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Abstract— This paper describes a methodology for automat-
ically synthesizing task solutions for heterogeneous multi-robot
teams. In contrast to prior approaches that require a manual pre-
definition of how the robot team will accomplish its task (while
perhaps automating who performs which task), our approach
automates both thehow and the who to generate task solution
approaches that were not explicitly defined by the designera
priori . The advantages of this new approach are that it: (1)
enables the robot team to synthesize new task solutions that
use fundamentally different combinations of robot behaviors
for different team compositions, and (2) provides a general
mechanism for sharing sensory information across networked
robots, so that more capable robots can assist less capable robots
in accomplishing their objectives. Our approach, which we call
ASyMTRe (Automated Synthesis of Multi-robot T ask solutions
through software Reconfiguration, pronounced “Asymmetry”), is
based on mapping environmental, perceptual, and motor control
schemas to the required flow of information through the multi-
robot system, automatically reconfiguring the connections of
schemas within and across robots to synthesize valid and efficient
multi-robot behaviors for accomplishing the team objectives. We
validate this approach by presenting the results of applying
our methodology to two different teaming scenarios:altruistic
cooperation involving multi-robot transportation, and coalescent
cooperation involving multi-robot box pushing.

Index Terms— Multi-robot teams, behavior synthesis

I. I NTRODUCTION

When dealing with heterogeneous multi-robot teams, two
issues are particularly challenging: (1) determining how to
share sensor and perceptual resources across heterogeneous
team members, and (2) determining the appropriate teaming
behaviors to accomplish a task when the definition ofhow to
solve a task is dependent on the available collection of robots
and their sensory, perceptual, and motor resources. In typical
approaches to multi-robot teaming, the task tree describing the
decomposition of the team task into subtasks is defined by the
human designer in advance of the robot team performance.
The robots then choose from one of the alternative task
decomposition trees, followed by the use of an automated
approach for task allocation to determine the dynamic mapping
of subtasks to robots. In these typical approaches, the pre-
defined task decomposition tree defines the available multi-
robot task solutions in advance of the mission (i.e., thehow).
This paper describes a new methodology for automating the
synthesis of multi-robot task solutions in a general way that
addresses both of the above challenges.

Our approach, which we call ASyMTRe (Automated
Synthesis of Multi-robot Task solutions through software

Reconfiguration, pronounced “Asymmetry”), automates the
task solution generation process by providing the ability for
heterogeneous robots to collaborate to find new solutions
to tasks through various combinations of sensing, effectors,
and behaviors that may be distributed across multiple robots.
ASyMTRe enables a close, dynamic cooperation amongst
heterogeneous team members to accomplish tasks that might
be impossible for a single type of robot to achieve, even if it
were duplicated multiple times.

Our ASyMTRe automated task synthesis approach is in-
spired by the concept of information invariants [5], which
showed the equivalences between different combinations of
sensing, communication, and action based upon information
content. ASyMTRe allows the robots to reason about how to
solve an application based upon the fundamental information
needed to accomplish the task. The information needed to
activate a certain behavior remains the same regardless of
the way that the robot may obtain or generate it. Robots can
collaborate to define different task strategies in terms of the
required flow of information in the system.

The basic building blocks of our approach are collections of
environmental sensors, perceptual schemas [9], motor schemas
[1], and a simple new component we introduce, calledcom-
munication schemas. These schemas are assumed to be pre-
programmed into the robots at design time, and represent
fundamental individual capabilities of the robots. Perceptual
schemas process input from environmental sensors to provide
information to motor schemas, which then generate an output
control vector corresponding to the way the robot should move
in response to the perceived stimuli. Communication schemas
transfer information between various schemas. ASyMTRe
automatically determines the proper connections between the
sensors and the schemas – across multiple robots – to ensure
that the team-level goals are achieved.

The rest of this paper is organized as follows. Section II
introduces the formal definition of the problem with motivating
examples. Section III explains our approach. We present
the details of the experiments that are used to validate our
approach in Section IV. Our results are shown and discussed
in Section V. We end the paper with a review of related work
and a discussion of future work and conclusions.

II. T HE PROBLEM

The problem we address in this paper is the automation of
task solution synthesis that enables a collection of heteroge-



neous robots to reorganize into subteams as needed depending
upon the requirements of the application tasks and the sensory,
perceptual, and effector resources available to the robots. We
assume that there is a sufficient mixture of robot capabilities
available to solve the problem, although those capabilities may
be distributed across multiple robots. An additional assumption
is that with a large team of heterogeneous robots, different
combinations of robots will be able to solve certain tasks
in different ways. We also assume that the robots are team
members that share high-level goals and the intent is to
cooperate with each other to ensure that the high-level goals
are achieved.

A. Motivating Example

To motivate the problem, consider a simple multi-robot
transportation application, in which robot team members are
given the task of transporting themselves from a set of starting
locations to a set of goal positions (one for each robot).
This task requires that each robot be able to localize itself
relative to its goal position, and to move in a way that reduces
this distance to zero. If every robot has these capabilities, a
straightforward approach would be to have each robot navigate
to its goal independently, e.g., using laser range scanner-
based localization. However, if some robots do not have the
sensing capabilities to localize themselves relative to their
goals, an alternative solution would be for the more capable
robots to guide the less capable robots toward their goals by
providing them with relative positioning information, perhaps
through camera observations. The less capable robot can use
this information obtained through another robot’s sensorsto
allow it to accomplish its task. In fact, this particular solution
strategy has been demonstrated in our previous work of mobile
sensor net deployment [13], in which a capable robot helped
other simpler robots deploy to required positions using visual
sensing.

In other team compositions, alternative strategies for achiev-
ing the transportation application could be imagined, in which
different combinations of sensors could be used to generatethe
information needed to solve the task. It is important to note,
however, that the resulting robot behaviors for accomplishing
the task could be dramatically different depending upon the
combination of sensors that is selected for solving the task
(see [12] for a further discussion of this issue). In one caseof
the transportation problem, a robot would be directly invoking
a go-to-goal behavior, whereas in another case, a robot must
maintain another robot within its field of view so as to transmit
relative position information to that robot, followed perhaps
by an invocation of its own go-to-goal behavior once the
less capable robot has reached its own goal. Therefore, it is
important that the solution approach also synthesize the correct
combination of motor behaviors to achieve the goal in light of
the sensory distribution that is present and the configuration
of schema connections that are generated. In summary, the
problem we address is, given a robot team, automatically
synthesize an effective task solution by reconfiguring the
schema connections across robots to ensure that all robots have

access to all information needed to accomplish their objectives.

B. Formalism of the Problem

We formalize the automated task synthesis problem as
follows. Given:

• A collection of n robots, denotedR = {R1, R2, ..., Rn}.
• A set of Information Types, denotedF = {F1, F2, ...},

representing the types of input and output of a schema.
• Environmental Sensors, denotedES = {ES1, ES2, ...}.

– The input toESi is a specific physical sensor signal.
– The output fromESi is denoted asOESi ⊂ F .

We assume each environmental sensor only has one
output, although the output may represent a set
of features of the sensory data (e.g., range and
intensity). The output of an environmental sensor is
connected to the input of a perceptual schema.

• Perceptual Schemas, denotedPS = {PS1, PS2, ...}.
– The inputs toPSi are denoted∪IPSi

k ⊂ F , for
k going from 1 to the number of inputs to the
perceptual schema. The perceptual schema inputs
can come from either the outputs of communication
schemas or environmental sensors.

– The output fromPSi is denotedOPSi ⊂ F . We
assume each perceptual schema only has one output
with a set of features (e.g., distance and angle). The
output from a perceptual schema can go to the inputs
of either communication schemas or motor schemas.

• Communication Schemas, denotedCS = {CS1, CS2,
...}.

– The inputs toCSi are denoted∪ICSi

k ⊂ F , for
k going from 1 to the number of inputs to the
communication schema. The inputs come from the
outputs of perceptual schemas or communication
schemas.

– The output fromCSi is denotedOCSi ⊂ F . We
assume each communication schema only has one
output with a set of features. The output can go to
the inputs of perceptual schemas, motor schemas or
other communication schemas.

• Motor Schemas, denotedMS = {MS1,MS2, ...}.
– The inputs toMSi are denoted∪IMSi

k ⊂ F , for k
going from 1 to the number of inputs to the motor
schema. These inputs always come from the outputs
of perceptual schemas or communication schemas.

– The output fromMSi is denotedOMSi ⊂ F . We
assume each motor schema has only one output with
a set of features (e.g., velocity). The output always
goes to the robot effector control process.

• Connection Rules, denoted∃i,j,kCONNECT (OSi , I
Sj

k )

⇔ OSi = I
Sj

k , whereSi and Sj are types of schemas.
This notation means that the output ofSi can be con-
nected to one of the inputs ofSj , if and only if they
have the same information type.

• Utility , denotedµ(i) =
∑

j(w × 1/Cj + (1 − w) × Pj),
where i represents theith robot in the team, andj



represents thejth sensori-computational system that the
robot needs to use. The utilityµ(i) measures the fitness
of the solution on robotRi. We also have:

– Sensori-Computational Systems, denoted SCS =
{SCS1, SCS2, ...}, whereSCSk is a module that
computes a function of its inputs and its current pose
or position [5]. SCSk is composed of a specific
sensorESk and its computational unit.

– Success Probabilities, denotedP = {P1, P2, ...},
where0 ≤ Pk ≤ 1, andPk = probability(SCSk).

– Sensing Costs, denotedC = {C1, C2, ...}, where
Ck = cost(ESk), the sensing cost of a sensorESk.

– Weight w, which combines probability and cost.

• A task is described as a set ofMotor Schemas T=
{MS1,MS2, ...} along with some application-specific,
user defined parameters, such as the goal position and
the pushing direction1.

• A solution is to organize a team into subteams, such that
each subteam can contribute to the goal. There exists a
solution if and only if for allMSi ∈ T , the inputs of
MSi are satisfied, along with all the inputs of the schemas
that feed intoMSi. More formally, the connections for
subteamt must satisfy the following constraints:

– ∀MSi∈T∀j,k,∃CONNECT (OSj , IMSi

k ). The in-
puts ofMSi are satisfied.

– ∀Sj
∀m,k,∃CONNECT (OSm , I

Sj

k ). The inputs of
Sj are satisfied. This process continues until there is
a series of connections that connectI

Sq

k to OSm .
– ∀Sq

∀p,k,∃CONNECT (OSp , I
Sq

k ). The inputs of
Sq are satisfied.

– ∀Sp
∀n,k,∃CONNECT (OESn , I

Sp

k ). The inputs of
Sp are satisfied by some ES(s).

– Where Sj , Sm or Sq ∈ PS
⋃

CS, Sp ∈ PS, and
ESn ∈ ES.

– The utility
∑

j µ(j)) for every Rj in subteamt is
maximized.

The problem is to organize the robots into subteams such
that robots within each subteam cooperate with each other to
contribute to the accomplishment of the team-level taskT with
a maximum utility.

III. T HE ASYMTRE APPROACH

A. Information Representation

We represent three types of information in the ASyMTRe
system – the information of robot team capabilities, the flowof
information required into and out of schemas, and the sensing
costs and success probabilities of all sensori-computational
systems. Robot team capabilities describe each robot and
its sensor resources in the format(robotID, ES1, ES2,
...). The sensing costs and success probabilities are pro-
vided to estimate the fitness of a solution among other possible
solutions. Most importantly is the flow of information, which

1In future work, we will develop a more general task specification, similar
to the formal specification of tasks in [7]

Fig. 1. Possible connections of schemas between two robots.

is a set of information typesF that constitutes the input and
output of the available schemas. This information flow allows
us to distribute the perceptual input or the calculation of
effector output across multiple robots. With the introduction
of communication schema, information can flow within and
across robot team members, which increases the number of
possible solutions to the problem.

B. Reasoning Process

Our reasoning process enables robot team members to
autonomously connect the inputs and outputs of their available
schemas to result in dynamic task solution strategies that
are a function of the current team’s capabilities. Given the
information representation of robot team capabilities andthe
flow of information, the collaborative reasoning among robots
must generate such a mapping that leads to all required
connections being made for each robot to accomplish its task.

None of the schemas are connected initially and connections
can be made within or across robots depending on the required
information flow. A connection within a robot can be built
between two schemas if and only if the input information type
of one schema is exactly the output information type of another
schema, and these two schemas can be implemented on one
robot. Figure 1 shows some possible connections between two
robots. According to the connection rules, the general task
solutions are converted to combinations of various schemas,
providing different ways to accomplish the task so that each
robot can determine its possible solution.

C. The Configuration Algorithm

The core of the ASyMTRe configuration algorithm shown in
Table I is a greedy search algorithm which first handles robots
with fewer sensor resources (less capable robots). Each robot
is assigned a priority at the beginning of a task according toits
sensing capability. Less capable robots have higher priorities
to configure their solutions, since these robots will likelyhave
fewer solutions for success. When a robot does not have the
required sensor to fulfill a task, the algorithm will find a robot
with the least sensing capability and maximal utility to provide
the needed information. Therefore, robots with more sensor
resources are saved for future configuration, since they likely
can be helpful in many different ways.

At present, this approach clearly utilizes a centralized rea-
soning system. We began with a centralized reasoner to illus-
trate the capabilities of the software reconfiguration approach
that is based on varying the connections of environmental, per-
ceptual, and motor schemas within and across multiple robots.



TABLE I

THE CORE OF THEASYMTRE CONFIGURATION ALGORITHM

Reason(R, T, U)
(R, T, U): the robot team composition, task, and utility
n: the number of robots in the team
m: the number of configurations to accomplish the task
k: a constant, which specifies the number of iterations

1) Sort the robot team members according to increasing
sensing capabilities. [O(nlog(n))]

2) Generate a list of potential combinations of schemas of
sizem that can accomplish the task. [O(1)]

3) Configure solutions on the robot team. [O(kmn2)]
• For each robotRi in the sorted order: [O(n)]

– For each combinationj to accomplish the task
[O(m)]
∗ If Ri can accomplish the task by itself, assign

solution j to Ri. [O(1)]
∗ Else check the othern−1 robots to see if one

can provide the needed information. [O(n)]
∗ If the estimated utility ofRi executing solu-

tion j is greater than the utility of its previous
solution, update the solution strategy onRi.
[O(1)]

4) Continue the above process until: [O(kmn2)]
• All the robots in the team can accomplish the task.
• Or, afterk number of trials.

5) If a solution exists, report the solution; otherwise, report
“Failure”.

* A complete version of the ASyMTRe algorithm can be found in [16].

The level of redundancy and the maintenance of a centralized
database would be the main concern of the centralized system.
Thus, our ongoing work focuses on distributing the reasoning
capability across multiple robots.

An important feature of the algorithm is its relatively
low complexity bound. The computational complexity of the
algorithm is O(kmn2), where n is the number of robots,
m is the number of potential solutions to accomplish the
task, andk is the number of iterations. Sincek and m are
relatively small, the complexity is primarily determined by n.
In our experiments, we have varied the value ofn from 2 to
100, and the running time is always less than one second on
desktop computers. With this performance, we can duplicate
the reasoning system on every robot to increase the robustness,
and can also easily replan the solution when required. A more
formal analysis of this approach is given in [16], showing the
soundness, completeness, and optimality of ASyMTRe.

IV. EXPERIMENTS

We have claimed that the ASyMTRe approach can enable
the robot team to find a task solution automatically based
on the flow of information in the system. To validate this
approach, we designed two experiments: multi-robot trans-
portation and box pushing. These two experiments present
the characteristics of the robot cooperation task to which the
reasoning system is applicable:altruistic cooperation andcoa-
lescentcooperation. In altruistic cooperation, robots cooperate

only when a less capable robot needs help from a more capable
robot (helper) to accomplish the task. The helping behavior
does no good to the helper, but it is beneficial to the entire
team. In coalescent cooperation, robots cooperate when the
task requires them to work together to achieve the goal. It is
beneficial to the robot itself and to the entire robot team. Inthe
following sections, we describe the two experiments in detail,
as well as the results of these studies.

A. Multi-Robot Transportation

1) Task description:In this application, a team of robots
must navigate from their starting positions to a set of goal
positions (one per robot) defined in a global coordinate refer-
ence frame. Assume that all the robots are programmed with
the motor schemago-to-goal, which moves the robot from
its current position to a goal position, defined in a global
coordinate reference frame. To successfully use this motor
schema, a robot must be able to perceive its own current
position relative to its goal. If every robot team member can
localize itself, obviously the solution is to have every robot
navigate independently. However, on some teams, there might
be robots that do not have the sensing and behavior capabilities
to localize (e.g., see [13]); they need help from more capable
robots to provide the information needed to fulfill the task.
In this application, robots exhibit altruistic cooperation for the
benefit of the entire team. In the following paragraphs, we
detail the application by introducing the environmental sensors
and various schema used in this application.

The environmental sensors are: laser scanner with an envi-
ronmental map (laser), omnidirectional camera (camera),
DGPS, and communication sensor (comm). The functionalities
of the perceptual schemas, communication schemas and motor
schemas are defined in Table II. We assume:

• A robot with a laser and an environmental map can
estimate its current global position in the environment.

• A robot with a DGPS can estimate its current global
position in the environment.

• A robot with a camera or laser can estimate the
relative position of another robot in the environment, as
long as the other robot is within its sensing range.

• A robot has the computational ability to convert a relative
position to a global position.

From the description of the task, we define a set of in-
formationF = {SelfGlobal Position, OtherGlobal Position}.
Table II shows the input and output information for each
schema used in this application. According to the flow of infor-
mation, the configuration algorithm generates all the possible
connections that can connect the available schemas and lead
the robot to achieve its goal. Assuming that all the robots
have communication capabilities, two specific connectionsare
shown in Figures 2 and 3. Initially, there are no connections
between schemas. After the solution is generated, proper
sensors are activated, and the schemas are connected, basedon
the connection rules in Section II. As an example, in Figure 2,
the output ofPS1 is connected to the input ofMS1 because
we haveOPS1 = IMS1

1
= SelfGlobal Position.



TABLE II

PERCEPTUAL SCHEMAS, COMMUNICATION SCHEMAS, AND MOTOR SCHEMAS IN MULTI-ROBOT TRANSPORTATION TASK

Schema Description Input Output
PS1 Calculates self global position Laser or DGPS Self Global Position
PS2 Calculates self goal position Hardcoded Goal Position
PS3 Calculates global position of another robot Laser or camera and OtherGlobal Position

Self Global Position
Calculates self global position according to the detected relative position Camera and Self Global Position

PS4 of another robot and the global position of the same robot OtherGlobal Position

CS1 Communicates self global position to another robot Self Global Position OtherGlobal Position
CS2 Communicates global position of another robot to that robot OtherGlobal Position Self Global Position
CS3 Receives global position of another robot OtherGlobal Position OtherGlobal Position
CS4 Receives global position of itself from another robot Self Global Position Self Global Position

MS1 Go-to-goal schema that calculates motor command that leads the robot Self Global Position Motor commands
towards the goal. and GoalPosition

Fig. 2. One solution for connecting the schemas to accomplish the “navigate”
goal. This solution involvesR1 using itslaser to globally localize itself and
to calculate a relative position ofR2. With this information,R1 can calculate
the global position ofR2 and communicate this information toR2, for its use
in moving to its goal position.

Fig. 3. A second solution for connecting the schemas to accomplish the
“navigate” goal. This solution involvesR1 using itsDGPS to globally localize
itself, and then communicating this information toR2. R2 usescamera
to calculate the relative position ofR1, and then combines this withR1’s
communicated global position to determine its global position.

2) The reasoning process:After searching through all
possible connections of schemas, the system generates several
methods to accomplish the navigation task:

1) A robot Ri can navigate usinglaser or DGPS.
2) A robotRj can navigate if there is another robotRi that

can navigate and estimate the global position ofRj using
laser or camera.

3) A robotRj can navigate if there is another robotRi that
can navigate, andRj can usecamera to estimateRi’s
relative position and calculate its own global position.

With multiple solutions available, a robot needs to determine
which solution it should use. This is decided by each robot’s
current sensing capability and the estimated utility of the

TABLE III

SENSORI-COMPUTATIONAL SYSTEMS, SENSING COSTS, AND SUCCESS

PROBABILITY

SCS Sensing Cost Success Probability

PS1(Laser) SensingHIGH SuccMED
PS1(DGPS) SensingLOW SuccMED
PS3(Laser) SensingHIGH SuccMED

PS3(Camera) SensingMED SuccLOW
PS4(Laser) SensingHIGH SuccMED

PS4(Camera) SensingMED SuccLOW
CSi(Comm) SensingLOW SuccHIGH

particular solution it chooses. We would like each robot to
select a solution that is the most efficient, or least costly.The
utility is calculated by the combination of sensing costs and
success probabilities. Table III lists the values of sensing costs
and success probabilities in our application. Here, we have
provided fuzzy estimates; in most application, these costsand
probabilities will be specific numeric values. The sensing cost
is determined by the sensory and computational requirements
of the solution. Perceptual processes with a significant amount
of sensor processing, such as laser scan matching or image
processing, are given higher sensing costs. Perceptual pro-
cesses with a relatively low processing requirement, such as
DGPS, are assigned lower sensing costs. Success probability
is an estimated value based upon experiences. Perceptual
processes that are easily influenced by environmental factors,
such as image processing under different lighting conditions,
are given lower success probabilities. Otherwise, they are
given higher success probabilities.

B. Box Pushing

1) Task description:Box pushing was studied by Donald,
et al. [5] in the development of information invariants for an-
alyzing the complexity of alternative cooperation algorithms.
To illustrate the connection of our approach to the theory
of information invariants, we have defined our box pushing
experimentation in a similar manner to [5]. In our box pushing
example, a team of robots is brought together to push boxes.
The goal is to organize the team into subteams, such that
each subteam is able to push a box with exactly two robots,
which we call pusher robots. Assume that all the robots



TABLE IV

PERCEPTUAL SCHEMAS, COMMUNICATION SCHEMAS, AND MOTOR SCHEMAS IN MULTI-ROBOT BOX PUSHING

Schema Description Input Output
PS1 Computes the force when pushing a box Bumper force
PS2 Computes the relative displacement when pushing a box Odometry displacement
PS3 Computes the angle between the line of pushing and the actual moving direction Gripper angle
PS4 Computes the vector of the box relative to the pusher robot Laser or Camera box relativevector

CS1 Communicates information from one robot to another Fi Fi

MS1 The Push schema which computes the motor commands needed for the robot force, displacement, Motor commands
to push a box along a line angle, or boxrelativevector

MS2 Move along with the box, so that the helper robot can keep track of the box box relativevector Motor commands
and the pusher robots.

Fig. 4. One solution for connecting the schemas to accomplish the “Push”
goal. This solution involvesR1 using its laser to perceive the relative vector
of the box, and then communicating this information to the pusher robots.
The pusher robotsR2 andR3 can then take actions.

are programmed with the motor schemaPush, which pushes
the box along a straight line. To use this motor schema, a
robot must be able to perceive the box’s vector relative to
itself. Here, the relative vector includes the applied force,
relative displacements, the angle between the actual pushing
direction and the line of pushing. For example, the two pusher
robots can record the relative displacements while they are
pushing the box, and by comparing these two values, they
can decide which robot should push harder. Suppose that the
environmental sensors are:bumper, odometry, gripper,
comm, laser, andcamera. Three methods were presented
in [5] to push a box with two robots. In addition, we generate
another method here where the pusher robots do not have the
capabilities to perceive the relative vector of the box, while a
helper robot helps them get this information. The box pushing
application exhibits both coalescent and altruistic cooperation.
The cooperative box pushing methods from [5] are as follows:

1) Using bumper, two robots can compute their applied
forces and communicate this information to each other,
allowing them to decide which robot should push harder.

2) Usingodometry, two robots can compute the relative
displacements along the line of pushing; they exchange
the location information and take actions to reduce the
difference between the relative displacements.

3) Using specialgrippers, two robots can compute the
angles between the line of pushing and its actual moving
direction; they take actions to reduce its angle on the
next step – no explicit communication is needed in this
case.

4) Using alaser or camera, a helper robot can help the

pusher robots calculate the relative vector of the box,
enabling the pusher robots to take appropriate actions.

The information set in the box pushing application is
F ={force, displacement, angle, boxrelative vector}. Various
schemas and their input and output information are defined in
Table IV. The reasoning process is similar to the multi-robot
transportation application, which generates software schema
connections based on the connection rules. Figure 4 shows
one of the connections that enables the robots to push a box.
The result is the decomposition of the team such that each
subteam can accomplish the task. To calculate the utility,
we assume that the sensing costs and success probabilities
for {gripper, bumper, odometry} are the same. The
only difference islaser andcamera, in which the values
are the same as the multi-robot transportation application.

V. RESULTS AND DISCUSSION

With the above setup of the two applications, we now
present the results of the ASyMTRe approach to autonomous
software reconfiguration. To validate the reasoning system,
robots with different sensing capabilities are brought together
to form a team. The experiments focus on two aspects of
the team: the number of robotsn and the heterogeneity of
robots. In our experiments,n varied from 2 to 100. The total
reasoning time is always less than one second. To measure
the diversity of the robot team, we calculateH, the simple
social entropy metric of the team [2]. The value ofH measures
the diversity of the robot team and depends on the number
of homogeneous subteams it contains and the proportion of
robots in each subteam. This measure is proportional to the
diversity of the team. For the sensing capability of the robots,
we assume every robot has the ability to communicate.

A. Multi-Robot Transportation

In this application, we can choose from{gps, laser,
camera} to build a robot, which provides up to23 choices of
different robot capabilities. The different types of robots are
shown in Table V. Among them, a robot of type 1 or 4 cannot
localize by itself since it has neitherlaser nor DGPS. We
present three cases with different team capabilities.

Case 1, n = 2, H = 1.0. We first describe a simple case,
where the robot team is composed of only two robots from
type 3 and 4 respectively. The solution generated is obvious:
the robot withlaser can navigate by itself, while it helps the



TABLE V

EIGHT TYPES OF ROBOT WITH DIFFERENT SENSING CAPABILITIES

Type Available Sensor(s)
1 comm
2 DGPS, comm
3 laser, comm
4 camera, comm
5 DGPS, laser, comm
6 DGPS, camera, comm
7 laser, camera, comm
8 DGPS, laser, camera, comm

Fig. 5. Case 1: The initial setup of the two pioneers robots ison the left.
The result when the two robots reach their goal points is shown on the right.
Pictures are in courtesy of Chandra [4].

robot withcamera navigate by method 2 or 3 (see Section IV-
A.2), depending on the weight factor. This particular example
has been successfully implemented on two Pioneer robots by
Chandra in [4]. Her control algorithm reads in the output from
the configuration algorithm and activates the proper sensors
and schemas to accomplish the navigation task, according
to the described ASyMTRe approach. Part of the navigation
process is shown in Figure 5.

Case 2, n = 6, H = 1.58. In this case, the robot team is
composed of six robots, with two each of types 1, 2, and 4.
If the maximum number of robots allowed in a subteam is 3
and the maximum number of robots that any robot can help is
1, the solution is shown in Figure 6. The team is divided into
two subteams, each of which has three robots from each type.
The team is moving forward along the direction of the arrow.
There are physical constraints, such as the camera’s field of
view. At the beginning, we need to manually place the robots
into proper positions so that the constraints are satisfied.(In
future work, we plan to build in automated mechanisms to
handle maintaining appropriate fields of view.) For instance,
R3 and R1 must be in the field of view of R5. In subteam
1, R3 with a DGPS localizes by itself using method 1, and
it helps R5 with a camera localize using method 3. After
R5 has been helped, it helps R1 localize using method 2. A
similar situation occurs with subteam 2.

Case 3, n = 99, H = 1.58. To test the adaptability of the
reasoning system, we applied it to a robot team of size 99. To
make the setup easier, we still use the three types of robots
from type 1, 2, 4, respectively, but we duplicate them 33 times.
For the parameters, we have the same setup as in case 2, where
the size of the subteam is 3. The reasoning system generates
the result in less than one second. It divides the team into 33
subteams, and each with three different types. The result isthe

Fig. 6. Results of ASyMTRe applied to Case 2, in which the teamis
composed of six robots from three different types. The simple social entropy
is 1.58, the maximum value is2.58. According to the automated software
reconfiguration process, the team is divided into two subteams to accomplish
the transportation task.

TABLE VI

BOX PUSHING: ROBOT TEAM COMPOSITION

Robot Environmental Sensor(s)
R1 comm
R2 bumper, comm
R3 odometry, comm
R4 gripper, comm
R5 laser, camera, comm

R6, R7 bumper, gripper, odometry, comm

same as is shown in Figure 6, except that it has 33 subteams.

B. Box Pushing

In this application, if every box needs exactly two pusher
robots, the maximum subteam size is 3 (there might be one
helper). The environmental sensors are{laser, camera,
gripper, bumper, odometry}. We have 25 choices of
different robot capabilities.

To demonstrate how the box pushing task can be achieved,
we designed the following robot team. As shown in Table VI,
the team is composed of 7 robots from 6 different types, the
simple social entropy is 2.52. Figure 7 presents the results,
in which the team is divided into three subteams. In subteam
1, robot R1 and R4 push the box together. Since R1 cannot
perceive the box’s relative vector by itself, they are helped by
R5 using eitherlaser or camera. In subteam 2, robot R3
and R6 push the box together using method 2, since they both
haveodometry. In subteam 3, robot R2 and R7 push the
box together using method 1, since they both havebumper.
The team has been divided into several subteams and each
subteam can fulfill the box pushing task. We notice that in
subteam 1, R5 can use eitherlaser or camera to help the
pusher robots. The correct choice depends on its utility of
using a certain sensor. In this example, if we focus on sensing
cost,camera is a better choice. Otherwise, if we focus on
the success probability,laser is a better choice.

VI. RELATED WORK

Research specific to heterogeneous robots often focuses
on the issue oftask allocation, which is the problem of
determining a suitable mapping between robots and tasks.
Several approaches have been developed in the last decade.
Since it has been shown that developing the optimal mapping
of tasks to robots is NP-hard [11], existing mechanisms



Fig. 7. Results of applying ASyMTRe to an instance of the box pushing task,
in which the team is composed of seven robots from six different types. The
simple social entropy is2.52, and the maximum value is2.81. The team is
autonomously divided into three subteams, and each heterogeneous subteam
can successfully push a box.

for multi-robot task allocation use some type of heuristic
greedy strategy to achieve the mapping. There are behavior-
based approaches (e.g., [10], [17]), auction-based approaches
(e.g., [3], [8]), and First-price auctions (e.g., [18]). Inall of
these approaches, each robot is given the utility measure for
it to perform a particular task. The various task allocation
approaches then provide distributed decision-making processes
that use these utility measures to derive an allocation of tasks
to robots. Another approach is for the human designer to
subdivide the application into roles that define action strategies
for achieving part of the application. Robot team members then
determine autonomously which robots should perform which
roles. Collaborative architectures provide general mechanisms
to coordinate the robots depending upon the requirements of
the roles they are fulfilling and the types of collaboration that
are necessary (e.g., [15]). In other related work, researchin
multi-agent coalition formation [14] is related to the approach
of ASyMTRe, in that the objective is to generate coalitions of
agents needed to accomplish joint intentions. However, these
approaches do not address the autonomous synthesis of coop-
erative behaviors at the low level of environmental, perceptual,
and motor schemas. The automatic generation of these cooper-
ative task solutions is needed since required low-level cooper-
ative control approaches are dependent upon the combination
and distribution of sensors across the robot team members. Our
representation of the robot capabilities is essentially the same
as in STRIPS planning [6], although we abstract the problem
in a very different manner. In common STRIPS planning,
the robot capabilities are usually represented by predicates
such asHas(laser)andAction(Goto), which requires solution
strategies to be previously incorporated into the STRIPS rules.
We represent the capabilities at the level of schema, which
allows the planner to be independent of precompiled solution
strategies, enabling ASyMTRe to generatehow to solve tasks
in a much more general manner.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper has presented ASyMTRe – a mechanism for the
automatic generation of task solution for heterogeneous robot
teams. Built upon schema and information invariants theories,

our approach enables the robot team to dynamically connect
schemas within and across robots to accomplish a task. We
have successfully demonstrated the solution capability ofthe
robot team in many scenarios. Two specific applications were
presented to validate our algorithms.

A more formalized ASyMTRe approach and its perfor-
mance analysis can be found at [16]. Our ongoing work is
to implement ASyMTRe as a distributed reasoning system
and compare it with the current centralized reasoning system.
Additionally, we plan to consider motion constraints in the
reasoning process to facilitate physical implementation.
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