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Chapter 15

Probabilistic Reasoning Over Time
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Motivating Examples

e Car diagnosis (static problem)
— There exists uncertainty
— We don’t care about time
— Whatever is broken remains broken during diagnosis

* Diabetes management (dynamic problem)
— It's a dynamic problem with uncertainty

— Variable values change over time
» Blood sugar level, stomach contents, etc
 Measured blood sugar, food eaten, insulin doses, etc

— We must model time to estimate present states and
predict future states of a patient
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Motivating Examples

« Statistical modeling
— Economy, population, weather, etc

* Robotics
— Tracking the location and velocity of a robot

 Computer vision v PN
— Recognize human actions

The world changes;
we need to track and
predict It.
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Representation and Notation

» Variable representation over time

— Basic idea: copy state and evidence variables from
each time step

— X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.
— E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar,;, PulseRate;, FoodFEaten,
« Discrete time representation

— The world is viewed as a series of snapshots or time
slices: X,, = X,. X,41..... X1, X3
— Step size depends on problem



| meUNIVERSITYos TENNESSEE BF

KNOXVILLE

Markov Process (Markov Chains)

e Construct a Bayes net from variables over time
— Transition model: how world evolves: P (X;|X.; 1)

— Sensor model: how the evidence variables get their
values: P(Ele[):f. E();f_l)

e |ssue 1: X;_11Ss unbounded In size as 7 Increases
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Markov Process (continued)

 Markov assumption: solution of issue 1
— X, depends on bounded subset of X.;_;

First-order Markov process: P(X;|X.;—1) = P(Xy|X;_;)
Second-order Markov process: P(X,|X,_1) = P(X;| X, 0, X;_1)

T D = D €D e D e O
— i

Sensor Markov assumption: P(E;|X.,. Eq;_1) = P(E;|X})
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Markov Process (continued)

e |ssue 2: Specify a different distribution for each
time step?

e Stationary process: solution of issue 2

— Transition model P(X,|X,_,) and sensor model
P(E;| X, ) are fixed for all 7

 Joint probability over aII variables: chain rule

P(Xo.t, E1.¢t) = P(X0o) HP i | Xi—1) P(E; | X)
1=1
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Example: Markov Process

Ry 1| P(Ry)

/ 0.7
f 0.3

f |
Umbre//@ @breﬂa t Umbrell@

* First-order Markov assumption is not exactly true
In real world
 Problem can be addressed by:

— Increase order of Markov process
— Augment states, e.g., add season, temperature, etc. :
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Inference Tasks

Filtering: P(X;|e|)
belief state—input to the decision process of a rational agent

Prediction: P(X, |eq;) for & > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X|e1) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(xi.|€1.¢)
speech recognition, decoding with a noisy channel
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Filtering

* Objective: design a recursive state estimation algorithm
P(Xit1leri+1) = flew:, P(X¢ler))
e Two-step process

— Prediction: the current state distribution is projected forward from
ttot+1
— Update: the distribution is updated using the new evidence

P(Xii1ler+1) = P(Xii1lers er1)
= aP(er1| X1, €14)P(Xit1]er)

= aP(e1|X11)P(X¢p1]ers)
Update Prediction
* Prediction by summing out X,

P(Xf+1’elzf+1) — @P(eﬂrl‘Xf—kl)ZXfP(XH—lth el:r)P(Xf\elzf)
= aP(er1|Xp1) 2k, P (X1 x| P (x| €1:4)

Sensor model Transition model 10
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Filtering (continued)

* View as massage passing
P(Xit1lerir1) = @P(et+1|Xt+1)2X¢P(Xf+l‘Xf)P<Xt|elzf)
— Consider P(X;|e;.;) as a message f;.; which is
* Prorogated forward along the sequence

* Modified by each transition
» Updated by each new observation

f13f+1 - FORWARD(fl;f, ef+1) Where fl:f = P(Xf]e”)
Time and space constant (independent of )

11
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Example: Filtering

* View as massage passing
P(le‘el:tﬂ) = @P(et+1|xt+1)zfo(XH1‘Xt)P(XHel:t)

2. Update

R, 1| P(Ry)
I 0.7

P(XT+1‘91:T+1) = P(XT+1’91:1‘7 ;1)

True 0.500- Dpeefction
False 0.500

aP(er1| X1, e1)P(Xip1]ery)
aP (e 11| Xi1)P(Xitiler)

1. Prediction

0.500 0.627

0.500 0.373
2. Upgate ; 2. Upgate
0. 181. PigefCtion 0.983

0.182 0.117

12
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Prediction

* Prediction can be viewed as filtering without the addition
of new evidence

* Predication can be recursively computed by:

P(Xt—|—k+1 \ Bis) = Z P(Xt+A-+1 \Xt+k.)P(Xt+A-. | el:t)

Xt+k

13



