
Sensor Analysis for Fault Detection

in Tightly-Coupled Multi-Robot Team Tasks

Xingyan Li and Lynne E. Parker

Distributed Intelligence Laboratory, Department of Computer Science

The University of Tennessee, Knoxville, TN 37996-3450

Email: {li, parker}@cs.utk.edu

Proc. of IEEE International Conference

on Robotics and Automation, Rome, Italy, 2007.

Abstract— This paper presents a sensor analysis based fault
detection approach (which we call SAFDetection) that is used to
monitor tightly-coupled multi-robot team tasks. Our approach
aims at detecting both physical and logic faults of a robot
system with little prior knowledge on the system. We do not
need the motion model or a priori knowledge of the possible
fault types of the monitored system. Our approach treats the
monitored robot system as a black box, with only sensor data
available. Thus, we believe the approach is general, and can
be used in a wide variety of robot systems performing many
different kinds of tasks. Our approach combines data clustering
techniques with the generation of a probabilistic state diagram
to model the normal operation of the multi-robot system. We
have implemented this approach on a physical robot team. This
paper presents the results of these experiments, which show
that sensor data analyzed from a training phase of normal
operation can be used to generate a model of normal robot
team operation. This model can then be used to detect many
types of abnormal behavior of the system, based purely on
monitoring the sensor data of the system.

I. INTRODUCTION

Due to the increasing needs for robotic applications in

various challenging tasks, the demands for highly reliable

robot systems are significantly growing. We know that even

the most carefully designed and tested robots may behave

abnormally in some situations; therefore, it is necessary for

robots to monitor their performance so that the deviation

from the expected behavior can be promptly detected. Here,

we define a robot fault as a deviation from the expected

behavior of the robot system, and fault detection as the pro-

cess of automatically determining that a fault has occurred.

The reasons for faults vary from mechanical degradation to

information insufficiency, and may be due to a large spectrum

of components, including robot sensors, actuators and system

components. Developing fault models for every possible

range of faults and components is a daunting task. Instead,

a preferred approach is to build a fault detection capability

that is independent of the particular type of fault that occurs.

This paper presents such an approach for fault detection that

is based only on the monitoring of robot sensor values. Once

a fault is detected, it can be used by a higher-level diagnosis

and recovery strategy, such as we are developing in [15].

This paper focuses on the initial detection of the fault.

A common approach to detecting faults in robots systems

is to make use of a motion model of the robot. In this

case, fault detection is relatively straightforward – if the

values estimated by the model deviate significantly from the

actual measurements, a fault must have occurred. However,

in many applications, a motion model of the robot may not

be available, or the information we have is only a very

rough approximation of how the robot operates. This paper

addresses the question of how to detect robot faults in such

situations when a motion model is unavailable. Our approach,

which we call SAFDetection (“Sensor Analysis for Fault

Detection”), is to learn normal robot state transitions from a

history of sensor data during the normal operational mode of

the robot. Faults are then identified online via a deviation of

the sensor data from the model of normal operation. Our

approach currently identifies three types of sensor faults:

“hard” fault, “logic” fault and “coalition” fault. The hard

fault reflects an abnormal robot state in which the sensor

data does not match any previously seen before. The logic

fault reflects an abnormal state transition, in which a robot is

performing an unlikely transition from previously modeled

states. Finally, the coalition fault reflects conflicts among

team robots, in which the sensor model expectations of each

robot differ.

The remainder of the paper is organized as follows. We

present related work in Section II. An overview of the overall

approach is given in Section III, followed by details of the

approach in Section IV. In Section V, we present results

of using this approach in a physical robot implementation

of a box pushing experiment. Conclusions are discussed in

Section VI.

II. RELATED WORK

Fault detection for robots is a complex problem, for a

number of reasons: the space of possible faults is very

large; robot sensors, actuators, and environment models are

uncertain; and there is limited computation time and power.

Nevertheless, because of its importance, much prior work

has been done in this area.

The most popular method for providing fault detection in

robot systems is based on motion control [8], [18], [12].

This method compares the values estimated by the motion

model and the current measurements to detect a fault. For

example, in the Hannibal robot system [5], if the leg sensors

do not agree with the set of plausible leg motions that are

programmed for the leg, the robot generates a belief that the

sensor is not working. This method only works, however,

when the motion model of the robot is completely known.



Another widely used computer fault detection method is

voting based on modular redundancy [9], [3]. This method

is commonly used in highly reliable systems in which more

than one module works redundantly to perform the same task

given the same input data. If one of the modules is faulty

and its result does not agree with the results of the other

modules, the faulty module is voted out of the final decision

and the correct result is passed on to the rest of the system.

Analytical redundancy is another concept for fault detec-

tion that does not need redundant modules [13], [10], [6]. By

comparing the histories of sensor outputs versus the actuator

inputs, results from dissimilar sensors can be compared at

different times in order to check for failures.

In recent years, particle filter techniques for robot fault

detection have become popular [7], [17], [2]. This method

can estimate the robot and its environmental state from

a sequence of noisy, partial sensor measurements. Most

particle filter based fault detection methods work with a

known set of possible fault types.

Unlike motion model based methods, our SAFDetection

approach does not require knowledge of the internal control

of the robot system. We also assume no advance knowledge

of the possible fault types, unlike the partial filter based

approaches. Additionally, no functionally redundant modules

are required and no requirement is made for specifying

the relationship between the measured variables, unlike the

analytical redundancy methods. Instead, our approach treats

the robot or robot team as a black box. We learn the

probabilistic robot state transition diagram from the histories

of robot sensor data during normal operation based on a

clustering algorithm, and then use this diagram together with

the on-line sensor data to detect faults in a real-time fashion.

Commonly used techniques to extract system knowledge

from data include decision trees [21], artificial neural net-

works [16] and probabilistic networks. The Bayesian net-

work is a popular representation of a probabilistic network

[22], [4]. Matsuura [14] shows a Bayesian network based

fault detection method which does not require previous

information about the dynamic system. In their work, a

Bayesian network is learned from a series of data acquired

under normal conditions, and faults are detected as low

probability values. Another fault detection method similar to

our approach constructs a system behavior model in the form

of a set of rules generated by applying pattern clustering and

association. This approach has been used in some complex

systems [20] outside of robotics. Hybrid control systems

can be used to identify generic patterns of continuous and

discrete event dynamical systems [1]. A generic framework

for hybrid systems includes transitions between continuous

and discrete states. Our approach is different from this prior

work in that it learns a state transition diagram using a data

clustering algorithm and is applied to the domain of multi-

robot systems.

III. OVERALL APPROACH

To detect faults in a mobile robot system, we need the

ability to distinguish a normal robot state from an anomalous

robot state. If we were to use the motion model of the robot,

faults can be easily detected by comparing the estimated

output of the model to the actual measurement. However,

without the motion model or any idea of the expected fault

signatures, we can instead learn normal robot states by

analyzing the sensor data during normal robot operation.

The states learned from the sensor data analysis may differ

from the actual robot “inner states” (i.e., the robot’s designed

programming and control algorithm), since the inner states

and the sensor data are not strictly mapped in a one-to-

one relationship to each other. However, with sufficient

sensor information, most inner states can be partitioned to

meaningful sensor states that are useful for fault detection.

Fig. 1. The structure of SAFDetection approach

Our SAFDetection approach, as shown in Fig. 1, is a

training-classification based method. In the training stage,

a history of sensor data (i.e., training data) during normal

operation is clustered into different states by using the Fuzzy

C-Means (FCM) clustering algorithm [11]. A state transition

diagram that represents the probabilistic transitions between

these states is then learned from the training data. In the

classification stage, the on-line sensor data is compared with

the state transition model and three types of faults can be

detected. If the sensor data does not belong to any of the

states we learned from the normal data, a hard fault is

detected. If the sensor data belongs to one of the states but the

observed state transition deviates significantly from the state

transitions we learned, a logic fault is detected. In a similar

manner, when this approach is used in a coalescent multi-

robot team, the inconsistency between robots can be detected

as a coalition fault. If no fault is detected, the sensor data is

classified as normal and is used to update the state transition

diagram. Our belief is that since our SAFDetection approach

regards the monitored system as a black box, it can be used

on different robot systems, including single robots and team

robots performing a variety of tasks.

IV. DETAILS OF APPROACH

A. Data preprocessing

Since the SAFDetection approach treats the monitored

system as a black box, the only information obtained from



the system is the robot sensor data. To obtain this data, the

robot makes use of the sensors already installed on the robot

for its mission-relevant tasks. Obviously, it is impractical

to use all the available sensor data for training the system

and learning the state transition diagram. Instead, relevant

features are selected and monitored. Thus, we choose a p-

dimensional essential feature vector f as the first step of

our approach. The essential features are primarily determined

by the tasks executed by the robot system. The correlation

between different sensors must also be considered. In some

cases, it is helpful to use correlated sensors, such a slaser and

sonar, to provide rational redundancy. In our current work,

we regard a complete multi-robot team as one monolithic

robot with a unified set of sensors. (We are extending

this approach in ongoing work to a distributed monitor-

ing approach.) Therefore, the same types of sensors, when

available, can be selected from different robots as essential

features to provide some measure of data redundancy.

Selecting the correct components of the feature vector

is a non-trivial problem, since the computational demands

will be intractable if we make use of every possible feature

in the system. Of course, in most cases, the computational

requirements of clustering algorithms increase as the dimen-

sion p goes up. In addition, we have to deal with the curse

of dimensionality, meaning that the clustering becomes less

meaningful as the dimensionality of the data increases. We

therefore must make use of historical sensor data to select

only the most relevant features as components of the feature

vector. Many methods can be used to reduce the feature

dimension, including Principal Components Analysis (PCA)

and Singular Value Decomposition (SVD), which are two of

the common linear algebra techniques for continuous data

dimensionality reduction. Ultimately, we will make use of

these techniques to automatically select the best features.

At present, some of this work is performed manually by

the designers, based on the variance of the sensor readings

during experimental trials. We also make use of the mean

and standard deviation values in the online fault detection

phase.

B. Data clustering

Many clustering algorithms have been developed to find

groups in unlabeled data based on a similarity measurement

among the data patterns. In these approaches, similar patterns

are placed together in the same cluster. For this work, we use

the Fuzzy C-Means clustering algorithm (FCM) [11] to clus-

ter the sensor data into groups, which we call states. Since

FCM is a fuzzy algorithm, a single data pattern may belong

to several clusters, having different membership values in

each cluster. This property of fuzziness is advantageous

when dealing with the noisy or partial data of typical robot

applications.

In the FCM algorithm, given a set of n data patterns, X =
x1, · · · , xk, · · · , xn,, the algorithm minimizes the objective

function, J(U, V ):

J(U, V ) =

n∑

k=1

c∑

i=1

um
ikd2(xk, vi) (1)

where xk is the k-th p-dimensional data vector, vi is the

prototype of the center of cluster i, uik is the degree of

membership of xk in the i-th cluster, m is a weighting

exponent on each fuzzy membership, d(xk, vi) is a distance

measurement between data pattern xk and cluster center vi,

n is the number of data patterns, and c is the number of

clusters. The objective function J(U, V ) is minimized via

an iterative process in which the degree of membership, uik,

and the cluster centers, vi, are updated, as follows:

uik =
1

1 +
∑c

j=1
(dik/dij)

2

m−1

(2)

vi =

∑n

k=1
um

ikxk∑n

k=1
um

ik

(3)

where ∀i uik satisfies: uik ∈ [0, 1], ∀k
∑c

i=1
uik = 1 and

0 <
∑n

k=1
uik < n.

One limitation of FCM is that it requires knowledge of the

number of clusters c. In our case, this number of clusters is

unknown before clustering is performed. Thus, we iteratively

run the FCM algorithm over several trials with varying

cluster numbers and select the number of clusters that gives

the best clustering quality. Xie defined a clustering quality

measurement [19] to measure the overall quality of a fuzzy

c-partition. This validity function, S, is given by:

S =

∑c

i=1

∑n

j=1
uij(vi − xj)

2

n × minij(vi − vj)2
(4)

Since a smaller S value means a more compact and separate

c-partition, we choose the cluster number with the minimum

S value as the final result. By using the validity function,

we can optimally cluster the n data patterns into c states in

a fuzzy way.

C. State transition diagram

Our state transition diagram is similar to a Markov model,

in that it records states and the transition probabilities

between each pair of states. (In ongoing work, we are dealing

with hidden variables, and thus our subsequent model will

be similar to a Hidden Markov Model.) In addition, our

state transition diagram also includes the mean and standard

deviation value of the time duration of the system in each

state (i.e., before the system transits to another state).

The algorithm for building the state transition diagram

is sketched in Algorithm 1. At the beginning, we need to

categorize all the sensor data into different states. As a result

of the fuzzy clustering algorithm, the data is not crisply

labeled into only one state. Equation 2 shows that the u value

is used to represent the degree of membership of the data x
in different clusters. We then use the u value to assign data x
into states with different probabilities. Variables t1 and t2 are

threshold values. By arranging the labeled data in sequence,

we can determine the transition between states and easily

build the state transition diagram.



Algorithm 1 Sketch of building the state transition diagram

1: for each data x and its membership value u do

2: find the max(u)=ui and max (u-ui)=uj .

3: if ui-uj > t1 then

4: x is set to cluster i with weight 1.

5: else

6: if uj > t2 then

7: x is set to cluster i with weight ui and set to

cluster j with weight uj .

8: else

9: x is invalid and discarded.

10: end if

11: end if

12: end for

13: for each time step do

14: if the state is the same as the last time step then

15: record the time length the system remains in this

state.

16: else

17: record the state transition.

18: end if

19: end for

20: for each state c do

21: find the mean mc and standard deviation value σc of

the time the system remains in state c.

22: find the probability pcd for each possible state d.

23: end for

D. Fault detection

After we have built the state transition diagram, we can

use it to detect faults online. The algorithm for detecting

faults is sketched in Algorithm 2. The on-line sensor data x
and its membership value u are sent to the fault detection

module and three types of faults can be detected. If the

membership u value does not show clearly which cluster x
belongs to, a hard fault is detected because the robot enters

an unknown state. If x belongs to state c and the robot has

stayed in that state c for an unusually long time, a logic

fault is detected because the robot is stuck in that state. If a

state transition occurs and the observed state transition does

not exist in the learned state transition diagram, a logic fault

is detected because the robot has changed its state in an

unknown manner. If one robot team member detects a hard

or logic fault, but this fault is not detected by another team

member, a coalition fault is detected indicating inconsistency

between team robots (i.e., in their perception of the current

team state). The following section shows how these three

types of faults can be detected in a physical robot experiment.

V. EXPERIMENTAL RESULTS

We implemented the SAFDetection approach on a physical

robot team performing a cooperative box pushing task. In

this section, we first describe the task, and then the features

used for sensor analysis. We present the clustering results,

the state transition diagram that was learned, and the results

Algorithm 2 Sketch of fault detection module

1: for each on-line data x do

2: x’s membership value u is obtained from equation 2.

3: if max(u) < t1 then

4: x does not belong to any known state, and a hard

fault is detected.

5: else

6: x is set to the state c with the highest membership

value.

7: end if

8: find the state d of the last time step.

9: if c = d then

10: calculate the time t of the duration in state c.

11: if t > mc+3σc then

12: system is stuck in state c, and a logic fault is

detected.

13: end if

14: else

15: if pdc = 0 in the state transition diagram then

16: system performed an abnormal state transition,

and a logic fault is detected.

17: end if

18: end if

19: end for

of using this model for fault detection for both a single robot

and a multi-robot team.

A. Box pushing task

The box pushing task has been used by many researchers

as a canonical problem in multi-robot systems. In this task,

two or more robots work together to push a box to a goal

position in a cooperative manner. In our experiments, the

goal was indicated by a red object clearly visible to the

robots. During the pushing, the robot needs to adjust its

speed and pushing direction to avoid losing the box; it

also may need either to change the pushing direction fairly

significantly, or to idle for a while to coordinate with the

teammate’s pushing activities. For these experiments, we

made use of no additional knowledge of the motion model

of the robots. We applied our approach for monitoring both a

single robot and a robot team performing this pushing task. In

our experiments, the box pushing task is repeated 15 times,

resulting in more than 600 data entries being collected for

training the SAFDetection system.

B. Feature selection

Two Pioneer mobile robots are used in our experiments.

Both robots are equipped with sensory devices that include

laser, sonar ring, color camera and motors with encoders.

Each of these devices provides sensor data that can be

monitored for our application. Clearly, many possible fea-

tures could have been used for this task. We explored the

usefulness of many features for this task. Some features were

determined by understanding the characteristics of the the

task; for example, the red block information is relevant for



indicating the goal position, and thus its size in the camera

image is important for the task. Some of the features were

chosen to provide rational redundancy (e.g., laser and sonar).

We also chose the robot battery charge value as one essential

feature because it affects all robot tasks if there is no backup

power supply. In our implementation, this feature is used as a

check value; if it deviates significantly from the mean value

that was learned, a hard fault is detected. To select from the

candidate features, we ran multiple trials of the box pushing

experiment. We monitored the feature values and filtered out

those that are irrelevant, in order to reduce the dimensionality

of the feature vector. Based on this analysis, we selected a

subset of the initial features to be used in building the sensor

model. The list of features explored and the eight that were

selected as a result of our analysis are as follows:

• Minimum laser range (SELECTED)

• Laser index with minimum laser range (SELECTED)

• Maximum laser range

• Laser index with maximum laser range

• Minimum sonar range (SELECTED)

• Sonar index with minimum sonar range (SELECTED)

• Maximum sonar range

• Sonar index with maximum sonar range

• Robot speed (SELECTED)

• Robot turn rate (SELECTED)

• Robot current position

• Red block’s center in the camera image

• Red block’s area in the camera image

• Red block’s width in the camera image

• Red block’s height in the camera image (SELECTED)

• Battery charge (SELECTED)

TABLE I

MEAN AND STANDARD DEVIATION OF FEATURES

Feature mean standard deviation std to mean
min laser range 0.132 0.027 20.45%
min laser index 90.304 9.223 10.21%
min sonar range 0.177 0.017 9.42%
min sonar index 3.424 1.089 31.83%
speed 0.056 0.048 82.14%
turn rate 0.0016 0.011 687.5%
blob height change 1.281 9.725 759.2%
battery charge 12.208 0.214 1.75%

From table I, we find that the mean values of the selected

features vary significantly. To keep these values near the

same magnitude in clustering, we weight them so that the

resulting values lie within the same range.

C. State transition diagram result

To detect the fault of a single robot, more than 600 sensor

data entries (collected from 15 trials of the experiment) are

used to train the system. Five clusters are grouped using

the FCM clustering algorithm and validity function. Table II

shows the centers of these clusters.

The center results show that it is reasonable to consider

the clusters as states that represent different status conditions

of a robot. Examining the cluster center vector in the table

TABLE II

CENTERS OF CLUSTERS WITH SINGLE ROBOT DETECTION

Feature C1 C2 C3 C4 C5
min laser range 90.11 99.73 84.85 80.43 90.95
min laser index 0.201 0.137 0.095 0.094 0.139
min sonar range 3.26 3.27 3.82 3.96 2.50
min sonar index 0.196 0.17 0.17 0.17 0.17
speed 0.001 -0.038 0.088 0.002 -0.374
turn rate 0.001 -0.112 0.002 0 0.109
blob height change 0 47.03 2.17 0.54 50.12

II, we can roughly interpret the states represented by the

clusters. For example, according to the speed and the turn

rate features, we know that clusters C2 and C5 correspond

to “alignment” actions of the robot (with opposite turning

directions). C3 means that the robot is moving forward while

clusters C1 and C4 stand for the “waiting” or “idle” status

of the robot.

After we obtain the states of the robot system, Algorithm

1 is used to build the state transition diagram. Fig. 2 shows

the resulting transition diagram with the five states in our

single robot fault detection tests. The states “start” and “end”

are added manually. Table III shows the mean and standard

deviation values of the time the robot remained in each state

(i.e, before transiting to a different state).

Fig. 2. Learned state transition diagram for a single robot.

TABLE III

STATE REMAINING TIME IN EACH STATE

State C1 C2 C3 C4 C5
Mean time (s) 2.36 4.22 27.8 4.13 4.11
Standard derivation (s) 0.41 0.43 8.22 0.58 0.39

For the purposes of comparison, we show in Fig. 3

the state transition diagram representing the actual robot

control code for this task. We can see that it has a structure

similar to that learned by our approach (i.e., in Fig. 2). The

two “Alignment” states in Fig. 2 are the representation of

the single “Alignment” state in Fig. 3, but with different

alignment directions. We note, unlike Fig. 3, there is no

transition from ‘initialize” to “alignment” or “wait” in Fig. 2

because the motions “alignment” and “wait” always happen



after “push” in the real experiments. We can also regard those

transitions as having probability zero.

Fig. 3. Actual algorithmic control code for a single robot.

The diagrams also show that most robot control states

can be partitioned into meaningful sensor states. However,

in more complex situations, we recognize that operator

commands or internal variables cannot be directly observed

from sensor data. Addressing the issue of such “hidden”

variables is an area of our future work.

D. Results for fault detection with single robot

Using the learned state transition diagram, single robot

faults can be detected online. To evaluate the SAFDetection

approach, two simulated faults were generated manually. The

learned state transition diagram shown in Fig. 2 is used for

performing fault detection.

In Test 1, we jammed the robot against an obstacle so

that it could not move; in this case, our system was able

to detect the fault in 6 seconds. Fig. 4 shows the minimum

laser index, speed and turn rate features of the single robot in

this test. At time 31, we jammed the robot. The consequence

was that the robot entered state C4 which is a normal “idle”

state of the robot, and then remained in that state. At time

37, the SAFDetection approach noticed that the robot had

remained in state C4 for 6 seconds, which is an unusually

long time compared to the learned data. In normal operation,

the robot would stay in state 4 for 4.13 seconds, with a

standard deviation of 0.58. After comparing these values,

SAFDetection made a judgment that the robot was stuck in

state C4, yielding the detection of a logic fault at time 37.

Of course, our SAFDetection is only practical if it can

achieve good results without requiring a large number of

learning trials. To study this issue, we used our system to

develop sensor models for fault detection using a variable

number of learning trials. Fig. 5 shows the results for the

experimental setup reported here. In this figure, the time -1

represents a false alarm; as can be seen, with 3 or fewer

learning trials, the robot expects every new situation to be

a fault. However, with only a few additional trials, the fault

detection time becomes more and more accurate, with correct

and timely fault detection occurring after about 6 trials.

Fig. 4. Sensor data when single robot stuck.

Fig. 5. Fault detection time (i.e., time to detect fault after it occurs) as a
function of number of training trials.

In Test 2, while the robot was pushing, we removed the

red block that indicated the goal position. The result was

that the robot began wandering because it lost the goal. In

this case, the fault was detected in 2 seconds. Fig. 6 shows

the minimum laser index, minimum laser range, and turn

rate features of the single robot in this test. At time 27, we

removed the red block and the robot started to wander. At

time 29, the SAFDetection approach noticed that the on-line

sensor data did not belong to any of the known states. It made

a judgment that the robot entered some abnormal situation

and a hard fault was detected.

In most circumstances, hard faults can be detected earlier

than logic faults. For example, in Test 1, at any time before

37 seconds, we cannot detect a fault because we cannot

immediately distinguish between a robot being in normal

idle state and the robot being stuck. Only after more time

passes is the system able to make this distinction.



Fig. 6. Sensor data when single robot wanders.

E. Results for fault detection with tightly-coupled multi-

robot team

Using the SAFDetection approach with a multi-robot

team is quite similar to the single robot situation, since

at present, we treat a multi-robot team as one monolithic

robot with more sensors than an usual robot. (As noted

previously, in ongoing work, we are extending this approach

to distribute the detection across multiple team members,

and thus no longer treat the robots as a single monolithic

system.) Because of this, we have higher dimensional data

vectors to be grouped and a larger state transition diagram

to be built. For example, in our box pushing experiment,

the same eight sensor features are collected from the second

robot and a fourteen dimensional sensor data vector is formed

for clustering. If we monitor the two robots separately, both

robots can be grouped into 5 states, leading to at most 25

states for the robot team as a whole. The actual number of

states learned is 7, because the robots work in a cooperative

manner. For example, when one of the robots is aligning

its direction, its teammate will wait until it has finished

alignment. Fig 7 shows the state transition diagram of the

robot team.

We simulated a coalition fault by disturbing the com-

munication between the two robots. The state transition

diagram shown in Fig. 7 was used to perform the fault

detection with the robot team. In this experiment, the fault

was detected in 1 second. Fig. 8 shows the speed and turn

rate features from both robots in this test. At time 22, robot

B started performing alignment while robot A continued

pushing the box, due to lacking communication. At time 23,

the SAFDetection approach noticed that the on-line sensor

data did not belong to any of the known states and a fault

was detected.

This test shows that, by monitoring the robot team as a

monolithic robot, we can detect more faults than monitoring

team robots separately. For example, if we monitor the two

Fig. 7. Learned robot team state transition diagram.

Fig. 8. Sensor data with robot team coalition fault.

robots separately in this test, we will find that robot A is

pushing, robot B is doing alignment and both of them are

working in normal states. Also, in Test 1, if only one robot

is jammed by an obstacle and the robot team is monitored as

a whole, the SAFDetection approach will discover that robot

A is pushing while robot B is idling. Thereby, an unknown

state can be found and the fault could be detected earlier

than time 37.

F. Results analysis and future work

We believe our results validate the SAFDetection ap-

proach, by illustrating its ability to detect faults based solely

on sensor data analysis. No prior knowledge is needed of

the motion models of the robots, and no prior knowledge is

needed of the possible failure states of the robots. Because

of the general nature of the approach, and because we treat

the robot system as a black box, we believe SAFDetection

has applicability to a wide range of applications.

However, more work is needed to refine the system, and

there are some shortcomings we are addressing in ongoing



work. Our tests revealed some problems that must be ad-

dressed. One issue is the asynchronous nature of the sensor

data. To monitor the robot team, we need to collect the

sensor data from all the robots in one time step. In addition,

different sensors on the same robot also have synchronization

problems, due to different response speeds. Noisy and partial

sensor data is another issue that needs to be considered.

Currently, false alarms often happen because of the noisy

or partial sensor data we read from the robots. A sliding

window or partial filter may be introduced in our future

work to correct this problem. Further study on the training

data should also be explored in our future work. At present,

we only use sensor data during normal robot operation.

However, we should also pay attention to the sensor data

during anomalous robot operation. These data provide the

fault information of the robot system and can help us to

understand the faulty state of system. In a future extension,

we will include both normal and anomalous data in our fault

detection model.

Another limitation of our approach is that the features

we use should remain stable while in the same state for

the purposes of clustering. Obviously, some features do

not satisfy this requirement; thus, we intend to extend our

approach to deal with this issue. Another future work we plan

to undertake is to implement the SAFDetection approach

in a distributed manner, so that any robot of a team can

monitor the whole team. We need to further study the

issue of scalability, and to what extent a single monitoring

process can be used for larger and larger teams. Clearly, as

the team size gets very large, a distributed approach that

can break down the monitoring problem, combined with

communication, is the most likely solution for very large

team applications. Nevertheless, we believe the results shown

in this paper illustrate the viability of this approach.

VI. CONCLUSION

In this paper, we have defined the SAFDetection approach

and illustrated how it can be implemented on a single robot,

and in a tightly-coupled multi-robot team to successfully de-

tect faults. We focused on the unsupervised FCM clustering

algorithm and how to learn a probabilistic state transition

diagram for fault detection using the analyzed sensor data.

We presented results from physical robot implementations

that illustrated the effectiveness of this approach for the

online detection of hard faults, logic faults and coalition

faults. The experiments showed that the Fuzzy C-Means

algorithm provided sufficient speed and reliability to achieve

the desired fault detection capabilities. Additionally, the

clustered sensor data and learned state transition diagram are

feasible for representing the action states of robot system,

and for use in detecting robot system faults. We believe that

this approach is general enough to apply to a wide range

of single- and multi-robot system applications, and can thus

achieve online fault detection based on sensor analysis.

REFERENCES

[1] M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid
control: Model and optimal control theory. IEEE Transactions on

Automatic Control, 43(1):31–45, 1998.
[2] Z. Cai and Z. Duan. A multiple particle filters method for fault diag-

nosis of mobile robot dead-reckoning system. In IEEE International

Conference on Intelligent Robots and Systems, pages 481–486, 2005.
[3] W. Chen, R. Gong, and K. Dai. Two new space-time triple modular

redundancy techniques for improving fault tolerance of computer sys-
tems. In IEEE International Conference on Computer and Information

Technology, 2006.
[4] E. Delage, H. Lee, and A. Y. Ng. A dynamic Bayesian network model

for autonomous 3D reconstruction from a single indoor image. In
IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 2418–2428, 2006.
[5] C. Ferrell. Failure recognition and fault tolerance of an autonomous

robot. Adaptive behavior, 2(4):375, 1994.
[6] F. J. Garcła, L. J. Miguel, and J. R. Pern. Fault-diagnostic system using

analytical fuzzy redundancy. Engineering Applications of Artificial

Intelligence, 13:441–450, 2000.
[7] P. Goel, G. Dedeoglu, S. Roumeliotis, and G. Sukhatme. Fault

detection and identification in a mobile robot using multiple model
estimation and neural network. In IEEE International Conference on

Robotics and Automation, pages 2302–2309, 2000.
[8] M. Hashimoto, H. Kawashima, and F. Oba. A multi-model based

fault detection and diagnosis of internal sensor for mobile robot. In
IEEE International Conference on Robotics and Automation, pages
3787–3792, 2003.

[9] A. H. Jackson, R. Canham, and A. M. Tyrrell. Robot fault-tolerance
using an embryonic array. In NASA/DoD Conference on Evolvable

Hardware, pages 91–100, 2003.
[10] B. P. Jeppesen and D. Cebon. Analytical redundancy techniques for

fault detection in an active heavy vehicle suspension. Vehicle System

Dynamics, 42:75–88, 2004.
[11] F. Klawonn and A. Keller. Fuzzy clustering and fuzzy rules. In 7th

International Fuzzy Systems Association World Congress, pages 193–
198, 1997.

[12] I. S. Lee, J. T. Kim, and J. W. Lee. Model-based fault detection and
isolation method using ART2 neural network. International Journal

of Intelligent Systems, 18:1087–1100, 2003.
[13] M. L. Leuschen, J. R. Cavallaro, and I. D. Walker. Robotic fault

detection using nonlinear analytical redundancy. In IEEE International

Conference on Robotics and Automation, volume 1, pages 456–463,
2002.

[14] J. P. Matsuura and T. Yoneyama. Learning Bayesian networks for
fault detection. In Proceedings of the IEEE Signal Processing Society

Workshop, pages 133–142, 2004.
[15] L. E. Parker and B. Kannan. Adaptive causal models for fault diagnosis

and recovery in multi-robot teams. In IEEE International Conference

on Intelligent Robots and Systems, 2006.
[16] M. H. Sadeghi, J. Raflee, and F. Arvani. A fault detection and identi-

fication system for gearboxes using neural networks. In International

Conference on Neural Networks and Brain, pages 964– 969, 2006.
[17] V. Verma and Simmons. Scalable robot fault detection and identifica-

tion. Robotics and Autonomous Systems, 54:184–191, 2006.
[18] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker. Robotic fault

detection and fault tolerance: A survey. Reliability Engineering and

System Safety, 46:139–158, 1994.
[19] X. L. Xie and G. Beni. A validity measure for fuzzy clustering.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(8):841–847, 1991.

[20] T. Yairi, Y. Kato, and K. Hori. Fault detection by mining association
rules from house-keeping data. In International Symposium on

Artificial Intelligence,Robotics and Automation in Space, 2001.
[21] Q. Yang, J. Yin, and C. Ling. Postprocessing decision trees to extract

actionable knowledge. In IEEE International Conference on Data

Mining, pages 685–688, 2001.
[22] H. Zhou and S. Sakane. Sensor planning for mobile robot localization

using Bayesian network inference. Advanced Robotics, 16(8):751–771,
2002.


