,1], gold is in [1,2] 

– At(Agent,[1,1],S0) ∧ At(G1,[1,2],S0) 
• In S0, we also need to have: 

– At(o,x,S0) ⇔ [(o=Agent) ∧ x=[1,1]]  ∨ [(o=G1) ∧ x=[1,2]] 
– ¬Holding(o,S0) 
– Gold(G1) ∧ Adjacent([1,1],[1,2]) ∧ Adjacent([1,2],[1,1]) 

• The query is:  
– ∃ seq At(G1,[1,1],Result(seq,S0)) 

• The answer is 
– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0)) 

28 



Importance of Situation Calculus 
• Historical note 

– Situation Calculus was the first attempt to formalizing planning in 
FOL 

– Other formalisms include Event Calculus 
– The area of using logic for planning is informally called in the 

literature “Reasoning About Action & Change” 

• Highlighted three important problems 
1. Frame problem 
2. Qualification problem 
3. Ramification problem 
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‘Famous’ Problems 
• Frame problem 

– Representing all things that stay the same from one situation to 
the next 

– Inferential and representational 

• Qualification problem 
– Defining the circumstances under which an action is guaranteed 

to work 
– Example: what if the gold is slippery or nailed down, etc. 

• Ramification problem 
– Proliferation of implicit consequences of actions as actions may 

have secondary consequences 
– Examples: How about the dust on the gold? 

30 



Summary of Planning Graphs

♦ Yield useful heuristics of state-space and partial order planners

♦ Consists of multiple layers of literals and actions that can occur at each
time step

♦ Includes mutex relations to exclude co-occurrences

♦ Plan can be extracted directly from graph
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Summary

♦ Planning systems operate on explicit representations of states and actions

♦ STRIPS language describes actions in terms of preconditions and effects.

♦ Partial-order planning (POP) algorithms explore space of plans without
committing to a totally ordered sequence of actions.

♦ POP algorithms work backwards from goal, and are particularly effective
on problems amenable to divide-and-conquer.

♦ No consensus on any specific planning approach being the best.

Chapter 11 74


	Chap-10-last-half.pdf
	Review:  Planning Graph
	Example of a Planning Graph (1)
	Example of a Planning Graph (2)
	Mutex Links between Actions
	Mutex Links between Literals
	Planning Graph for Heuristic Estimation
	Estimate of Conjunction of Goal Literals
	GraphPlan algorithm
	Example of GraphPlan Execution (1)
	Example of GraphPlan Execution (2)
	Example of GraphPlan Execution (3)
	Solution Extraction (Backward)
	Backtrack Search for Solution Extraction
	Termination of GraphPlan
	Optimality of GraphPlan 
	State-Space Search
	State-Space Search (2)
	STRIPS in State-Space Search
	Heuristics for Planning
	1. Subgoal Independence Assumption
	2. Problem Relaxation: Removing Preconditions
	3. Remove Preconditions & Negative Effects
	4. Removing Negative Effects (Only)
	Actions, events, and change
	Situation Calculus: Ontology
	Situation Calculus: Ontology
	Situation Calculus
	Example: Wumpus World
	Importance of Situation Calculus
	‘Famous’ Problems




