
ADVERSARIAL SEARCH

Chapter 5

“. . . every game of skill is susceptible of being played by an automaton.”
 from Charles Babbage, The Life of a Philosopher, 1832.

Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation

♦ Games of chance

♦ Games of imperfect information

Chapter 6 2

Games vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

•Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Chapter 6 3

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

Chapter 6 4

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Chapter 6 5

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

Chapter 6 6

Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do v←Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←∞

for a, s in Successors(state) do v←Min(v, Max-Value(s))

return v

Chapter 6 7

Properties of minimax

Complete??

Chapter 6 8

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!

Optimal??

Chapter 6 9

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Chapter 6 10

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

Chapter 6 11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?

Chapter 6 12

α–β pruning example

MAX

3 12 8

MIN 3

3

Chapter 6 13

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

Chapter 6 14

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

Chapter 6 15

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

Chapter 6 16

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Chapter 6 17

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min

Chapter 6 18

Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

Chapter 6 20

Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program

Chapter 6 21

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

Chapter 6 22

• Define Xn as the number of rows, columns, or diagonals with
exactly n X’s and no O’s. Similarly, On is the number of rows,
columns, or diagonals with exactly n O’s and no X’s.

• The utility function assigns +1 to any position with X3 = 1 and -
1 for any position with O3 = 1. All other terminal positions
have utility 0.

• For non-terminal positions, we use a linear evaluation
function defined as Eval(s) = 3X2(s) + X1(s) – (3O2(s)+O1(s))

a) Approximately how many games of tic-tac-toe are there?

Exercise – Tic-tac-toe

Exercise – Tic-tac-toe

b) What does the game tree look like (taking symmetry into account)?

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

• Extensively tuned evaluation function
• Cutoff test with quiescence search
• Large transposition table [i.e., hash of previously seen

positions, saved for re-use]
• Use of alpha-beta, with extra pruning
• Large database of optimal opening and endgame moves
• Fast computer!

How to achieve a good game of chess?

Exercise – Prove correctness of α-β

• Question is whether to prune nj, which is a
max-node and descendent of n1

• Basic idea is to prune it iff the minimax value
of n1 can be shown to be independent of the
value of nj

• Node n1 takes on the minimum value among
its children n1 = min(n2, n21, …, n2b2

). Find a
similar expression for n2 and hence an
expression for n1 in terms of nj.

	6-Adversarial-Search-first-slide.pdf
	Adversarial Search

	Good-game-chess.pdf
	Slide Number 1

	Exercise-tic-tac-toe.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

	Proof-alpha-beta-correctness.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

