KNOXVILLE

Chapter 15

Probabilistic Reasoning Over Time

Motivating Examples

• Car diagnosis (static problem)

KNOXVILLE

- There exists uncertainty
- We don't care about time
- Whatever is broken remains broken during diagnosis
- Diabetes management (dynamic problem)
 - It's a dynamic problem with uncertainty
 - Variable values change over time
 - Blood sugar level, stomach contents, etc
 - Measured blood sugar, food eaten, insulin doses, etc
 - We must model time to estimate present states and predict future states of a patient

Motivating Examples

- Statistical modeling
 - Economy, population, weather, etc

KNOXVILLE

- Robotics
 - Tracking the location and velocity of a robot
- Computer vision
 - Recognize human actions

The world changes; we need to track and predict it.

Representation and Notation

• Variable representation over time

KNOXVILLE

THE UNIVERSITY of TENNESSEE

- Basic idea: copy state and evidence variables from each time step
- \mathbf{X}_t = set of unobservable state variables at time te.g., $BloodSugar_t$, $StomachContents_t$, etc.
- \mathbf{E}_t = set of observable evidence variables at time te.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$
- Discrete time representation
 - The world is viewed as a series of snapshots or time slices: $X_{a:b} = X_a, X_{a+1}, \dots, X_{b-1}, X_b$
 - Step size depends on problem

KNOXVILLE

Markov Process (Markov Chains)

- Construct a Bayes net from variables over time
 - Transition model: how world evolves: $P(\mathbf{X}_t | \mathbf{X}_{0:t-1})$
 - Sensor model: how the evidence variables get their values: $P(\mathbf{E}_t | \mathbf{X}_{0:t}, \mathbf{E}_{0:t-1})$
- Issue 1: $X_{0:t-1}$ is unbounded in size as t increases

Markov Process (continued)

• Markov assumption: solution of issue 1 $- \mathbf{X}_t$ depends on **bounded** subset of $\mathbf{X}_{0:t-1}$

KNOXVILLE

THE UNIVERSITY of TENNESSEE

First-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-2}, \mathbf{X}_{t-1})$

Sensor Markov assumption: $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_{0:t}, \mathbf{E}_{0:t-1}) = \mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

- Issue 2: Specify a different distribution for each time step?
- Stationary process: solution of issue 2

KNOXVILLE

THE UNIVERSITY of TENNESSEE

- Transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$ are fixed for all t
- Joint probability over all variables: chain rule

THE UNIVERSITY of TENNESSEE

Example: Markov Process

- First-order Markov assumption is not exactly true in real world
- Problem can be addressed by:
 - Increase order of Markov process

KNOXVILLE

- Augment states, e.g., add season, temperature, etc.

Inference Tasks

Filtering: $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$

belief state—input to the decision process of a rational agent

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0evaluation of possible action sequences; like filtering without the evidence

KNOXVILLE

Smoothing: $\mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t} | \mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

THE UNIVERSITY of TENNESSEE 🛃

KNOXVILLE

Filtering

- Objective: design a *recursive* state estimation algorithm $P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, P(\mathbf{X}_t|\mathbf{e}_{1:t}))$
- Two-step process
 - Prediction: the current state distribution is projected forward from t to t+1
 - Update: the distribution is updated using the new evidence

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$ = $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

 $= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t})$

Update Prediction

• Prediction by summing out \mathbf{X}_t

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ & \text{Sensor model} & \text{Transition model} \end{aligned}$$

Filtering (continued)

- View as massage passing $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$
 - Consider $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ as a message $\mathbf{f}_{1:t}$ which is
 - Prorogated forward along the sequence
 - Modified by each transition
 - Updated by each new observation

KNOXVILLE

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$ where $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Prediction

- Prediction can be viewed as filtering without the addition of new evidence
- Predication can be recursively computed by:

KNOXVILLE

$$\mathbf{P}(\mathbf{X}_{t+k+1} \mid \mathbf{e}_{1:t}) = \sum_{\mathbf{X}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} \mid \mathbf{X}_{t+k}) P(\mathbf{X}_{t+k} \mid \mathbf{e}_{1:t})$$