Adversarial Search

Chapter 5

". . . every game of skill is susceptible of being played by an automaton." from Charles Babbage, The Life of a Philosopher, 1832.

Outline

\diamond Games
\diamond Perfect play

- minimax decisions
$-\alpha-\beta$ pruning
\diamond Resource limits and approximate evaluation
\diamond Games of chance
\diamond Games of imperfect information

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate
Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble nuclear war

Game tree (2-player, deterministic, turns)

Minimax

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value $=$ best achievable payoff against best play
E.g., 2-ply game:

Minimax algorithm

```
function Minimax-Decision(state) returns an action
    inputs: state, current state in game
    return the \(a\) in Actions(state) maximizing Min-Value(Result( \(a\), state))
function MAX-VALUE(state) returns a utility value
    if Terminal-TESt(state) then return Utility(state)
    \(v \leftarrow-\infty\)
    for \(a\), \(s\) in \(\operatorname{Successors}(\) state \()\) do \(v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))\)
    return \(v\)
function Min-VALUE(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    \(v \leftarrow \infty\)
    for \(a\), \(s\) in Successors \((\) state \()\) do \(v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))\)
    return \(v\)
```


Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this). NB a finite strategy can exist even in an infinite tree!

Optimal??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity?? $O(b m)$ (depth-first exploration)
For chess, $b \approx 35, m \approx 100$ for "reasonable" games
\Rightarrow exact solution completely infeasible
But do we need to explore every path?

$\alpha-\beta$ pruning example

$\alpha-\beta$ pruning example

$\alpha-\beta$ pruning example

Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it \Rightarrow prune that branch
Define β similarly for MIN

Properties of $\alpha-\beta$

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
\Rightarrow doubles solvable depth
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

Resource limits

Standard approach:

- Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)
- Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^{4} nodes/second
$\Rightarrow 10^{6}$ nodes per move $\approx 35^{8 / 2}$
$\Rightarrow \alpha-\beta$ reaches depth $8 \Rightarrow$ pretty good chess program

Evaluation functions

Black to move
White slightly better

White to move
Black winning

For chess, typically linear weighted sum of features

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

Exercise - Tic-tac-toe

- Define X_{n} as the number of rows, columns, or diagonals with exactly $n X$'s and no O 's. Similarly, O_{n} is the number of rows, columns, or diagonals with exactly $n O^{\prime} s$ and no X 's.
- The utility function assigns +1 to any position with $X_{3}=1$ and 1 for any position with $\mathrm{O}_{3}=1$. All other terminal positions have utility 0 .
- For non-terminal positions, we use a linear evaluation function defined as Eval $(s)=3 X_{2}(s)+X_{1}(s)-\left(3 \mathrm{O}_{2}(s)+\mathrm{O}_{1}(s)\right)$
a) Approximately how many games of tic-tac-toe are there?

Exercise - Tic-tac-toe

b) What does the game tree look like (taking symmetry into account)?

Digression: Exact values don't matter

MAX

MIN

Behaviour is preserved under any monotonic transformation of EvaL
Only the order matters:
payoff in deterministic games acts as an ordinal utility function

How to achieve a good game of chess?

- Extensively tuned evaluation function
- Cutoff test with quiescence search
- Large transposition table [i.e., hash of previously seen positions, saved for re-use]
- Use of alpha-beta, with extra pruning
- Large database of optimal opening and endgame moves
- Fast computer!

Exercise - Prove correctness of $\alpha-\beta$

- Question is whether to prune n_{j}, which is a max-node and descendent of n_{1}
- Basic idea is to prune it iff the minimax value of n_{1} can be shown to be independent of the value of n_{j}
- Node n_{1} takes on the minimum value among its children $n_{1}=\min \left(n_{2}, n_{21}, \ldots, n_{2 \mathrm{~b} 2}\right)$. Find a similar expression for n_{2} and hence an expression for n_{1} in terms of n_{j}.

