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~ Abstract—This paper describes a methodology for automat- Reconfiguration, pronounced “Asymmetry”), automates the
ically synthesizing task solutions for heterogeneous multi-robot task solution generation process by providing the ability f

teams. In contrast to prior approaches that require a manual pe- het bots t llaborate to find Iuti
definition of how the robot team will accomplish its task (while eterogeneous robots to coflaborateé 1o 1ind neéw solutions

perhaps automating who performs which task), our approach to tasks through various combinations of SenSing, effector
automates both thehow and the who to generate task solution and behaviors that may be distributed across multiple sobot
apprpaches that were not explicitly defined by the desig_nela ASyMTRe enables a close, dynamic cooperation amongst
priori. The advantages of this new approach are that it: (1) peterggeneous team members to accomplish tasks that might

enables the robot team to synthesize new task solutions thatb . ible f inale t f robot t hi if it
use fundamentally different combinations of robot behaviors °€ IMPOSSIbIe Tor a single type ot robot 1o achieve, even It |

for different team compositions, and (2) provides a general Were duplicated multiple times.
mechanism for sharing sensory information across networked  Our ASyMTRe automated task synthesis approach is in-
robots, so that more capable robots can assist less capable robot spired by the concept of information invariants [5], which

in accomplishing their objectives. Our approach, which we call ; ; P
ASyMTRe (Automated Synthesis of Multi-robot T ask solutions showed the equwalences betwegn different combllnatlons. of
sensing, communication, and action based upon information

through software Reconfiguration, pronounced “Asymmetry”), is
based on mapping environmental, perceptual, and motor control content. ASyMTRe allows the robots to reason about how to

schemas to the required flow of information through the multi- solve an application based upon the fundamental informatio
robot system, automatically reconfiguring the connections of needed to accomplish the task. The information needed to
schemas within and across robots to synthesize valid and efficient iy ate a certain behavior remains the same regardless of
multi-robot behaviors for accomplishing the team objectives. We . .

validate this approach by presenting the results of applying the way that the VPbOt _may obtain or gene_ratg it. Robots can
our methodology to two different teaming scenarios:altruistic  Collaborate to define different task strategies in termshef t

cooperation involving multi-robot transportation, and coalescent required flow of information in the system.

cooperation involving multi-robot box pushing. The basic building blocks of our approach are collections of
Index Terms— Multi-robot teams, behavior synthesis environmental sensors, perceptual schemas [9], motonsxhe
[1], and a simple new component we introduce, calted-
|. INTRODUCTION munication schemasThese schemas are assumed to be pre-

When dealing with heterogeneous multi-robot teams, twwogrammed into the robots at design time, and represent
issues are particularly challenging: (1) determining haw fundamental individual capabilities of the robots. Petaap
share sensor and perceptual resources across heterogernsghemas process input from environmental sensors to grovid
team members, and (2) determining the appropriate teaminfprmation to motor schemas, which then generate an output
behaviors to accomplish a task when the definitiomafvto control vector corresponding to the way the robot shouldenov
solve a task is dependent on the available collection ofteobdn response to the perceived stimuli. Communication sclsema
and their sensory, perceptual, and motor resources. ledlpitransfer information between various schemas. ASyMTRe
approaches to multi-robot teaming, the task tree desgithia automatically determines the proper connections betwieen t
decomposition of the team task into subtasks is defined by tensors and the schemas — across multiple robots — to ensure
human designer in advance of the robot team performantieat the team-level goals are achieved.

The robots then choose from one of the alternative taskThe rest of this paper is organized as follows. Section I
decomposition trees, followed by the use of an automatedroduces the formal definition of the problem with motingt
approach for task allocation to determine the dynamic nrappiexamples. Section Il explains our approach. We present
of subtasks to robots. In these typical approaches, the ptige details of the experiments that are used to validate our
defined task decomposition tree defines the available mulipproach in Section IV. Our results are shown and discussed
robot task solutions in advance of the mission (i.e.,liba). in Section V. We end the paper with a review of related work
This paper describes a new methodology for automating thed a discussion of future work and conclusions.

synthesis of multi-robot task solutions in a general wayt tha
addresses both of the above challenges.

Our approach, which we call ASyMTRe_(#omated  The problem we address in this paper is the automation of
Synthesis of _Milti-robot Task solutions through softwaretask solution synthesis that enables a collection of hgtero

II. THE PROBLEM



neous robots to reorganize into subteams as needed degendatess to all information needed to accomplish their objest
upon the requirements of the apphcatlon_w tasks and the BENSQ = malism of the Problem

perceptual, and effector resources available to the robdts ) )

assume that there is a sufficient mixture of robot capagiliti e formalize the automated task synthesis problem as
available to solve the problem, although those capalsilitiey follows. Given:

be distributed across multiple robots. An additional agstisn ~ « A collection of n robots, denoted? = {R1, Ry, ..., Ry, }.

is that with a large team of heterogeneous robots, differente A set of Information Typesdenotedr’ = {Fi, Fy, ...},
combinations of robots will be able to solve certain tasks representing the types of input and output of a schema.
in different ways. We also assume that the robots are teamr Environmental SensarslenotedtS = {ES1, ESa, ...}

members that share high-level goals and the intent is to — The input toES, is a specific physical sensor signal.
cooperate with each other to ensure that the high-levelsgoal — The output fromES; is denoted asO”% c F.
are achieved. We assume each environmental sensor only has one
o output, although the output may represent a set
A. Motivating Example of features of the sensory data (e.g., range and
To motivate the problem, consider a simple multi-robot intensity). The output of an environmental sensor is
transportation application, in which robot team membees ar connected to the input of a perceptual schema.
given the task of transporting themselves from a set ofistart + Perceptual SchemaslenotedPS = {PS;, PS,, ...}.
locations to a set of goal positions (one for each robot).  _ The inputs toPsS; are denotedUI”% < F, for
This task requires that each robot be able to localize itself k going from 1 to the number of inputs to the
relative to its goal position, and to move in a way that reduce perceptual schema. The perceptual schema inputs
this distance to zero. If every robot has these capabilities can come from either the outputs of communication
straightforward approach would be to have each robot naviga schemas or environmental sensors.
to its goal independently, e.g., using laser range scanner-  _ The output fromPS; is denotedO”S: c F. We
based localization. However, if some robots do not have the assume each perceptual schema only has one output
sensing capabilities to localize themselves relative teirth with a set of features (e.g., distance and angle). The
goals, an alternative solution would be for the more capable output from a perceptual schema can go to the inputs
robots to guide the less capable robots toward their goals by of either communication schemas or motor schemas.

providing them with relative positioning information, baips . Communication SchemaslenotedC'S = {CS;, CS,
through camera observations. The less capable robot can use Y ’ ’

this information obtained through another robot's sengors
allow it to accomplish its task. In fact, this particular sidn
strategy has been demonstrated in our previous work of eobil
sensor net deployment [13], in which a capable robot helped
other simpler robots deploy to required positions usingiaiis
sensing.

In other team compositions, alternative strategies foreaeh
ing the transportation application could be imagined, inclvh
different combinations of sensors could be used to gentrate
information needed to solve the task. It is important to note
however, that the resulting robot behaviors for accomjiggh
the task could be dramatically different depending upon the

— The inputs toC'S; are denotedJI ¢ F, for
k going from 1 to the number of inputs to the
communication schema. The inputs come from the
outputs of perceptual schemas or communication
schemas.

— The output fromCS; is denotedO“% C F. We
assume each communication schema only has one
output with a set of features. The output can go to
the inputs of perceptual schemas, motor schemas or
other communication schemas.

« Motor SchemasdenotedM S = {M Sy, M Ss, ...}.

combination of sensors that is selected for solving the task ~— The inputs toMS; are denotedJl;"™ C F, for
(see [12] for a further discussion of this issue). In one @ise going from 1 to the number of inputs to the motor
the transportation problem, a robot would be directly iragk schema. These inputs always come from the outputs
a go-to-goal behavior, whereas in another case, a robot must of perceptual schemas or communication schemas.
maintain another robot within its field of view so as to traitsm — The output from)S; is denotedO™® C F. We
relative position information to that robot, followed pags assume each motor schema has only one output with
by an invocation of its own go-to-goal behavior once the a set of features (e.g., velocity). The output always
less capable robot has reached its own goal. Therefore, it is goes to the robot effector control process.

important that the solution approach also synthesize theco ~ « Connection Ruleslenoteds; ; , CONNECT (0%, I.7)
combination of motor behaviors to achieve the goal in lighto < 0% = I,f", where S; and S; are types of schemas.
the sensory distribution that is present and the configumati This notation means that the output 8f can be con-
of schema connections that are generated. In summary, the nected to one of the inputs &, if and only if they
problem we address is, given a robot team, automatically have the same information type.

synthesize an effective task solution by reconfiguring the. Utility, denotedu(i) = > (w x 1/C; + (1 — w) x P;),
schema connections across robots to ensure that all roleds h ~ where ¢ represents thdth robot in the team, and



represents th@gh sensori-computational system thatthe, | [ = =———————— 1

|
robot needs to use. The utility(i) measures the fitness | ES |-+ PS MS Cs [+ PS 1\;&-
of the solution on roboR;. We also have: Parg

— Sensori-Computational Systemdenoted SC'S =
{8CS1, SCSs, ...}, whereSCS, is a module that R, B,
computes a function of its inputs and its current pose
or position [5]. SC'Sy, is composed of a specific Fig. 1. Possible connections of schemas between two robots.

sensorES; and its computational unit.

— Success ProbabilitiesdenotedP = {P, P, ...},
where0 < P, < 1, and P, = probability(SCSk). is a set of information typeF that constitutes the input and

— Sensing CostsdenotedC = {Cy,C5,...}, where output of the available schemas. This information flow afow
C, = cost(ESy), the sensing cost of a sensBiS,. us to distribute the perceptual input or the calculation of

— Weight w which combines probability and cost.  effector output across multiple robots. With the introdomct

. A task is described as a set ®otor Schemas T= Of communication schema, information can flow within and
{MS,,MS,,...} along with some application-specific,aCross robot team members, which increases the number of

user defined parameters, such as the goal position dgsible solutions to the problem.

the pushing directioh .
S . . B. Reasoning Process
« A solution is to organize a team into subteams, such that 9

each subteam can contribute to the goal. There exists £Ur reasoning process enables robot team members to
solution if and only if for all MS; € T, the inputs of @utonomously connect the inputs and outputs of their eblaila
MS,; are satisfied, along with all the inputs of the schema&shemas to result in dynamic task solution strategies that

that feed intoMS;. More formally, the connections for &€ & function of the current team’s capabilities. Given the
subteamt must satisfy the following constraints: information representation of robot team capabilities el

— Varsier¥j, HCONNECT(OSJ‘,I,QWS’?). The in- flow of information, the coIIaboratwe reasoning among msb(_)
: ’ e must generate such a mapping that leads to all required
puts of M5, are satisfied connections being made for each robot to accomplish its task
— V§ Yy ICONNECT (05, I57). The inputs of g Lo b ;
g = : nan . ._None of the schemas are connected initially and connections
S; are satisfied. This process continues until there is b de withi bots d di h ired
) f connections that conné§f t0 OSm can be made within or across robots depending on the require
aseres o s 15, , ' information flow. A connection within a robot can be built
= Vs,Yp1, SCONNECT(O, ;). The inputs of penyeen two schemas if and only if the input information type

Sq are satisfied. s of one schema is exactly the output information type of agoth
~ Vs,Ynk, SICONNECT (O3, I)"). The inputs of schema, and these two schemas can be implemented on one
Sp are satisfied by some ES(s). robot. Figure 1 shows some possible connections between two
— Where S;, Sp, or 5, € PSJCS,S, € PS, and  gpots. According to the connection rules, the general task
ES, € ES. solutions are converted to combinations of various schemas
— The utility >, u(j)) for every R; in subteamt is  providing different ways to accomplish the task so that each
maximized. robot can determine its possible solution.

The problem is to organize the robots into subteams such ) ] )
that robots within each subteam cooperate with each otherto The Configuration Algorithm
contribute to the accomplishment of the team-level faskith The core of the ASyMTRe configuration algorithm shown in

a maximum utility. Table | is a greedy search algorithm which first handles bot
with fewer sensor resources (less capable robots). Eadt rob

Ill. THE ASYMTRE APPROACH is assigned a priority at the beginning of a task accordiritsto

A. Information Representation sensing capability. Less capable robots have higher pesri

to configure their solutions, since these robots will likebve

We represent three types of information in the ASyMTRﬁawer solutions for success. When a robot does not have the

system — the information of robot team capabilities, the tow required sensor to fulfill a task, the algorithm will find a cdb

information required into and out of schemas, and the SENSIT i he least sensina canability and maximal utility tovide
costs and success probabilities of all sensori-compualio g cap y yton

systems. Robot team capabilities describe each robot éﬂg needed information. Therefore, robots with more sensor

its sensor resources in the fornatobot | D, ES;, ES,, resources are saved for future configuration, since theyylik

...). The sensing costs and success probabilities are p(r:c"i‘—n be helpiul in many different ways.

vided to estimate the fitness of a solution among other plessib A.t present, this approach .clearly utlllz.es a centralizeat re
' . . : . . Ssoning system. We began with a centralized reasoner ta illus
solutions. Most importantly is the flow of information, whic

trate the capabilities of the software reconfiguration apph
Lin future work, we will develop a more general task specifaatisimilar  thal iS based on varying the connections of enVIronmenw, p
to the formal specification of tasks in [7] ceptual, and motor schemas within and across multiple sobot



TABLE |

THE CORE OF THEASYMTRE CONFIGURATION ALGORITHM only when a less capable robot needs help from a more capable

robot (helper) to accomplish the task. The helping behavior
does no good to the helper, but it is beneficial to the entire

Reason(R, T, U)
(R, T, U): the robot team composition, task, and utility

" the number of robofs in the team team. In F:oalescent cooperation, robots cooperate when 'Fhe
m: the number of configurations to accomplish the task task requires them to work together to achieve the goal. It is
k: & constant, which specifies the number of iterations beneficial to the robot itself and to the entire robot teanthin

1) Sort the robot team members according to increasing following sections, we describe the Fwo experiments inifgeta
sensing capabilities(J(nlog(n))] as well as the results of these studies.

2) Generate a list of potential combinations of schemas of

sizem that can accomplish the taskO(1)] A. Multi-Robot Transportation

3) Configure solutions on the robot team® (kmn?)] 1) Task description:In this application, a team of robots
« For each robot; in the sorted order:((n)] must navigate from their starting positions to a set of goal

— For each combinatiorj to accomplish the task positions (one per robot) defined in a global coordinatersefe
[O(m)] ence frame. Assume that all the robots are programmed with

+ If R; can accomplish the task by itself, assign  the motor schemao-to-goa) which moves the robot from
solutionj to B;. [O(1)] its current position to a goal position, defined in a global

x Else check the other—1 robots to see if one di f f T full hi
can provide the needed informatio® ()] coordinate reference frame. To successfully use this motor

* If the estimated utility ofR; executing solu- schema, a robot must be able to perceive its own current
tion j is greater than the utility of its previous position relative to its goal. If every robot team member can
solution, update the solution strategy &%. localize itself, obviously the solution is to have every @bb
[oW)] navigate independently. However, on some teams, theretmigh

4) Continue the above process unti? (kmn?)]
« All the robots in the team can accomplish the task.
o Or, afterk number of trials.
5) If a solution exists, report the solution; otherwise, report
“Failure”.

be robots that do not have the sensing and behavior capesbilit
to localize (e.g., see [13]); they need help from more capabl
robots to provide the information needed to fulfill the task.
In this application, robots exhibit altruistic cooperatifor the
benefit of the entire team. In the following paragraphs, we
detail the application by introducing the environmentalses
and various schema used in this application.

The environmental sensors are: laser scanner with an envi-
The level of redundancy and the maintenance of a centraliZz&hmental mapl(aser ), omnidirectional camerac@ner a),
database would be the main concern of the centralized syst&&PS, and communication sensardmm). The functionalities
Thus, our ongoing work focuses on distributing the reaspni®f the perceptual schemas, communication schemas and motor
capability across multiple robots. schemas are defined in Table Il. We assume:

An important feature of the algorithm is its relatively « A robot with al aser and an environmental map can
low complexity bound. The computational complexity of the  estimate its current global position in the environment.
algorithm is O(kmn?), where n is the number of robots, « A robot with a DGPS can estimate its current global
m is the number of potential solutions to accomplish the position in the environment.
task, andk is the number of iterations. Sinde and m are « A robot with acanera or | aser can estimate the
relatively small, the complexity is primarily determiney h. relative position of another robot in the environment, as
In our experiments, we have varied the valuenofrom 2 to long as the other robot is within its sensing range.

100, and the running time is always less than one second or A robot has the computational ability to convert a relative
desktop computers. With this performance, we can duplicate position to a global position.

the reasoning system on every robot to increase the rolssstne From the description of the task, we define a set of in-
and can also easily replan the solution when required. A mdtgmationF = {Self Global Position, OtherGlobal Positiory}.
formal analysis of this approach is given in [16], showing thTable Il shows the input and output information for each
soundness, completeness, and optimality of ASyMTRe.  schema used in this application. According to the flow ofinfo
mation, the configuration algorithm generates all the fssi
connections that can connect the available schemas and lead

We have claimed that the ASyMTRe approach can enatitee robot to achieve its goal. Assuming that all the robots
the robot team to find a task solution automatically baséwhve communication capabilities, two specific connectimes
on the flow of information in the system. To validate thishown in Figures 2 and 3. Initially, there are no connections
approach, we designed two experiments: multi-robot tranisetween schemas. After the solution is generated, proper
portation and box pushing. These two experiments presaensors are activated, and the schemas are connectedpbased
the characteristics of the robot cooperation task to whigh tthe connection rules in Section Il. As an example, in Figyre 2
reasoning system is applicabdtruistic cooperation andoa- the output ofPS is connected to the input af/.S; because
lescentcooperation. In altruistic cooperation, robots cooperatee haveO”5t = If”sl = SelfGlobal Position

* A complete version of the ASyMTRe algorithm can be found i6][1

IV. EXPERIMENTS



TABLE Il

PERCEPTUAL SCHEMAS COMMUNICATION SCHEMAS, AND MOTOR SCHEMAS IN MULTI-ROBOT TRANSPORTATION TASK

Schema| Description Input Output
PS5y Calculates self global position Laser or DGPS Self_GlobalPosition
PS, Calculates self goal position Hardcoded GoalPosition
PSs3 Calculates global position of another robot Laser or camera and| OtherGlobalPosition
Self_-GlobalPosition
Calculates self global position according to the detecetative position Camera and Self_.GlobalPosition
PSy of another robot and the global position of the same robot OtherGlobal Position
CSy Communicates self global position to another robot Self_GlobalPosition | OtherGlobalPosition
CSy Communicates global position of another robot to that robot OtherGlobalPosition | Self-GlobalPosition
CS3 Receives global position of another robot OtherGlobalPosition | OtherGlobalPosition
CSy Receives global position of itself from another robot Self_Global Position Self_GlobalPosition
MSq Go-to-goal schema that calculates motor command that leadslioé r | Self GlobalPosition Motor commands
towards the goal. and GoalPosition

Cs,

Cs,
Cs,

Cs,

Cs,
Cs,

R,: laser, comm

R, comm

Fig. 2. One solution for connecting the schemas to accompishrtavigate”
goal. This solution involveR, using itsl aser to globally localize itself and
to calculate a relative position &. With this information,R; can calculate
the global position oRy and communicate this information &, for its use

TABLE IlI
SENSORFCOMPUTATIONAL SYSTEMS, SENSING COSTSAND SUCCESS
PROBABILITY
[ SCS | Sensing Cost [ Success Probability
PS;(Laser) | SensingHIGH SuccMED
PS (DGPS) | SensingLOW SuccMED
PS;(Laser) | SensingHIGH SuccMED
PS(Camera)| SensingMED SuccLOW
PS;(Laser) | SensingHIGH SuccMED
PS;(Camera)| SensingMED SuccLOW
CS;(Comm) | SensingLOW SuccHIGH

in moving to its goal position.

DGPS cs,

Cs,

Camera| Cs,

Cs,

PS,

s, s, ]
cs, s,

R;: DGPS, comm

R2: camera, comim

Fig. 3.

A second solution for connecting the schemas to acdismfte
“navigate” goal. This solution involveR; using itsDGPS to globally localize
itself, and then communicating this information R». Ry usescaner a
to calculate the relative position d?;, and then combines this witR;'s

communicated global position to determine its global position

2) The reasoning processAfter searching through all

particular solution it chooses. We would like each robot to
select a solution that is the most efficient, or least costhe

utility is calculated by the combination of sensing costsl an
success probabilities. Table 11l lists the values of semsiosts

and success probabilities in our application. Here, we have
provided fuzzy estimates; in most application, these casts
probabilities will be specific numeric values. The sensiogtc

is determined by the sensory and computational requiresnent
of the solution. Perceptual processes with a significantuerno

of sensor processing, such as laser scan matching or image
processing, are given higher sensing costs. Perceptual pro
cesses with a relatively low processing requirement, sich a
DGPS, are assigned lower sensing costs. Success propabilit
is an estimated value based upon experiences. Perceptual
processes that are easily influenced by environmentalriacto
such as image processing under different lighting conustio

are given lower success probabilities. Otherwise, they are

possible connections of schemas, the system generatealse@Ven higher success probabilities.
methods to accomplish the navigation task:

1) A robotR; can navigate usingaser or DGPS.

2) ArobotR; can navigate if there is another rolft that
can navigate and estimate the global positioRpising

3) ArobotR; can navigate if there is another rolit that
can navigate, an&; can usecamner a to estimateR;’s

| aser or caner a.

B. Box Pushing

1) Task description:Box pushing was studied by Donald,
et al. [5] in the development of information invariants for an-
alyzing the complexity of alternative cooperation aldumits.

To illustrate the connection of our approach to the theory
of information invariants, we have defined our box pushing
experimentation in a similar manner to [5]. In our box pughin

relative position and calculate its own global position.examme, a team of robots is brought together to push boxes.

With multiple solutions available, a robot needs to detesmi The goal is to organize the team into subteams, such that
which solution it should use. This is decided by each robotsach subteam is able to push a box with exactly two robots,
current sensing capability and the estimated utility of thehich we call pusher robots. Assume that all the robots



TABLE IV
PERCEPTUAL SCHEMAS COMMUNICATION SCHEMAS, AND MOTOR SCHEMAS IN MULTI-ROBOT BOX PUSHING

Schema| Description Input Output
PSy Computes the force when pushing a box Bumper force
PSy Computes the relative displacement when pushing a box Odometry displacement
PSs3 Computes the angle between the line of pushing and the actuahgndirection Gripper angle
PSy Computes the vector of the box relative to the pusher robot Laser or Camera box relative vector
[ CS1 | Communicates information from one robot to another \ F; | F; |
M Sy The Push schema which computes the motor commands needed fobthe ro force, displacement, Motor commands
to push a box along a line angle, or boxrelativevector
MS> Move along with the box, so that the helper robot can keegktoddhe box box relative vector Motor commands
and the pusher robots.

- enabling the pusher robots to take appropriate actions.

1 box_relative_vectpr ) ) ) ! ) ) )
" PS, The information set in the box pushing application is
F ={force, displacement, angle, hoglative vector}. Various
2 =  schemas and their input and output information are defined in
Table IV. The reasoning process is similar to the multi-tobo
R,;: laser, comm R.. R, comm transportation application, which generates softwaresseh
connections based on the connection rules. Figure 4 shows
Fig. 4. One solution for connecting the schemas to accomptisiRush” one of the connections that enables the robots to push a box.
goal. This solution involve®; using its laser to perceive the relative vectorThe result is the decomposition of the team such that each
of the box, and then communicating this information to the pusbbots. bt lish the task. T lculate th tili
The pusher robot®; andRs3 can then take actions. subteam can accomplis ) € task. 10 calculate e u '_"_[Y’
we assume that the sensing costs and success probabilities
for {gri pper, bunper, odonetry} are the same. The

are programmed with the motor scheiash which pushes only difference isl aser andcaner a, in which the values
the box along a straight line. To use this motor schema,2€ the same as the multi-robot transportation application
robot must be able to perceive the box's vector relative to V. RESULTS AND DISCUSSION

itself. Here, the relative vector includes the applied égrc

. . . With the above setup of the two applications, we now
relative displacements, the angle between the actual pgishi
S . ) resent the results of the ASyMTRe approach to autonomous
direction and the line of pushing. For example, the two push

. . , software reconfiguration. To validate the reasoning system
robots can record the relative displacements while they are. L :
robots with different sensing capabilities are broughetbgr

pushing the box, and by comparing these two values, the form a team. The experiments focus on two aspects of

can decide which robot should push harder. Suppose that g team: the number of robots and the heterogeneity of
environmental sensors arfgunper , odonetry, gri pper,

robots. In our experiments, varied from 2 to 100. The total
conm | aser, andcamer a. Three methods were presented . . )
) . " reasoning time is always less than one second. To measure
in [5] to push a box with two robots. In addition, we generat

another method here where the pusher robots do not have hee_dlversny of the_ robot team, we calcul the simple
. . . .~ soCial entropy metric of the team [2]. The valuetbmeasures
capabilities to perceive the relative vector of the box, levlai

helper robot helps them get this information. The box pLg;hirEhe diversity of the robot team and depends on the number

application exhibits both coalescent and altruistic coatien. of homogeneous subteams it contains and the proportion of

The cooperative box pushing methods from [5] are as foIIOWro,bots in each subteam. This measure is proportional to the
P P 9 8|'versity of the team. For the sensing capability of the tspo

1) Using bunper , two robots can compute their appliedye assume every robot has the ability to communicate.
forces and communicate this information to each other,

allowing them to decide which robot should push hardef\- Multi-Robot Transportation

2) Usingodonet ry, two robots can compute the relative In this application, we can choose frofgps, | aser,
displacements along the line of pushing; they exchanganer a} to build a robot, which provides up &' choices of
the location information and take actions to reduce ttdifferent robot capabilities. The different types of rabaire
difference between the relative displacements. shown in Table V. Among them, a robot of type 1 or 4 cannot

3) Using speciabri pper s, two robots can compute thelocalize by itself since it has neithéraser nor DGPS. We
angles between the line of pushing and its actual movipgesent three cases with different team capabilities.
direction; they take actions to reduce its angle on the Case 1, n = 2, H = 1.0 We first describe a simple case,
next step — no explicit communication is needed in thiwhere the robot team is composed of only two robots from
case. type 3 and 4 respectively. The solution generated is obvious

4) Using al aser or carmer a, a helper robot can help thethe robot withl aser can navigate by itself, while it helps the

Laser pusher robots calculate the relative vector of the box,

¥




EIGHT TYPES OF ROBOT WITH DIFFERENT SENSING CAPABILITIES

TABLE V

Type

Available Sensor(s)

comm

DGPS, comm

| aser, comm

canera, comm

Subteam 1 Subteam 2
® B ®
\\\ /// ‘..\__\ ///

~ ~ -~

B DGPS

= camera

max_subteam =3

DGPS, |aser, conm
DGPS, canera, conm

I aser, camera, conm ) . . . .
DGPS, laser, canera, comm Fig. 6. Results of ASyMTRe applied to Case 2, in which the tdam

composed of six robots from three different types. The simptgas entropy
is 1.58, the maximum value i2.58. According to the automated software
reconfiguration process, the team is divided into two subget accomplish
the transportation task.

max_to_help=1

O N[ O O] | W| N

TABLE VI
BOX PUSHING. ROBOT TEAM COMPOSITION

- Robot | Environmental Sensor(s)
R1 comm
R> bunmper, comm
A8 R3 odonetry, comm
R4 gri pper, conm
Fig. 5. Case 1: The initial setup of the two pioneers robotsrighe left. Rs laser, camera, comm
The result when the two robots reach their goal points is showthe right. Re, R7 | bunper, gripper, odonetry, comm

Pictures are in courtesy of Chandra [4].

robot withcamer a navigate by method 2 or 3 (see Section IV_same as is shown in Figure 6, except that it has 33 subteams.

A.2), depending on the weight factor. This particular exeEmpB. Box Pushing

has been successfully implemented on two Pioneer robots by this application, if every box needs exactly two pusher

Chandra in [4]. Her control algorithm reads in the outputriro robots, the maximum subteam size is 3 (there might be one

the configuration algorithm and activates the proper S&NSPelper). The environmental sensors dtaser, canera,

and schemas to accomplish the navigation task, accord'@,gi pper, bunper, odonetry}. We have 2 choices of

to the described ASyMTRe approach. Part of the navigatigferent robot capabilities.

process is shown in Figure S. To demonstrate how the box pushing task can be achieved,
Case 2, n = 6, H = 1.58In this case, the robot team isyye designed the following robot team. As shown in Table VI,

composed of six robots, with two each of types 1, 2, and the team is composed of 7 robots from 6 different types, the

If the maximum number of robots allowed in a subteam is §mple social entropy is 2.52. Figure 7 presents the results

and the maximum number of robots that any robot can helpjjswhich the team is divided into three subteams. In subteam

1, the solution is shown in Figure 6. The team is divided int@i robot R and R, push the box together. Since, Rannot

two subteams, each of which has three robots from each tyBBrceive the box’s relative vector by itself, they are helpg

The team is moving forward along the direction of the arrovg using eitherl aser or caner a. In subteam 2, robot R

There are physical constraints, such as the camera’s fieldagly R push the box together using method 2, since they both

view. At the beginning, we need to manually place the roboggyve odonet r y. In subteam 3, robot Rand R push the

into proper positions so that the constraints are satis(ied. pox together using method 1, since they both hiaveper .

future work, we plan to build in automated mechanisms tphe team has been divided into several subteams and each

handle maintaining appropriate fields of view.) For ins&ncsypteam can fulfill the box pushing task. We notice that in

Rs; and R must be in the field of view of R In subteam gypteam 1, Rcan use eithef aser or camer a to help the

1, Rs with a DGPS localizes by itself using method 1, andgysher robots. The correct choice depends on its utility of

it helps R with a camer a localize using method 3. After ysing a certain sensor. In this example, if we focus on sgnsin

Rs has been helped, it helps, Rocalize using method 2. A ¢ost, caner a is a better choice. Otherwise, if we focus on

similar situation occurs with subteam 2. the success probability,aser is a better choice.
Case 3, n =99, H = 1.58To test the adaptability of the

reasoning system, we applied it to a robot team of size 99. To
make the setup easier, we still use the three types of robotfRkesearch specific to heterogeneous robots often focuses
from type 1, 2, 4, respectively, but we duplicate them 33 §imeon the issue oftask allocation which is the problem of

For the parameters, we have the same setup as in case 2, whetermining a suitable mapping between robots and tasks.
the size of the subteam is 3. The reasoning system gener&esgeral approaches have been developed in the last decade.
the result in less than one second. It divides the team into SBice it has been shown that developing the optimal mapping
subteams, and each with three different types. The resthieis of tasks to robots is NP-hard [11], existing mechanisms

V1. RELATED WORK
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Fig. 7. Results of applying ASyMTRe to an instance of the bostpng task,

our approach enables the robot team to dynamically connect
schemas within and across robots to accomplish a task. We
have successfully demonstrated the solution capabilitthef
robot team in many scenarios. Two specific applications were
presented to validate our algorithms.

A more formalized ASyMTRe approach and its perfor-
mance analysis can be found at [16]. Our ongoing work is
to implement ASyMTRe as a distributed reasoning system
and compare it with the current centralized reasoning syste
Additionally, we plan to consider motion constraints in the
reasoning process to facilitate physical implementation.

in which the team is composed of seven robots from six diffetgmes. The
simple social entropy i.52, and the maximum value i8.81. The team is
autonomously divided into three subteams, and each heterogsrsubteam
can successfully push a box.

(1
[2
for multi-robot task allocation use some type of heuristiEB]
greedy strategy to achieve the mapping. There are behavior-
based approaches (e.g., [10], [17]), auction-based apipesa
(e.g., [3], [8]), and First-price auctions (e.g., [18]). &l of 4
these approaches, each robot is given the utility measure fb]
it to perform a particular task. The various task allocation
approaches then provide distributed decision-makinggeses [°!
that use these utility measures to derive an allocationsista

to robots. Another approach is for the human designer t]
subdivide the application into roles that define actiontsties

for achieving part of the application. Robot team membegs th [,
determine autonomously which robots should perform which
roles. Collaborative architectures provide general meishas

to coordinate the robots depending upon the requirements
the roles they are fulfilling and the types of collaboratibatt
are necessary (e.g., [15]). In other related work, research (0]
multi-agent coalition formation [14] is related to the apach

of ASYyMTRe, in that the objective is to generate coalitiofis ¢10]
agents needed to accomplish joint intentions. Howevegethe
approaches do not address the autonomous synthesis of cepj-
erative behaviors at the low level of environmental, petaalp

and motor schemas. The automatic generation of these eoo?lezlj
ative task solutions is needed since required low-levepeco

ative control approaches are dependent upon the comhinatio
and distribution of sensors across the robot team membars. ?13]
representation of the robot capabilities is essentiaklysame
as in STRIPS planning [6], although we abstract the problem
in a very different manner. In common STRIPS planningt 4
the robot capabilities are usually represented by preelica
such asHas(laser)and Action(Goto) which requires solution [15]
strategies to be previously incorporated into the STRIR&sru
We represent the capabilities at the level of schema, which
allows the planner to be independent of precompiled saluti@L6]
strategies, enabling ASyMTRe to generhtavto solve tasks

) [17]
in a much more general manner.

VIl. CONCLUSIONS ANDFUTURE WORK [18]
This paper has presented ASyMTRe — a mechanism for the

automatic generation of task solution for heterogeneohstro

teams. Built upon schema and information invariants tkesori

i B. Gerkey and M. J. Mataric.
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