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Abstract. A key challenge in multi-robot teaming research is deter-
mining how to properly enable robots to make decisions on actions they
should take to contribute to the overall system objective. This article
discusses how many forms of decision making in multi-robot teams can
be formulated as optimization problems. In particular, we examine the
common multi-robot capabilities of task allocation, path planning, for-
mation generation, and target tracking/observation, showing how each
can be represented as optimization problems. Of course, globally opti-
mal solutions to such formulations are not possible, as it is well-known
that such problems are intractable. However, many researchers have suc-
cessfully built solutions that are approximations to the global problems,
which work well in practice. While we do not argue that all decision
making in multi-robot systems should be based on optimization formu-
lations, it is instructive to study when this technique is appropriate. Fu-
ture development of new approximation algorithms to well-known global
optimization problems can therefore have an important positive impact
for many applications in multi-robot systems.
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1 Introduction

The topic of multi-robot systems' has been extensively studied for the past
two decades. The typical design objective in creating multi-robot teams is to
enable the group of robots to solve physical tasks in a manner that is superior to
single-robot systems. Many advances have been made in this field (e.g., see [32]
for an overview), with some systems beginning to work their way into practical
applications (e.g., for warehousing operations [45]).

These advances are possible because of the successful development of solu-
tions to many challenges, including: (a) the design of sophisticated robot hard-
ware that can physically achieve demanding tasks, (b) the development of ad-
vanced sensors and perception systems that can provide robots with detailed

! For our purposes, we define multi-robot systems to be groups of autonomous mobile
robots that operate simultaneously in a shared workspace.



knowledge of their environment and the state of their mission, (c¢) the develop-
ment of robust and reliable communications systems that allow robots to share
information when distributed across a (potentially large) workspace, and (d)
the design of intelligent robot control software that enables robots to achieve
globally coherent results from individual local control actions. While all of these
challenges are equally important, in this article we focus on the latter challenge
— the development of intelligent software control for multi-robot teaming.

In a broad sense, robot control software could be considered equivalent to
decision making in multi-robot teams. In some sense, every action that a robot
takes is indeed based on a decision that the robot has made. However, not
all multi-robot systems are typically characterized as decision making systems.
The concept of decision making usually connotes a cognitive mental process,
involving processes such as understanding, attention, reasoning, judgment, and
so forth. Many multi-robot systems — especially the swarm robotics approaches
(e.g., [20,26,27]) — do not make use of such cognitive processes, and instead
incorporate relatively simple control laws that result in emergent group behavior.
Since the type of control implemented in these systems does not involve cognitive
processes, most robotics researchers would not call this control decision making.

On the other hand, a different class of multi-robot systems involves more
direct and purposeful interaction (e.g., [30,34, 38, 40]). These systems consist of
robots with higher-level reasoning capabilities, and with possibly varying sensory,
computational, and physical skills. In these systems, robots must decide how to
coordinate their actions in a more deliberative manner. Thus, these multi-robot
systems could indeed be accurately described as decision making systems.

Interestingly, many forms of decision making in intentionally cooperative
multi-robot systems can be formulated as optimization problems. While we do
not claim that all decision making in these domains can, or should, be viewed in
this manner, it is instructive to review some representative techniques that have
been demonstrated to enable robots to successfully work together in a variety of
applications. This article reviews some common optimization formulations that
have been presented in the literature for this domain. However, we do not at-
tempt a complete survey of the literature on this topic, since that is beyond the
scope of this article.

We begin in Section 2 by providing additional background material for un-
derstanding decision making in multi-robot teams. Then, in Section 3, we look
at some common multi-robot capabilities that are suitable for formulation as op-
timization problems. Sections 4 through 7 examine each of these capabilities in
more detail. Since the globally optimal solution typically requires excessive com-
putation (i.e., the global problem formulations are NP-complete), distributed
approaches that approximate the global solution are typically pursued; example
techniques are also discussed in these sections. We offer concluding remarks in
Section 8.



2 Background: Types of Multi-Robot Interaction

To place multi-robot decision making in context, we briefly introduce the most
common forms of interaction in multi-robot teams (see [33] for a more detailed
discussion of these types of systems). These types of interaction are characterized
as follows:

— Collective multi-robot teams typically involve simple robots that are not
aware of other robots on the team, even though they share common goals.
In these systems, individual actions are typically beneficial to the team as a
whole, and contribute to the team-level objective.

— Cooperative multi-robot teams involve robots that are aware of other robots
on the team, and share goals with other teammates. Individual robot actions
are usually beneficial to the objectives of the team as a whole.

— Collaborative multi-robot teams consist of robots that are aware of each
other, and have individual goals. However, even though their individual goals
may not be identical, they are willing to work with others when needed to
help them achieve their individual goals.

— Coordinative multi-robot teams are composed of robots with individual goals,
but which work together with other robots in a shared workspace to minimize
inter-robot interference. In these systems, robots do not actively try to help
other robots, but instead work to actively avoid interference.

Decision making most commonly occurs in the latter three types of systems,
since the first (collective) type of multi-robot system does not typically include
cognitive robot skills. Note that none of these types of interaction incorporates
adversarial robots that work actively against each other. While this is a popular
subject of study in multi-robot systems, especially for the domain of multi-
robot soccer (e.g., [6,17,44]), we presume for the purposes of this article that all
robots in the workspace share the objective of minimizing negative interference
with other robots. In the sections that follow, we refer back to these types of
interactions, noting which type of interaction is commonly studied in different
multi-robot applications.

3 Decision Making as Optimization

To understand decision making in multi-robot teams, it is instructive to consider
the types of applications and tasks to which multi-robot teams are applied.
As outlined in [32] in more detail, some common applications for multi-robot
teams include foraging, coverage, search, warehouse management, surveillance
and security, construction and assembly, cooperative manipulation, search and
rescue, and soccer. Each application area has its own unique challenges. However,
many of these domains make use of solutions to some fundamental multi-robot
interaction skills, including task allocation, path planning, formation control,
and target tracking or observation. Thus, we examine these latter four areas in



more detail in this article, since they have broad relevance to many multi-robot
applications.

In all of these multi-robot interaction capabilities, the decision making pro-
cess can be formulated as an optimization problem. Typically, these are formu-
lated as combinatorial optimization [29] or as convex optimization [5] problems,
in order to take advantage of the many tools available for these type of op-
timization. Importantly, however, these problems are typically not treated as
global optimization problems for multi-robot applications, since such problems
are known to be NP-complete. Since most robotic applications require real-time
robot response, there is insufficient time to calculate globally optimal solutions
for most applications; such solutions are only possible for very small-scale prob-
lems. Instead, typical solutions use distributed methods that incorporate only
local cost/utility metrics. While such approaches can only achieve approxima-
tions to the global solution, they often are sufficient for practical applications.

As previously mentioned, the four representative multi-robot interaction skills
that are often framed as optimization problems are as follows:

— Task allocation: Optimize a combination of robot cost and task utility in
mapping a set of robots to a set of tasks [13].

— Path planning: Generate paths for multiple robots that minimize a perfor-
mance metric [35]. Typical performance metrics include combined robot path
lengths, combined travel times for robots to reach their respective goals, and
combined energy use.

— Formations: Enable robots to move into a desired formation, or to maintain
a specified formation, while moving through the environment. A common
quality metric is to minimize the error between each current robot position
and that robot’s assigned position in the formation [28].

— Target tracking or observation: Control cooperative robot motions to ensure
that a group of targets remains under observation by the robots. The typical
metric is to optimize a combination of the time targets are under observation
and a robot cost function [31].

The following sections present formulations of these capabilities as optimiza-
tion problems. Examples are also given of approximation approaches that have
been proposed for these problems.

4 Optimization in Task Allocation

Simply put, the task allocation problem in multi-robot systems is determining
the proper mapping of a set of robots to a set of tasks, so as to maximize
the total utility of the system. The task allocation problem arises frequently in
cooperative, collaborative, and coordinative types of multi-robot teams.

In [13], Gerkey and Mataric define a taxonomy that covers several variations
of the multi-robot task allocation problem. This taxonomy is defined on three
axes, each of which has two possible settings: (1) robots — single-task (ST) versus
multi-task (MT), (2) tasks — single-robot (SR) versus multi-robot (MR), and (3)



assignments — instantaneous (IA) versus time-extended (TA). A particular task
allocation problem is denoted by one choice from each list, such as ST-MR-IA,
which is the “easiest” of the task allocation problems.

Each variant requires a different formulation of the optimization problem.
For example, if solved in a centralized manner, Gerkey notes that the ST-MR-TA
problem can make use of the Hungarian method [21] to find an optimal solution
in polynomial time. Distributed variants make use of auction algorithms (e.g.,
[4]), which are based on economics-inspired metaphors, in which tasks are put
up for bid by robots, who then propose their cost (or utility) in performing the
task. Robots are awarded tasks based on maximizing the utility of the system.
Many implementations of this market-based approach have been developed; an
overview of this literature is given in [9].

Other variants of the problem are related to well-known NP-complete prob-
lems such as the Set Covering Problem (SCP), and the Set Partitioning Problem
(SPP). For example, as noted in [13], viewing the ST-MR-IA multi-robot task
allocation problem as an instance of SPP can be stated as:

Definition 1. Given a finite set of robots R, a family F of acceptable subsets
of R that represent all feasible robot coalition-task pairs, and a utility function
u: F — Ry, find a mazimum-utility family X of elements in F such that X is
a partition of R.

Some proposed task allocation approaches (e.g., [43]) have adapted existing
SCP and SPP approximation algorithms (e.g., [7,15]), making them relevant to
the multi-robot domain. Example results from [47], which make use of market-
based techniques to enable multi-robot teams to achieve an exploration task, are
shown in Figure 1.

Fig. 1. Illustration of task allocation results in an exploration problem. From [47].



To provide a more detailed example of an approximation approach to task
allocation, we briefly overview the ASyMTRe work of [34], which addresses the
ST-MR-TA task allocation variant of the Gerkey taxonomy [13]. In this variant,
the objective is to achieve task allocation for single-task robots (ST) perform-
ing multi-robot tasks (MR) using instantaneous assignment (IA). This problem
variant is also called the coalition formation problem. While this problem has
been addressed extensively in the multi-agent community (e.g., [18,36,37]), it
has been noted by Vig [42] that most of the multi-agent approaches to coali-
tion formation cannot be directly transferred to multi-robot applications, since
robot capabilities and sensors are situated directly on the robots and are not
transferable between robots.

The ASyMTRe approach is aimed at enabling sensor-sharing across robots for
the purpose of forming coalitions to solve single multi-robot tasks. This method
defines basic building blocks of robot capabilities to be collections of environ-
mental sensors (ESs), perceptual schemas (PSs), motor schemas (MSs), and com-
munication schemas (CSs). A robot, R;, can be represented by R; = (ES?, S?),
where ES? is a set of environmental sensors installed on R;, and S? is the set of
schemas that are pre-programmed into R;. According to a set of rules, connec-
tions are created among the schemas on the robots to allow information to flow
through the system. A set of information types F = {Fy, F5, ...} is introduced to
label the inputs and outputs of each schema. (Information types differ from data
types (e.g., the data type integer) in that they have semantic meanings (e.g., a
robot’s global position)). A schema can be activated if its inputs are satisfied
either by sensors or the outputs of other schemas with the same information
types. The ultimate goal is to activate the required MSs on the robot coalition
team members to accomplish the task.

For reasoning about coalitions, ASyMTRe uses an anytime algorithm to
search the entire solution space and return the best solution found so far ac-
cording to predefined cost measures. One of the most important contributions of
ASyMTRe is that it enables a finer resource sharing by dividing robot capabil-
ities into smaller chunks (i.e., schemas), and reasons about how these schemas
can be connected. Information can flow through the system to where it is re-
quired such that capability sharing is implicitly enabled through communication.
ASyMTRe effectively manages the search space by reducing the solution space
to an equivalence class that is smaller in practice, although in theory it can still
be of exponential size. It also orders the search through the solution space via
a mazimum cooperation size constraint, preferring smaller-sized coalition solu-
tions over larger ones. These techniques enable ASyMTRe to quickly find good
(although not optimal) solutions that work well in practice.

ASyMTRe has been proven to be sound and complete, and has been shown to
provide more flexibility for achieving tightly-coupled multi-robot tasks. Figure 2
illustrates ASyMTRe performing dynamic coalition formation for a cooperative
navigation task. In this example, a coalition is formed with two robots to reach
a goal position, but during task execution, a failure of one of the robots occurs.



This causes ASyMTRe to search for an alternative solution, which is found,
resulting in a new coalition of robots.

Extensions to ASyMTRe have also been developed [46] that introduce an
information quality based approach to model sensor constraints explicitly, and
to provide a general method for maintaining the constraints during the task
execution.

Fig. 2. Illustration of ASyMTRe dynamically forming coalitions for a cooperative nav-
igation task. From [34].

5 Optimization in Path Planning

Another common multi-robot coordination problem is that of planning paths of
multiple robots through a workspace. This type of challenge arises most com-
monly in coordinative types of multi-robot teams. Typically, these problems re-
quire individual robots to move appropriately through the workspace in order to
achieve their own individual task objectives. Ideally, each robot moves as opti-
mally as possible, but it is constrained by other robots also moving in the same
workspace. Thus, the robots must work together to ensure that interference is
minimized while individual paths are optimized, to the extent possible.

This challenge is also frequently formulated as an optimization problem. As
described in [35], the multi-robot path planning can be formulated as an opti-
mization problem as follows (using the notation of [22,23)]):

Definition 2. Let A be a rigid robot in a static workspace W = RF, where
k =2 or k = 3. The workspace is populated with obstacles. A configuration q
is a complete specification of the location of every point on the robot geometry.
The configuration space C represents the set of all the possible configurations
of A with respect to W. Let O C W represent the region within the workspace
populated by obstacles. Let the closed set A(q) C W denote the set of points
occupied by the robot when it is in the configuration q € C. Then, the C-space
obstacle region, Cops, is defined as: Cops = {q € C|A(q) N O # 0}. The set of
configurations that avoid collision (called the free space) is: Cpree = C \ Cops. A
free path between two obstacle-free configurations cinit and cgoar s a continuous
map: 7[0,1] = Cree such that 7(0) = cinir and 7(1) = cgoal-



For a team of m robots, define a state space that considers the configurations
of all the robots simultaneously: X = C' x C?> x --- x C™. The C-space obstacle
region must now be redefined as a combination of the configurations leading to
a robot-obstacle collision, together with the configurations leading to robot-robot
collision. The subset of X corresponding to robot A® in collision with the obstacle
region, O, is X', = {x € X|A'(q") N O # 0}. The subset of X corresponding

to robot A in collision with robot A7 is Xi]l;s = {x € X|AY(q") N A (q") # 0}.
The obstacle region in X is then defined as the combination of these latter two

equations, resulting in:

m
Xobs = <U XZ)bs) U U (Zzbs : (1)
i=1 i5,i]

The planning process for multi-robot systems treats X the same as C, and X ,ps

the same as Cops, where cinyy represents the starting configurations of all the
robots, and cgoar Tepresents the desired goal configurations of all the robots.

The optimization criteria that are typically used in multi-robot path planning
are the minimization of total robot path lengths, the minimization of time for
all robots to reach their goals, and the minimization of combined energy for
robots to reach their goals. Other constraints can be added to guide the solution
search, such as the incorporation of navigation restrictions (e.g., maximum slope,
inability to traverse rough terrains).

As with other formulations, the centralized, global optimization problem can-
not be solved in real-time. Thus, approximation techniques are used, such as
decoupling the planning problem into independent components. One common
decoupled approach is to divide the problem into planning independent robot
paths, and then coordinating robot velocities along the paths in order to avoid
collisions (e.g., [14,16]). Another common technique is prioritized planning, in
which robot paths are planned in a priority order, with robots later in the order
treating robots earlier in the order as moving obstacles (e.g., [3,10]). Figure 3
illustrates example results from the prioritized multi-robot path planning work
of [3].

To provide more detail regarding an approximation technique to multi-robot
path planning, we outline the work of [14], which proposes a decentralized mo-
tion planning algorithm for multiple robots. This approach incorporates optimal
solutions to subcomponents of the path planning problem. The computationally
expensive problem is decomposed into two modules — path planning and veloc-
ity planning. Each robot plans its own path independently using the D* search
algorithm [39], which it then broadcasts to all other robots. The D* search
algorithm produces an optimal path from the start position to the goal that
minimizes a pre-defined cost function. The cost function used in this work is:
fop = p+ a1d + azs + ast, where p is a large value if there is any obstacle pen-
etrated by the path, and 0 otherwise; d is the geometric distance; s is the slope
of the terrain; t is the penalty for turning; and a1, as, a3 are positive weighting



Fig. 3. Illustration of results of prioritized multi-robot path planning for 30 robots.
From [3].

factors, where ||(a1, @2, @3)|| = 1. Such a cost function guarantees that D* re-
turns an optimal path that avoids static obstacles, and is the shortest, flattest,
smoothest possible path if one exists.

After robot R; obtains its own path P, and all other paths P, (j =
1,2,...,N), j # i, it executes a collision check procedure, which returns all col-
lision regions. Since the configuration space is on a regular grid representation,
the collision region is represented by sets of (x,y) pairs at which path intersec-
tions occur. Each path P; can be seen as a continuous mapping [0, 1] — W;Tee,
where [ is the path length. Without loss of generality, one can assume that the
parameterization of P; is of constant speed. Then, define S; = [0,!] to denote
the set of parameter values that place the robot along the path P;. The path
coordination space is defined as S = S; X S X ... X Sy, and the coordination
diagram (CD) is an N-dimensional diagram representing the path coordination
space.

D* then searches for a free trajectory in the CD by first mapping the col-
lision regions into the path coordination space as static obstacles. As the path
coordination space is parameterized by the non-decreasing path length, any pos-
sible movement in CD should be non-decreasing. Thus, the search objective is
to find a non-decreasing curve that connects the lower left corner of the diagram
(0,0,...,0) to the top right corner (I1,ls,...,I5) avoiding penetration into the
static obstacles. Such a free curve is called a trajectory. The computational ex-
pense is reduced by the non-decreasing constraint of the search. At each grid
point, 2V — 1 action combinations are considered. Although the complexity is
still exponential in the number of robots, the algorithm is efficient for a fixed V.

The trajectory is then converted into a velocity profile for each robot, and
the performance index of the current trajectory solution is calculated. Since



Fig. 4. Illustration of multi-robot path planning technique, which decouples path plan-
ning and velocity planning. Shown are the planned paths for three robots. From [14].

searching in the CD is distributed across the robots, each search can minimize a
different cost function. The cost function for D* velocity planning is chosen to be:
fop = 0+ P1d + Patigie + B3p, where o is a large value if there are any collision
regions penetrated by the trajectory, and 0 otherwise; d is the N-dimensional
Euclidean distance; ¢;4;¢ is the total idle time for all robots; p is the penalty if
robot A; has to give way to others; and (31, 82, 83 are positive weighting factors,
where (81, B2, B3)|| = 1.

The performance index and velocity profile are then broadcast to all other
robots. An evaluation is performed to obtain a minimum value of the perfor-
mance index, and the corresponding velocity profile is chosen. Figure 4 gives
example results from this technique for three robots.

6 Optimization in Formation Control

The formation control problem in multi-robot systems addresses the challenge
of moving robots into a desired formation shape and/or having the robots move
in a coordinated manner while maintaining a desired shape. This problem arises
in cooperative multi-robot teams, since all the robots share the same objective
of maintaining the specified formation. Many researchers address this problem
from control theoretic principles, focusing especially on proving stability and
convergence properties (e.g., [2,11,12,41]). The problem of generating an initial
desired formation can be formulated in many ways as an optimization problem.



For example, the work of [8] presents the formation problem as a convex op-
timization problem, showing that certain forms can be solved in real time for
large-scale multi-robot teams. This formulation of [8] is as follows:

Definition 3. Let P = (p1,...,pm) denote the concatenated coordinates of the
m robots in their current pose. Let S represent the equivalence class of similar-
ity transformations of the desired formation. The objective is to obtain a new
formation pose Q@ = (q1,...,qm)Y, where Q has the same shape as S under
an equivalence relation, and either the maximum distance between the respective
positions in P and @) are minimized, or the sum of the distances is minimized.
The set of nonlinear equality constraints that formulate this problem is given by:

[s2ll2(qf — qf) = (57, —s!)" (g2 — 1)

Is2ll2(af — af) = (s¥. —s7)" (a2 — @1)

for i = 3,...,m. For the sum of the distances optimization criteria, the con-
strained optimization problem becomes: ming >, ||q; — pil|2, subject to Ag = 0.
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Fig. 5. Illustration of multi-robot formation generation. From [8].

The authors in [8] illustrate this technique for 100 simulated robots, as shown
in Figure 5.

7 Optimization in Target Tracking/Observation

The domain of multi-target tracking and observation requires multiple robots
to observe multiple targets moving through the environment. The objective is
to keep as many of the targets within view by some robot on the team. This is
a problem for cooperative and collaborative multi-robot teams. As pointed out
in [31], this task is useful for studying strong cooperation in multi-robot teams,
since the actions of each robot directly affect the performance of the others on
the observation task.

The two-dimensional (planar) version of this task was introduced in [31] as
the CMOMMT (Cooperative Multi-robot Observation of Multiple Moving Tar-
gets) problem. CMOMMT is formulated as an optimization problem as follows:



Definition 4. Define the following: S is a two-dimensional, bounded, enclosed
spatial region; V is a team of m robot vehicles v;,i = 1,2,..m; O(t) is a set of
n targets 0j(t), j = 1,2,...,n, such that target 0;(t) is located within region S at
time t. We say that a robot, v;, is observing a target when the target is within
v;’s sensing range. Define an m x n matriz B(t), as:

1 if robot v; is observing target o;(t)
0 otherwise
Then, the objective is to mazimize the metric A = Zthl Z?:1 %, where:
1 if there exists an i such that b;;(t) =1
0 otherwise

9(B(t).) = {

Similar problems have been studied by many researchers, including more
complex versions in three dimensions (e.g., for aerial vehicles) and with more
complex topography. This domain is related to problems in art gallery algo-
rithms, pursuit evasion, and sensor coverage, and has practical relevance in se-
curity and surveillance applications. Example research in this domain includes
[1,19,24,25].

For the multi-robot target observation problem, the approximation solution
that is proposed in [31] is a weighted local force vector approach that attracts
robots to nearby targets and repels them from nearby robots. The weights are
computed in real-time, and are based on the relative locations of the nearby
robots and targets. In this approach, each robot broadcasts to its teammates the
position of all targets within its field of view. For all known targets, robots then
perform a predictive tracking of that target’s location, assuming that the target
will continue linearly from its current state. Weights associated with known
targets are decreased if other robots are known to be nearby. Setting the weights
in this manner aims at generating an improved collective behavior across robots
when utilized by all robot team members. Example results from this approach
are illustrated in Figure 6.

8 Conclusions

While not all multi-robot systems make use of decision making, it is common
in more intentional types of interaction that involve cooperative, collaborative,
and coordinative multi-robot teams. These types of teams are applied to a
wide variety of applications, many of which involve common multi-robot ca-
pabilities such as task allocation, path planning, formation control, and target
tracking/observation. Researchers often formulate these common capabilities by
defining them as optimization problems. In this paper, we have discussed some
common formulations for the four main multi-robot capability areas, and dis-
cussed some examples of approximation algorithms that are guided by the op-
timization formulation. While exact global solutions are not possible due to the



G=————— Cooperatn ¢ FE==—————— Cooperating Robots simuiator
A-CHOMMT Mode, R = 10000, m = 3, n = 6, Targets: random A-CHOMNT Mode, R = 10000, m = 5, n = 20, Targets: random

Fig. 6. Illustration of simulation results of multi-robot target observation, with (left)
3 robots and 6 targets, and (right) 5 robots and 20 targets. From [31].

intractability of the formulations, much research has shown that the approxi-
mate techniques work well in practice. These results show, therefore, that much
of multi-robot decision making can be successfully viewed, and approximated, as
optimization problems. The further development and application of distributed,
approximate solutions to optimization problems is therefore expected to be ben-
eficial for generating more effective decision making in multi-robot teams.
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