
Introduction to Natural 
Language Processing 

 
Ch. 22, 23 

(Slides adapted from Paula Matuszek, Villanova) 

Jane Wagner:  “We speculated what it was like before we got 
language skills. When we humans had our first thought, most likely we 
didn’t know what to think.  It’s hard to think without words cause you 
haven’t got a clue as to what you’re thinking. So if you think we suffer 
from a lack of communication now, think what it must have been like 
then, when people lived in a verbal void - made worse by the fact that 
there were no words such as verbal void. ”   
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Natural Language Processing 
• speech recognition 
• natural language understanding 
• computational linguistics 
• psycholinguistics 
• information extraction 
• information retrieval 
• inference 
• natural language generation 
• speech synthesis 
• language evolution 
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Applied NLP 
• Machine translation 
• Spelling/grammar correction 
• Information Retrieval 
• Data mining 
• Document classification 
• Question answering, conversational agents 
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Natural Language Understanding 

accoustic 
/phonetic 

morphological
/syntactic 
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pragmatic 

sound waves 

internal 
representation 
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Sounds Symbols Sense 

Natural Language Understanding 

accoustic 
/phonetic 

morphological/
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•“How to recognize speech, not to wreck a 
nice beach” 
•“The cat scares all the birds away” 
•“The cat’s cares are few” 

Where are the words? 
  sound waves 

internal 
representation 

accoustic 
/phonetic 

morphological
/syntactic 

semantic / 
pragmatic 

-  pauses in speech bear little relation to word breaks 
+ intonation offers additional clues to meaning 
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•“The dealer sold the merchant a dog” 
• “I saw the Golden bridge flying into San Francisco” 
 

Dissecting words/sentences 

internal 
representation 

accoustic 
/phonetic 

morphological
/syntactic 

semantic / 
pragmatic 

sound waves 
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• “I saw Pathfinder on Mars with a telescope” 

• “Pathfinder photographed Mars” 

• “The Pathfinder photograph from Ford has arrived” 

• “When a Pathfinder fords a river it sometimes mars its paint job.” 

What does it mean? 
sound waves 

internal 
representation 

accoustic 
/phonetic 

morphological
/syntactic 

semantic / 
pragmatic 
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What does it mean? 
sound waves 

internal 
representation 

accoustic 
/phoneti
c 

morphologi
cal/syntact
ic 

semantic / 
pragmatic 

• “Jack went to the store. He 
found the milk in aisle 3. He 
paid for it and left.” 
• “ Q: Did you read the report? 
A: I read Bob’s email.” 



The steps in NLP 
• Morphology: Concerns the way words are 

built up from smaller meaning bearing 
units.  

• Syntax: concerns how words are put 
together to form correct sentences and 
what structural role each word has 

• Semantics: concerns what words mean and 
how these meanings combine in sentences 
to form sentence meanings 



The steps in NLP (Cont.) 
• Pragmatics: concerns how sentences are 

used in different situations and how use 
affects the interpretation of the sentence 

• Discourse: concerns how the immediately 
preceding sentences affect the 
interpretation of the next sentence 



Some of the Tools 
• Regular Expressions and Finite State Automata 
• Part of Speech taggers 
• N-Grams 
• Grammars 
• Parsers 
• Semantic Analysis 



Parsing (Syntactic Analysis) 
• Assigning a syntactic and logical form to an input 

sentence 
– uses knowledge about word and word meanings 

(lexicon) 
– uses a set of rules defining legal structures (grammar) 

• Charlie ate the apple. 
• (S  (NP (NAME Charlie)) 
•       (VP  (V ate) 
•               (NP  (ART the) 
•                       (N apple)))) 



Word Sense Resolution  
• Many words have many meanings or 

senses 
• We need to resolve which of the senses of 

an ambiguous word is invoked in a 
particular use of the word 

• I made her duck. (made her a bird for lunch 
or made her move her head quickly 
downwards?) 



Human Languages 
• You know ~50,000 words of primary language, 

each with several meanings 
• Six year old knows ~13000 words 
• First 16 years we learn 1 word every 90 min of 

waking time 
• Mental grammar generates sentences -virtually 

every sentence is novel 
• 3 year olds already have 90% of grammar 
• ~6000 human languages – none of them 

simple! 



Human Spoken language 
• Most complicated mechanical motion of the 

human body 
– Movements must be accurate to within mm 
– synchronized within hundredths of a second 

• We can understand up to 50 phonemes/sec 
(normal speech 10-15ph/sec) 
– but if sound is repeated 20 times /sec we hear 

continuous buzz! 

• All aspects of language processing are involved and 
manage to keep apace 



Why Language is Hard 
• NLP is “AI-complete” 
• Abstract concepts are difficult to represent 
• LOTS of possible relationships among 

concepts 
• Many ways to represent similar concepts 
• Tens of hundreds or thousands of 

features/dimensions 



Why Language is Easy 
• Highly redundant 

 
• Many relatively crude methods provide 

fairly good results 



History of NLP 
• Prehistory (1940s, 1950s) 

– Automata theory, formal language theory, 
Markov processes (Turing, McCullock & Pitts, 
Chomsky) 

– Information theory and probabilistic 
algorithms (Shannon) 

– Turing test – can machines think? 



History of NLP 
• Early work: 

– Symbolic approach 
• Generative syntax – e.g., Transformations and Discourse 

Analysis Project (TDAP- Harris) 
• AI – pattern matching, logic-based, special-purpose systems 

– Eliza -- Rogerian therapist  
http://www.manifestation.com/neurotoys/eliza.php3 

– Stochastic 
• Bayesian methods 

– Early successes   --    $$$$ grants! 
– By 1966 US government had spent 20 million on machine 

translation  

http://www.manifestation.com/neurotoys/eliza.php3


History of NLP 
• Critics: 

– Bar Hillel – “no way to disambiguation without deep 
understanding” 

– Pierce NSF 1966 report: “no way to justify work in terms of 
practical output” 



History of NLP 
• The middle ages (1970-1990) 

– stochastic 
• speech recognition and synthesis (Bell Labs) 

– logic-based 
• compositional semantics (Montague) 
• definite clause grammars (Pereira&Warren) 

– ad hoc AI-based NLU systems 
• SHRDLU robot in blocks world (Winograd) 
• knowledge representation systems at Yale (Shank) 

– discourse modeling 
• anaphora 
• focus/topic (Groz et al) 
• conversational implicature (Grice) 



History of NLP 
• NLP Renaissance (1990-2000) 

– Lessons from phonology & morphology successes:  
– Finite-state models are very powerful 
– Probabilistic models pervasive 
– Web creates new opportunities and challenges 
– Practical applications driving the field again 

• 21st Century NLP 
– The web changes everything: 
– Much greater use for NLP 
– Much more data available 



Document Features 
• Most NLP is applied to some quantity of 

unstructured text.  
• For simplicity, we will refer to any such 

quantity as a document 
• What features of a document are of 

interest? 
• Most common is the actual terms in the 

document. 



Tokenization 
• Tokenization is the process of breaking up a string 

of letters into words and other meaningful 
components (numbers, punctuation, etc. 

• Typically broken up at white space. 
• Very standard NLP tool 
• Language-dependent, and sometimes also domain-

dependent. 
– 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione 

• Tokens can also be larger divisions:  sentences, 
paragraphs, etc. 

http://en.wikipedia.org/wiki/3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione


Lexical Analyser 
• Basic idea is a finite state machine 
• Triples of input state, transition token, 

output state 
 
 
 
 

• Must be very efficient; gets used a LOT 

0 

1 

2 

blank 
A-Z 

A-Z 

blank, EOF 



Design Issues for Tokenizer 
• Punctuation 

– treat as whitespace? 
– treat as characters? 
– treat specially? 

• Case 
– fold? 

• Digits 
– assemble into numbers? 
– treat as characters? 
– treat as punctuation? 



NLTK Tokenizer 
• Natural Language ToolKit 
• http://text-processing.com/demo/tokenize/ 

 
• Call me Ishmael. Some years ago--never mind 

how long precisely--having little or no money 
in my purse, and nothing particular to interest 
me on shore, I thought I would sail about a 
little and see the watery part of the world. 

http://text-processing.com/demo/tokenize/


N-Grams 
• N-Grams are sequences of tokens. 
• The N stands for how many terms are used 

– Unigram: 1 term 
– Bigram:   2 terms 
– Trigrams: 3 terms 

• You can use different kinds of tokens 
– Character based n-grams 
– Word-based n-grams 
– POS-based n-grams 

• N-Grams give us some idea of the context around the 
token we are looking at. 



N-Gram Models of Language 
• A language model is a model that lets us compute 

the probability, or likelihood, of a sentence S, P(S). 
• N-Gram models use the previous N-1 words in a 

sequence to predict the next word 
– unigrams, bigrams, trigrams,… 

• How do we construct or train these language 
models? 
– Count frequencies in very large corpora 
– Determine probabilities using Markov models, similar 

to POS tagging. 



Counting Words in Corpora 
• What is a word?  

– e.g., are cat and cats the same word? 
– September and Sept? 
– zero and oh? 
– Is _ a word?  * ?  ‘(‘ ? 
– How many words are there in don’t ?  Gonna ? 
– In Japanese and Chinese text -- how do we 

identify a word? 



Terminology 
• Sentence:  unit of written language 
• Utterance:  unit of spoken language 
• Word Form:  the inflected form that appears in the 

corpus 
• Lemma:  an abstract form, shared by word forms 

having the same stem, part of speech, and word 
sense 

• Types:  number of distinct words in a corpus 
(vocabulary size) 

• Tokens:  total number of words 



Simple N-Grams 
• Assume a language has V word types in its 

lexicon, how likely is word x to follow word y? 
– Simplest model of word probability: 1/ V 
– Alternative 1: estimate likelihood of x occurring in new 

text based on its general frequency of occurrence 
estimated from a corpus (unigram probability) 

• popcorn is more likely to occur than unicorn 

– Alternative 2: condition the likelihood of x occurring in 
the context of previous words (bigrams, trigrams,…) 

• mythical unicorn is more likely than mythical popcorn 



Computing the Probability of a Word Sequence 

• Compute the product of component conditional 
probabilities? 
– P(the mythical unicorn) = P(the) 

P(mythical|the) P(unicorn|the mythical) 
• The longer the sequence, the less likely we are to 

find it in a training corpus  
• P(Most biologists and folklore specialists 

believe that in fact the mythical unicorn 
horns derived from the narwhal) 

• Solution:  approximate using n-grams 



Bigram Model 

• Approximate                     by   
– P(unicorn|the mythical) by P(unicorn|mythical) 

• Markov assumption:  the probability of a word depends only 
on the probability of a limited history 

• Generalization: the probability of a word depends only on 
the probability of the n previous words 
– Trigrams, 4-grams, … 
– The higher n is, the more data needed to train 
– The higher n is, the sparser the matrix. 



• For N-gram models 
–                        
– P(wn-1,wn) = P(wn | wn-1) P(wn-1) 
– By the Chain Rule we can decompose a joint 

probability, e.g. P(w1,w2,w3) 
P(w1,w2, ...,wn) = P(w1|w2,w3,...,wn) P(w2|w3, ...,wn) … P(wn-

1|wn) P(wn) 
For bigrams then, the probability of a sequence is just the 

product of the conditional probabilities of its bigrams 
P(the,mythical,unicorn) = P(unicorn|mythical) P(mythical|the) 

P(the|<start>) 

Using N-Grams 

http://www.dcs.qmul.ac.uk/~norman/BBNs/Chain_rule.htm


A Simple Example 

– P(I want to eat Chinese food) =  
P(I | <start>)   × P(want | I) × 
P(to | want)     ×  P(eat | to) × 
P(Chinese | eat) ×  P(food | Chinese) 



Counts from the Berkeley Restaurant 
Project 

Nth term 

N-1 
term 



BeRP Bigram Table 

Nth term 

N-1 
term 



A Simple Example 

•.25 ×.32 ×.65 ×.26 ×.02 ×.56 = .00015 

P(I want to eat Chinese food) =  
P(I | <start>)   × P(want | I) × 
P(to | want)     ×  P(eat | to) × 
P(Chinese | eat) ×  P(food | Chinese) 



• P(I want to eat British food) = P(I|<start>) 
P(want|I) P(to|want) P(eat|to) 
P(British|eat) P(food|British) =                    
.25 ×.32 ×.65 ×.26 ×.001 ×.60 = .000080 

• vs. I want to eat Chinese food = .00015 
• Probabilities seem to capture ``syntactic'' 

facts, ``world knowledge''  
– eat is often followed by an NP 
– British food is not too popular 

So What? 



Approximating Shakespeare 
• As we increase the value of N, the accuracy of the n-gram 

model increases, since choice of next word becomes 
increasingly constrained 

• Generating sentences with random unigrams... 
– Every enter now severally so, let 
– Hill he late speaks; or! a more to leg less first you enter 

• With bigrams... 
– What means, sir.  I confess she?  then all sorts, he is trim, captain. 
– Why dost stand forth thy canopy, forsooth; he is this palpable hit 

the King Henry. 



• Trigrams 
– Sweet prince, Falstaff shall die. 
– This shall forbid it should be branded, if 

renown made it empty. 

• Quadrigrams 
– What!  I will go seek the traitor Gloucester. 
– Will you not tell me who I am? 



• There are 884,647 tokens, with 29,066 
word form types, in about a one million 
word Shakespeare corpus 

• Shakespeare produced 300,000 bigram 
types out of 844 million possible bigrams:  
so, 99.96% of the possible bigrams were 
never seen (have zero entries in the table) 

• Quadrigrams worse:   What's coming out 
looks like Shakespeare because it is 
Shakespeare 



N-Gram Training Sensitivity 
• If we repeated the Shakespeare 

experiment but trained our n-grams on a 
Wall Street Journal corpus, what would we 
get? 

• This has major implications for corpus 
selection or design 



Some Useful Empirical Observations 
• A few events occur with high frequency 
• Many events occur with low frequency 
• You can quickly collect statistics on the high 

frequency events 
• You might have to wait an arbitrarily long time to 

get valid statistics on low frequency events 
• Some of the zeroes in the table are really zeros  

But others are simply low frequency events you 
haven't seen yet.  We smooth the frequency 
table by assigning small but non-zero frequencies 
to these terms. 



Smoothing is like Robin Hood:  Steal from the rich 
and give to the poor (in probability mass) 

From Snow, http://www.stanford.edu/class/linguist236/lec11.ppt 



All Our N-Grams Are Belong to You 
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html 

• Google uses n-grams for machine translation, 
spelling correction, other NLP 

• In 2006 they released a large collection of n-
gram counts through the Linguistic Data 
Consortium, based on a trillion web pages 
– a trillion tokens, 300 million bigrams,  about a 

billion tri-, four-and five-grams. 
(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13) 

• This quantity of data makes a qualitative 
change in what we can do with statistical NLP. 

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Summary 
• N-gram probabilities can be used to 

estimate the likelihood 
– Of a word occurring in a context (N-1) 
– Of a sentence occurring at all 

• Smoothing techniques deal with problems 
of unseen words in a corpus 

• N-grams are useful in  a wide variety of NLP 
tasks 
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