
BEYOND CLASSICAL SEARCH:
− SEARCHING WITH NON-DETERMINISTIC ACTIONS
− SEARCHING WITH PARTIAL OBSERVATIONS
− ONLINE SEARCH & UNKNOWN ENVIRONMENTS

Chapter 4, Sections 4.3-4.5

“Machines will be capable, within twenty years, of doing any
work that a man can do.” Herbert Simon, 1965.

Remember Reading Assignment!

• Next week: Chapter 5 (Adversarial Search)

Class Exercise: Wooden Railway Set
Track pieces from wooden railway set:

Q1: Suppose the pieces fit together exactly. Give formulation of the task as a
search problem

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q2: Identify a suitable uninformed search algorithm for this task, and explain why
it is suitable.

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q3: Why does removing any one of the “fork” pieces make the problem
unsolvable?

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

Class Exercise: Wooden Railway Set
(con’t.)

Track pieces from wooden railway set:

Q4: Give an upper bound on the total size of the state space defined for this
formulation. (Ignore problem of overlapping pieces and loose ends. Reason
primarily about max branching factor and max depth. Pretend unique pieces.)

x 12

x 16

x 12 x 2 x 2

(Curved pieces can be flipped)

• Can’t be sure of the outcome of actions
– Percepts help narrow down possible resultant

states

• Need a contingency plan (or strategy) that
specifies what to do depending on what
percepts are received

Searching with Nondeterministic Actions

• Outcome of Suck action:
– When applied to dirty square the action cleans the square

and sometimes cleans up dirt in an adjacent square, too
– When applied to a clean square the action sometimes

deposits dirt on the carpet

• To handle, need transition model that returns a set of
possible outcome states

• And, need to generalize solution to a contingency plan
– E.g., [Suck, if State = 5 then [Right, Suck] else []]

Erratic Vacuum World

• OR nodes: Represent agent’s own choices
• AND nodes: Environment’s choice of outcome for each action

New type of Search Tree: AND-OR Search Trees

Start in state 1

Uncertain result of Suck is
{State 5, State 7}

Need a plan
for all possible

outcome
states

• Solution is a subtree that:
– Has goal node at every

leaf
– Specifies one action at

each OR node
– Includes every outcome

branch at each AND
node

New type of Search Tree: AND-OR Search Trees

Searching AND-OR Graphs

• Can be done with a variety of search
techniques:
– DFS
– BFS
– Best-first
– A*
– Etc.

• Outcome of Left or Right
 actions:

– Agent might not move, even
 if given Left or Right motion
 commands
− Keep trying an action until it works
− We assume that each possible
 outcome of a nondeterministic
 action eventually occurs

• Need to define cyclic solutions
– Keep trying an action until it works
– E.g., [Suck, L1: Right, if State = 5 then L1 else Suck]
– Equivalent to: “while State = 5 do Right”

Slippery (Non-Erratic) Vacuum World

Searching with Partial Observations

• Introduce belief state: represents agent’s
current belief about possible physical states it
could be in, given sequence of actions and
percepts up to that point

• 3 scenarios:
– Searching with no observation
– Searching with observations
– Solving partially observable problems

Searching with no observations: Sensorless

• Sensorless = conformant

• Example: Vacuum world with no sensors:
– Agent knows geography of environment
– Agent doesn’t know its location or distribution of dirt
– Initial state: {1, 2, 3, 4, 5, 6, 7, 8}
– Action outcomes:

• [Right]: possible successor states: {2, 4, 6, 8}
• [Right, Suck]: {4, 8}
• [Right, Suck, Left Suck]: {7}

Sensorless problems: Search in Space of Belief States

• Beliefs are fully observable

• Belief states: every possible set of physical states; N
physical states 2N belief states

• Initial state: Typically the set of all physical states
• Actions: Either the union or intersection of the legal

actions for the current belief states
• Transition model: set of all possible states that could result

from taking any of the actions in any of the belief states
• Goal test: all states in current belief set are goal states
• Path cost: (it depends. application-specific)

• Use any search technique we’ve discussed

Challenge: size of belief state

• Example: belief state for 10 x 10 vacuum world has 100 x 2100 =
1032 physical states!

• Alternatives:
Better (more compact) representation
 Solving problem incrementally (incremental belief-state

search)
o E.g.,

o solve for first state,
o see if it works for other states;
o if not, find another solution for first state,
o and iterate

• But, generally tough to solve w/o sensors!

Belief-state space for deterministic, sensorless vacuum world

At any point,
agent knows
which belief
state it is in,
but not
which
physical
state it is in

Note: there are 28 = 256 possible belief states, but only 12 reachable belief states

Searching with observations

• Define PERCEPT(s) that returns the agent’s
percept, given the state s

• E.g., In Vacuum world, PERCEPT(state1)=[A,Dirty]

• Special cases:
– Fully observable problems: PERCEPT(s) = s
– Sensorless problems: PERCEPT(s) = Null

Vacuum World Examples

• PERCEPT = [A,Dirty]
yields belief state
{1, 3}

• PERCEPT = [B,Clean]
yields belief state
{4, 8}

Example Transitions

Grey circles represent
belief states

Deterministic world:

Slippery world:

Searching with observations

• Prediction: given action a in belief state b, predict the
resulting belief state: 𝑏� = Predict(b, a)

• Observation prediction: determine set of percepts o that
could be observed in the predicted belief state:

PO S S IB L E _P E R C E P T S(𝑏�)= {𝑜: 𝑜 = PE R C E P T 𝑠 and 𝑠 𝜖 𝑏�}
• Update: determine belief state that results from each

possible percept (i.e., which set of states in 𝑏� could have
produced the percept)
 𝑏0=UP D A T E (𝑏�,o)= {s: o =PE R C E P T 𝑠 and 𝑠 𝜖 𝑏�}

• Then, obtain possible belief states resulting from action and
subsequent possible percepts:
RE S U L T S 𝑏,𝑎

= 𝑏0: 𝑏0= UP D A T E(PR E D IC T(𝑏,𝑎 , 𝑜) and
 𝑜 𝜖 PO S SIB LE−PE R C E P T S(PR E D IC T (𝑏,𝑎))}

Can use AND-OR search algorithm to solve

More interesting application: Robot localization

• Initially, robot has no idea of where it is, but it knows geography of environment;
• Robot has perfect sensors to detect obstacles in each compass direction (NSEW)
• Robot has slippery motion – so it lands in any adjacent square after Move

• Until now: offline search, where complete solution is
generated before anything changes in physical world

• Online search:
– Interleaves computation and action

• “Solved” by an agent executing actions
– Useful for dynamic environments
– Useful for nondeterministic environments, since it allows

agent to focus on contingencies that actually arise – not
just those that might arise

– Necessary for unknown environments

Online search problems

• Agent only knows:
– Actions(s) – list of actions allowed in state s
– Step-cost function c(s, a, s’) – can only be determined after s’ discovered
– Goal-Test(s)

• Agent might know: admissible heuristic to determine distance to
goal state

• Cost: total path cost of the path the agent actually travels
• Competitive ratio: ratio of actual cost to optimal cost (i.e., best

case if the agent knew the search space in advance)
– “1” is optimal actual cost

Online search problems (con’t.)

• Irreversible actions: fall off
cliff!

• Dead-end state: locked in a
freezer!

• No algorithm can avoid
dead ends in all state
spaces

• Easier: assume state space
is safely explorable, where
some goal is reachable from
every state

Online search problems (con’t.)

• No bounded competitive
ratio can be guaranteed,
even in safely explorable
environments

Online search problems (con’t.)

• Agent can only explore from current state
– Can’t bounce around to other search paths, like offline A*
– DFS can be used, as long as actions are reversible
– Also online versions of iterative deepening will work
– Random walk is possible

• Select at random an available action from current state
• Preference to previously unexplored actions
• Will eventually find goal, if space is finite
• But slow – exponential search in worst case:

Online search problems (con’t.)

• A sequence of actions solves a sensorless problem if it maps
every physical state in initial belief state b to a goal state.

• Suppose agent knows h*(s), the true optimal cost of solving the
fully observable version of the problem, for every state s in b.

• What would be an admissible heuristic h(b) for the sensorless
problem, in terms of h*(s)?

Exercise: Sensorless heuristics

Remember Reading Assignment!

• Next week: Chapter 5 (Adversarial Search)

	Beyond Classical Search:� Searching with non-deterministic actions� Searching with partial observations� Online search & unknown environments
	Remember Reading Assignment!
	Class Exercise: Wooden Railway Set
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Class Exercise: Wooden Railway Set (con’t.)
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Remember Reading Assignment!

