
ADVERSARIAL SEARCH

Chapter 5

“. . . every game of skill is susceptible of being played by an automaton.”
 from Charles Babbage, The Life of a Philosopher, 1832.

Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation

♦ Games of chance

♦ Games of imperfect information

Chapter 6 2

Games vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

•Machine learning to improve evaluation accuracy (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Chapter 6 3

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

Chapter 6 4

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Chapter 6 5

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

Chapter 6 6

Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do v←Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←∞

for a, s in Successors(state) do v←Min(v, Max-Value(s))

return v

Chapter 6 7

Properties of minimax

Complete??

Chapter 6 8

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!

Optimal??

Chapter 6 9

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Chapter 6 10

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

Chapter 6 11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?

Chapter 6 12

α–β pruning example

MAX

3 12 8

MIN 3

3

Chapter 6 13

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

Chapter 6 14

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

Chapter 6 15

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

Chapter 6 16

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Chapter 6 17

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min

Chapter 6 18

Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

Chapter 6 20

Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program

Chapter 6 21

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

Chapter 6 22

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

• Extensively tuned evaluation function
• Cutoff test with quiescence search
• Large transposition table [i.e., hash of previously seen

positions, saved for re-use]
• Use of alpha-beta, with extra pruning
• Large database of optimal opening and endgame moves
• Fast computer!

How to achieve a good game of chess?

• Define Xn as the number of rows, columns, or diagonals with
exactly n X’s and no O’s. Similarly, On is the number of rows,
columns, or diagonals with exactly n O’s and no X’s.

• The utility function assigns +1 to any position with X3 = 1 and -
1 for any position with O3 = 1. All other terminal positions
have utility 0.

• For non-terminal positions, we use a linear evaluation
function defined as Eval(s) = 3X2(s) + X1(s) – (3O2(s)+O1(s))

a) Approximately how many games of tic-tac-toe are there?

Exercise – Tic-tac-toe

• Define Xn as the number of rows, columns, or diagonals with
exactly n X’s and no O’s. Similarly, On is the number of rows,
columns, or diagonals with exactly n O’s and no X’s.

• The utility function assigns +1 to any position with X3 = 1 and -
1 for any position with O3 = 1. All other terminal positions
have utility 0.

• For non-terminal positions, we use a linear evaluation
function defined as Eval(s) = 3X2(s) + X1(s) – (3O2(s)+O1(s))

a) Approximately how many games of tic-tac-toe are there?
9! = the number of move sequences that fill up the board
(although many wins and losses occur before that)

Exercise – Tic-tac-toe

Exercise – Tic-tac-toe

b) What does the game tree look like (taking symmetry into account)?

Exercise – Prove correctness of α-β

• Question is whether to prune nj, which is a
max-node and descendent of n1

• Basic idea is to prune it iff the minimax value
of n1 can be shown to be independent of the
value of nj

• Node n1 takes on the minimum value among
its children n1 = min(n2, n21, …, n2b2

). Find a
similar expression for n2 and hence an
expression for n1 in terms of nj.

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Chapter 6 25

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

Chapter 6 26

Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then

return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)
. . .

Chapter 6 27

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval

≈ world-champion level

Chapter 6 28

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Chapter 6 29

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 6 30

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Chapter 6 34

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Chapter 6 35

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you’ll find a mound of jewels;
guess incorrectly and you’ll be run over by a bus.

Chapter 6 36

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
♦ Acting to obtain information
♦ Signalling to one’s partner
♦ Acting randomly to minimize information disclosure

Chapter 6 37

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

♦ perfection is unattainable ⇒ must approximate

♦ good idea to think about what to think about

♦ uncertainty constrains the assignment of values to states

♦ optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design

Chapter 6 38

Suppose you have a chess program that can evaluate 10 million nodes per second.
(There are approximately 1047 legal game positions in chess.)

a) What is a compact representation of a game state for storage in a transposition table?

(Note that there are 32 pieces in chess, and 64 squares on the board. Presume 8-bit
bytes.)

Exercise – Chess Storage

Reading Assignment

• For next week: Chapter 7 – Logical Agents
– Tuesday: 7.1-7.4
– Thursday: 7.5-7.7

	6-Adversarial-Search-first-slide.pdf
	Adversarial Search

	Good-game-chess.pdf
	Slide Number 1

	Exercise-tic-tac-toe.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

	Proof-alpha-beta-correctness.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Reading-assignments.pdf
	Reading Assignment

	Exercise-Chess-storage.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

