
INFORMED SEARCH ALGORITHMS

Chapter 3, Sections 3.5-3.6

Reading Assignment

• For Thursday: Chapter 4.3-4.5 (we’re skipping
4.1-4.2)

• For next week: Chapter 5

Class Exercise: Wooden Railway Set
Track pieces from wooden railway set:

Q1: Suppose the pieces fit together exactly. Give formulation of the task as a
search problem

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q2: Identify a suitable uninformed search algorithm for this task, and explain why
it is suitable.

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q3: Why does removing any one of the “fork” pieces make the problem
unsolvable?

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q4: Give an upper bound on the total size of the state space defined for this
formulation. (Ignore problem of overlapping pieces and loose ends. Reason
primarily about max branching factor and max depth. Pretending unique pieces.)

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1–2 3

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Chapter 4, Sections 1–2 4

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 4, Sections 1–2 5

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1–2 6

Greedy search example

Arad

366

Chapter 4, Sections 1–2 7

Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Chapter 4, Sections 1–2 8

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Chapter 4, Sections 1–2 9

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 4, Sections 1–2 10

Properties of greedy search

Complete??

Chapter 4, Sections 1–2 11

Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time??

Chapter 4, Sections 1–2 12

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1–2 13

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1–2 14

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1–2 15

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

Chapter 4, Sections 1–2 16

A∗ search example

Arad

366=0+366

Chapter 4, Sections 1–2 17

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Chapter 4, Sections 1–2 18

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 4, Sections 1–2 19

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 20

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Chapter 4, Sections 1–2 21

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Chapter 4, Sections 1–2 22

Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

Chapter 4, Sections 1–2 23

Optimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Chapter 4, Sections 1–2 24

Properties of A∗

Complete??

Chapter 4, Sections 1–2 25

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??

Chapter 4, Sections 1–2 26

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space??

Chapter 4, Sections 1–2 27

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1–2 28

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Chapter 4, Sections 1–2 29

Proof of lemma: Consistency

A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

Chapter 4, Sections 1–2 30

Exercise: Search Algs.

Consider the following scoring function for heuristic search:

 f(n) = w × g(n) + (1 – w) × h(n) where 0 ≤ w ≤ 1

i. Which search algorithm do you get with w set to 0?

Exercise: Various Search Algs.

1) Prove that breadth-first search is a special
case of uniform-cost search.

Exercise: Various Search Algs.

2) Prove that breadth-first search, depth-first
search, and uniform-cost search are special
cases of best-first search.

Exercise: Various Search Algs.

3) Prove that uniform-cost search is a special
case of A* search

• Since A* keeps all nodes in memory, it usually
runs out of space before it runs out of time

• Memory-bounded heuristic search
– Iterative-deepening A* (IDA*), where cutoff is the f-

cost (g+h), rather than the depth.
– Recursive best-first search – like best-first search, but

only uses linear space
• Keeps track of value of best alternative from any ancestor of

current node
• If current node exceeds this limit, then recursion unwinds

back to alternative path

Memory-Bounded Heuristic Search

• Problem: IDA* and RBFS don’t use all the
memory they could, leading to re-evaluation
of states multiple times

• Memory-Bounded A* (MA*), and Simplified
MA* (SMA*) are better.

Memory-Bounded Heuristic Search

• Proceeds like A*, expanding best leaf until memory is
full

• Then, it drops worst leaf node (i.e., one with highest f
value)

• If all leaf nodes have same f value, then delete the
oldest node

• SMA*
– Is complete if d is less than memory size
– Is optimal if any optimal solution is reachable

• Otherwise, returns best reachable solution
• But, on hard problems, SMA* thrashes between many

candidate solution paths
– Tradeoff between computation and memory

Simplified MA* (SMA*)

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

Chapter 4, Sections 1–2 31

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Chapter 4, Sections 1–2 32

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Chapter 4, Sections 1–2 33

Relaxed problems

Admissible heuristics can be derived from the exact

solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1–2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1–2 35

• Can derive admissible heuristics from solution
cost of subproblem of given problem

• Example: 8-puzzle: subproblem is solution to
getting tiles 1, 2, 3, 4 in place (or any 4 of the
tiles)

• Pattern databases: store exact solution costs for
every possible subproblem instance (i.e., every
configuration of the 4 tiles of the subproblem)

• Then compute admissible heuristic by looking up
subproblem in database

Admissible Heuristics from Subproblems

• If subproblems are independent, then can add
costs of subproblems to create admissible
heuristic

• E.g., for 8-puzzle, 2 subproblems: 1-2-3-4,
5-6-7-8.
– Count cost of each subproblem only for the

specified tiles (not all tiles)
– Then, the two subproblem costs can be added

Disjoint Pattern Databases

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

– incomplete and not always optimal

A∗ search expands lowest g + h

– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1–2 36

Reading Assignment

• For Thursday: Chapter 4.3-4.5 (we’re skipping
4.1-4.2)

• For next week: Chapter 5

	Informed Search Algorithms.pdf
	Informed Search Algorithms

	Exercise-wooden-railway.pdf
	Class Exercise: Wooden Railway Set
	Class Exercise: Wooden Railway Set
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)

	Memory-bounded.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3

	Pattern-databases.pdf
	Slide Number 1
	Slide Number 2

	Exercise-search-algs.pdf
	Exercise: Search Algs.
	Exercise: Search Algs.
	Exercise: Search Algs.
	Exercise: Search Algs.

	Various-search-algs.pdf
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.
	Exercise: Various Search Algs.

	Reading-assignments.pdf
	Reading Assignment

	Reading-assignments.pdf
	Reading Assignment

