
PLANNING/ACTING IN REAL WORLD

Chapter 11

Topics

• The real world
• Time, schedules, resources
• Hierarchical planning
• Planning in nondeterministic domains
• Multi-agent planning

The real world

~Flat(Spare) Intact(Spare) Off(Spare)
 On(Tire1) Flat(Tire1)

START FINISH

On(x) ~Flat(x)

Remove(x)

On(x)

Off(x) ClearHub

Puton(x)

Off(x) ClearHub

On(x) ~ClearHub

Inflate(x)

Intact(x) Flat(x)

~Flat(x)

Chapter 12.3 - 12.5 3

Things go wrong

Incomplete information
Unknown preconditions, e.g., Intact(Spare)?
Disjunctive effects, e.g., Inflate(x) causes

Inflated(x) ∨ SlowHiss(x) ∨ Burst(x) ∨ BrokenPump ∨ . . .

Incorrect information
Current state incorrect, e.g., spare NOT intact
Missing/incorrect postconditions in operators

Qualification problem:
can never finish listing all the required preconditions and
possible conditional outcomes of actions

Chapter 12.3 - 12.5 4

Time, Schedule, Resources

Hierarchical Planning – High Level Actions

Reachable states
Goal achievement

Planning and Acting with Nondeterminism

• Conformant planning (w/o observations)
• Contingency planning (for partially

observable/nondeterministic environments)
• Online planning/replanning (for unknown

environments)

Indeterminacy in the World

Bounded indeterminacy: actions can have unpredictable effects, but the pos-
sible effects can be listed in the action description axioms

Unbounded indeterminacy: set of possible preconditions or effects either is
unknown or is too large to be completely enumerated

Closely related to qualification problem

Chapter 12.3 - 12.5 5

Solutions

Conformant or sensorless planning
Devise a plan that works regardless of state or outcome

Such plans may not exist

Conditional planning
Plan to obtain information (observation actions)
Subplan for each contingency, e.g.,
[Check(Tire1), if Intact(Tire1) then Inflate(Tire1) else CallAAA

Expensive because it plans for many unlikely cases

Monitoring/Replanning
Assume normal states, outcomes
Check progress during execution, replan if necessary

Unanticipated outcomes may lead to failure (e.g., no AAA card)

(Really need a combination; plan for likely/serious eventualities,
deal with others when they arise, as they must eventually)

Chapter 12.3 - 12.5 6

Conformant planning

Search in space of belief states (sets of possible actual states)
L

R

L R

S

L R
S S

S S

R

L

S S

L

R

R

L

R

L

Chapter 12.3 - 12.5 7

Conditional planning

If the world is nondeterministic or partially observable
then percepts usually provide information,
i.e., split up the belief state

ACTION PERCEPT

Chapter 12.3 - 12.5 8

Conditional planning (con’t.)

Conditional plans check (any consequence of KB +) percept

[. . . , if C then PlanA else PlanB, . . .]

Execution: check C against current KB, execute “then” or “else”

Chapter 12.3 - 12.5 9

Conditional planning (con’t.)

Need to handle nondeterminism by building into the plan conditional steps
that check the state of the environment at run time, and then decide what
to do.

Augment STRIPS to allow for nondeterminism:
Add Disjunctive effects (e.g., to model when action sometimes fails):

Action(Left, Precond:AtR, Effect: AtL ∨ AtR)
Add Conditional effects (i.e., depends on state in which it’s executed):

Form: when <condition> : <effect>

Action(Suck, Precond:,
Effect: (when AtL: CleanL) ∧ (when AtR: CleanR))

Create Conditional steps:
if <test> then plan-A else plan-B

Chapter 12.3 - 12.5 10

Conditional planning (con’t.)

Need some plan for every possible percept and action outcome

(Cf. game playing: some response for every opponent move)
(Cf. backward chaining: some rule such that every premise satisfied

Use: AND–OR tree search (very similar to backward chaining algorithm)
Similar to game tree in minimax search
Differences: Max and Min nodes become Or and And nodes

Robot takes action in “state” nodes.

Nature decides outcome at “chance” nodes.

Plan needs to take some action at every state it reaches (i.e., Or nodes)

Plan must handle every outcome for the action it takes (i.e., And nodes)

Solution is a subtree with (1) goal node at every leaf, (2) one action specified
at each state node, and (3) includes every outcome branch at chance nodes.

Chapter 12.3 - 12.5 11

Example: “Game Tree”, Fully Observable World

Double Murphy: sucking or arriving may dirty a clean square

8

3 6 8 7

1 5 7 8 4 2

Left Suck

Right Suck Left SuckGOAL

GOAL

LOOP

LOOP

Plan: [Left, if AtL ∧ CleanL ∧ CleanR then [] else Suck]

Chapter 12.3 - 12.5 12

Example

Triple Murphy: also sometimes stays put instead of moving

8

Left Suck

6 3 7

GOAL

[L1 : Left, if AtR then L1 else [if CleanL then [] else Suck]]

or [while AtR do [Left], if CleanL then [] else Suck]

“Infinite loop” but will eventually work unless action always fails

Chapter 12.3 - 12.5 13

Execution Monitoring

“Failure” = preconditions of remaining plan not met

Preconditions of remaining plan
= all preconditions of remaining steps not achieved by remaining steps
= all causal links crossing current time point

On failure, resume POP to achieve open conditions from current state

IPEM (Integrated Planning, Execution, and Monitoring):
keep updating Start to match current state
links from actions replaced by links from Start when done

Chapter 12.3 - 12.5 14

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

Sells(SM,Milk)

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

At(Home)

Sells(SM,Ban.)
Sells(HWS,Drill)

Chapter 12.3 - 12.5 15

Example

At(SM)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

Sells(SM,Milk)

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Sells(SM,Ban.)
Sells(HWS,Drill)
At(HWS)

At(Home)

Chapter 12.3 - 12.5 16

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(HWS)
Have(Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Chapter 12.3 - 12.5 17

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

Have(Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

At(SM)

Chapter 12.3 - 12.5 18

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

Have(Drill)

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

At(SM)

Have(Ban.)
Have(Milk)

Chapter 12.3 - 12.5 19

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

Have(Drill)At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Have(Ban.)
Have(Milk)

At(Home)

Chapter 12.3 - 12.5 20

Emergent behavior

START

Get(Red)

Color(Chair,Blue) ~Have(Red)

Paint(Red)

Have(Red)

FINISH

Color(Chair,Red)

FAILURE RESPONSE

Have(Red)

 PRECONDITIONS

Fetch more red

Chapter 12.3 - 12.5 21

Emergent behavior

START

Get(Red)

Color(Chair,Blue) ~Have(Red)

Paint(Red)

Have(Red)

FINISH

Color(Chair,Red)

FAILURE RESPONSE PRECONDITIONS

Color(Chair,Red) Extra coat of paint

Chapter 12.3 - 12.5 22

Emergent behavior

START

Get(Red)

Color(Chair,Blue) ~Have(Red)

Paint(Red)

Have(Red)

FINISH

Color(Chair,Red)

FAILURE RESPONSE PRECONDITIONS

Color(Chair,Red) Extra coat of paint

“Loop until success” behavior emerges from interaction between monitor/replan
agent design and uncooperative environment

Chapter 12.3 - 12.5 23

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning:

Chapter 12.3 - 12.5 24

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Chapter 12.3 - 12.5 25

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning:

Chapter 12.3 - 12.5 26

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning: Open can of paint and apply it to both
chair and table.

Chapter 12.3 - 12.5 27

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning: Open can of paint and apply it to both
chair and table.

Conditional planning:

Chapter 12.3 - 12.5 28

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning: Open can of paint and apply it to both
chair and table.

Conditional planning: Sense the color of the table and chair. If same, then
we’re done. If not, sense labels on the paint cans; if there is a can that is
the same color as one piece of furniture, then apply the paint to the other
piece. Otherwise, paint both pieces with any color.

Chapter 12.3 - 12.5 29

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning: Open can of paint and apply it to both
chair and table.

Conditional planning: Sense the color of the table and chair. If same, then
we’re done. If not, sense labels on the paint cans; if there is a can that is
the same color as one piece of furniture, then apply the paint to the other
piece. Otherwise, paint both pieces with any color.

Monintoring/replanning:

Chapter 12.3 - 12.5 30

Summarizing Example

Assume: You have a chair, a table, and some cans of paint; all colors are
unknown. Goal: chair and table have same color.

How would each of the following handle this problem?

Classical planning: Can’t handle it, because initial state isn’t fully specified.

Sensorless/Conformant planning: Open can of paint and apply it to both
chair and table.

Conditional planning: Sense the color of the table and chair. If same, then
we’re done. If not, sense labels on the paint cans; if there is a can that is
the same color as one piece of furniture, then apply the paint to the other
piece. Otherwise, paint both pieces with any color.

Monintoring/replanning: Similar to conditional planner, but perhaps with
fewer branches at first, which are filled in as needed at runtime. Also, would
check for unexpected outcomes (e.g., missed a spot in painting, so repaint)

Chapter 12.3 - 12.5 31

Summary

♦ Incomplete info: use conditional plans, conformant planning (can use
belief states)

♦ Incorrect info: use execution monitoring and replanning

Chapter 12.3 - 12.5 32

Multiagent Planning

• Multieffector planning
• Multibody planning
• Decentralized planning
• Coordination, cooperation
• Multiactor settings
• Joint actions/joint plans

	13-Real-World-Planning-Extras.pdf
	Planning/Acting in Real World
	Topics

	13-Real-World-Planning-Extras-2.pdf
	Time, Schedule, Resources

	13-Real-World-Planning-Extras-3.pdf
	Hierarchical Planning – High Level Actions

	13-Real-World-Planning-Extras-4.pdf
	Planning and Acting with Nondeterminism

	13-Real-World-Planning-Extras-5.pdf
	Multiagent Planning

