
ADVERSARIAL SEARCH 

Chapter 5 

“. . . every game of skill is susceptible of being played by an automaton.”                                                        
                               from Charles Babbage, The Life of a Philosopher, 1832.  
 



Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation

♦ Games of chance

♦ Games of imperfect information
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Games vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

•Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)
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Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe
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Game tree (2-player, deterministic, turns)
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Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
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Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do v←Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←∞

for a, s in Successors(state) do v←Min(v, Max-Value(s))

return v
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Properties of minimax

Complete??
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Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!

Optimal??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??
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Properties of minimax
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Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

Chapter 6 11



Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?
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α–β pruning example
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α–β pruning example
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α–β pruning example
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α–β pruning example
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α–β pruning example
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Why is it called α–β?
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α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min
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Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!
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Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
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Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
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• Define Xn as the number of rows, columns, or diagonals with 
exactly n X’s and no O’s.  Similarly, On is the number of rows, 
columns, or diagonals with exactly n O’s and no X’s.  

• The utility function assigns +1 to any position with X3 = 1 and -
1 for any position with O3 = 1.  All other terminal positions 
have utility 0. 

• For non-terminal positions, we use a linear evaluation 
function defined as Eval(s) = 3X2(s) + X1(s) – (3O2(s)+O1(s)) 
 

a) Approximately how many games of tic-tac-toe are there? 

Exercise – Tic-tac-toe 



Exercise – Tic-tac-toe 

b) What does the game tree look like (taking symmetry into account)? 
 



Digression: Exact values don’t matter
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Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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• Extensively tuned evaluation function 
• Cutoff test with quiescence search 
• Large transposition table [i.e., hash of previously seen 

positions, saved for re-use] 
• Use of alpha-beta, with extra pruning 
• Large database of optimal opening and endgame moves 
• Fast computer! 

How to achieve a good game of chess? 



Exercise – Prove correctness of α-β 

• Question is whether to prune nj, which is a 
max-node and descendent of n1  

• Basic idea is to prune it iff the minimax value 
of n1 can be shown to be independent of the 
value of nj 

• Node n1 takes on the minimum value among 
its children n1 = min(n2, n21, …, n2b2

).  Find a 
similar expression for n2 and hence an 
expression for n1 in terms of nj. 
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