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Abstract— This paper presents a distributed reasoning system,
called ASyMTRe-D, which enables a team of robots to form coali-
tions to accomplish a multi-robot task through tightly-coupled
sensor sharing. The theoretical foundation of the negotiation
protocol is ASyMTRe, an approach we developed previously
to synthesize task solutions according to the task requirements
and the team composition. The goal of the ASyMTRe approach
is to increase the task solution capabilities of heterogeneous
multi-robot teams by changing the fundamental abstraction
from the typical “task” abstraction to a “schema” abstracti on
and automatically reconfigure the schemas to address the task
at hand. The decision-making in this prior work was fully
centralized; the current paper presents a distributed version of
this approach based on the Contract Net Protocol, which can
achieve higher levels of robustness than the centralized version.
The purpose here is not to improve the original protocol, but
to apply it to our problem so that the autonomous task solution
capabilities of robots can be achieved in a distributed manner.
Simulation results are provided to validate the protocol with
performance analysis. Finally, we compare ASyMTRe-D with
the centralized ASyMTRe. Our future objective is to enable
the human designer to specify the desired balance between
solution quality and robustness, enabling the reasoning approach
to invoke the appropriate level of information-sharing among
robots to reach the specified solution characteristics.

I. I NTRODUCTION

Multi-robot coalition formationdeals with the issue of how
to organize multiple robots into subgroups to accomplish tasks
collectively. The motivation behind coalition formation is to
enable the team members to work together as a group to
accomplish tasks that cannot be handled by individual robots.
A challenging class of problems in coalition formation is
determining when it is appropriate to form a coalition and
how the robots should cooperate within a coalition. We are
particularly interested in automated techniques for determining
howto solve a multi-robot task, when the specific task solution
is highly dependent upon the available capabilities of the
multi-robot team, and thus cannot be specified in advance.
This is especially challenging in heterogeneous robot teams,
in which sensory and computational resources are distributed
across different robots. In such teams, some robots may be
more resource-bounded than others (e.g., have more limited
sensing capabilities) and thus may not be able to accomplish
certain tasks. For example, a robot with only an acoustic sensor
cannot navigate autonomously in an environment, but is able
to navigate successfully with direct assistance from another
robot. For such a team to accomplish the task as a whole, the
team must determine how to couple the appropriate sensory

and computational capabilities from each robot, resultingin
automatically formed coalitions that serve specific purposes.

To address this challenge, we present our ASyMTRe ap-
proach.1 This approach is aimed at increasing the autonomous
task solution capabilities of heterogeneous multi-robot teams
by changing the fundamental abstraction that is used to rep-
resent robot competences from the typical “task” abstraction
to a biologically-inspired “schema” ([1], [8]) abstraction, and
providing a mechanism for the automatic reconfiguration of
these schemas to address the teaming task at hand. In doing
this, we are able to simultaneously obtain a number of signif-
icant new benefits in coalescent multi-robot teaming that have
previously been difficult to achieve. These benefits include:
(1) enabling robots to generate solutions to new tasks that
were not explicitly programmed by the human designer, but
instead consist of new, automated combinations of low-level
building blocks, or schemas; (2) enabling robot team members
to automatically generate task solutions based on sensor-
sharing across team members, in configurations not previously
explicitly defined by the human designer; (3) providing a way
for robots to develop coalitions to address multi-robot tasks;
and (4) enabling flexible software code reuse from one robot
teaming application to another through the task-independent
schema abstraction that is viewed as a generator of semantic
information content which can be used in many ways by
various diverse tasks. In the formal multi-robot task allocation
(MRTA) framework of [7], our approach addresses the class
of problems encompassing “Single-Task” robots (ST), “Multi-
Robot” tasks (MR), and “Instantaneous Assignment” (IA).
Specifically, we are addressing the development of hetero-
geneous robot coalitions that solve a single multi-robot task.
Eventually, we expect that the ASyMTRe approach can be
layered with prior task planning/allocation approaches, with
ASyMTRe serving as a lower-level solution generator forhow
to solve tasks, with the higher-level, more traditional task
planning/allocation strategies using these lower-level solutions
for implementing the task solutions.

We have developed a centralized ASyMTRe configuration
algorithm ([13], [14]) that generates single-task solutions for
robot teams. In this prior work [14], we have proven that the
centralized approach is sound, complete, and optimal (given
enough processing time). It is well-known that centralized
approaches suffer from lack of robustness. One approach to

1“ASyMTRe” is an abbreviation for Automated Synthesis of Multi-robot
Task solutions through software Reconfiguration, pronounced “Asymmetry”,
which is first introduced in [13].



achieving robustness is to duplicate the configuration process
on every robot, but this approach requires that every robot be
aware of the capabilities of all the other team members. Any
change in the team would require an update of the knowledge
base on all the robots. This type of system would not work
efficiently when robot failure or sensor failure is common, or
when robots join or leave the team dynamically. To increase
the robustness of the system, we have developed a distributed,
negotiation-based ASyMTRe, which we call ASyMTRe-D.
This work shares the same theoretical foundation as the
centralized ASyMTRe and is built upon the well-known Con-
tract Net Protocol (CNP) [12]. The purpose here is not to
improve the Contract Net Protocol, but to demonstrate that the
autonomous solution generation process can also be distributed
among robots to achieve the robustness of a distributed system
over a centralized system. The distributed approach offers
a more flexible and robust approach to coalition formation
than the centralized approach. However, it trades off solution
quality for robustness. Thus, for any particular application, the
human designer will have to determine the appropriate balance
along the quality-robustness spectrum. Our future objective is
to allow the human designer to specify the desired balance
between robustness and solution quality, and to have the
reasoning system utilize the appropriate amount of information
sharing among robots to achieve this balance. This paper
provides the foundational groundwork for this future work.

The remainder of this paper is organized as follows. Sec-
tion II surveys our prior work on ASyMTRe, which provides
a foundation of the distributed ASyMTRe-D. Section III then
presents in detail the distributed negotiation process andthe
corresponding protocol. Experimental results are discussed in
Section IV. We briefly outline related work in Section V, and
provide concluding remarks in Section VI.

II. PRIOR WORK ON ASYMTRE

We now briefly review the foundation of the ASyMTRe
approach, which is based on one key idea – changing the
fundamental abstraction of how we view robot capabilities
from a “task” abstraction to a “schema” abstraction. Typically,
the research community has defined heterogeneous robot ca-
pabilities in terms oftasksor roles. Under this view, a robot
is provided with a set of software methods (usually referred
to as control algorithms or “behaviors”) enabling the robotto
accomplish a set of pre-defined, application dependent tasks or
roles (such as “push the box”, “track the target”, “go home”,
“forage”, “defend home goal”, etc.). The prevalence of this
task-centric abstraction is evidenced by the significant focus
of the heterogeneous robot teaming research on the topic of
task allocation (e.g., [9], [2], [15], [16], [6]).

However, the development of software libraries of robot
control code at the task level can severely restrict the reuse of
this software in other applications. A fundamental problemis
that software developed at the task level is often highly sensor,
effector, and application-dependent. This dependency pre-
defines how the robot team members will solve the given task.
However, if the sensor capabilities of robot team members

were to change (or, similarly, if new members were added
that have very different sensor capabilities), their approach to
solving the same task would be significantly different.

We address this problem in ASyMTRe by changing the
common “task” abstraction to a “schema” abstraction, and
providing a method enabling the robot team members to au-
tonomously reconfigure the connections between the schemas
to solve the task at hand. ASyMTRe is based upon a distributed
extension to schema theory ([1], [8]) and the information the-
oretical work of Donald, et al. [4]. The following subsections
outline this approach, which is the foundation upon which
ASyMTRe-D is built.

A. Schema Theory and Information Types

The basic building blocks of ASyMTRe are collections of
environmental sensors (ES), perceptual schemas (PS), motor
schemas (MS), and communication schemas (CS). A PS
processes input from ES(s) to provide information to an MS,
which then generates an output control vector corresponding
to the way the robot should move in response to the perceived
stimuli. A CS transfers information between various schemas
distributed across robots, which is introduced to distinguish the
connections within a robot from the connections across robots.
All schemas are assumed to be pre-programmed into the
robots at design time, and represent the fundamental individual
capabilities of the robots. The connections between schemas
are not fixed, but can be configured at run time.

ASyMTRe allows robots to reason about how to solve
a multi-robot task based upon the fundamental information
needed to accomplish the task. The information needed to
activate a certain schema remains the same regardless of
the way that the robot may obtain or generate it. Thus, we
can label inputs and outputs of all schemas with a set of
information typesF = {F1, F2, ...}. ISi and OSi ⊂ F
represent the input and output of schemaSi, respectively.
Note that we use the terminformation typesas distinct from
data types. Semantics of the information is built into these
information types, and does not just refer to a data type (such
as boolean or integer). For example, the input information
types of a go to goal schema could be{current position,
goal position}, and its output types could be the specific motor
commands. We assume that each schema has multiple inputs
and outputs. An output of a schema can be connected to an
input of another schema if and only if their information labels
match. Using the mapping from schemas to information types,
solution strategies can be configured at the schema level, rather
than the sensor level, to determinehowto solve tasks in a much
more general manner. The benefit of the schema approach is
that we can build up libraries of task-independent schemas,
which also helps with code reuse.

B. Knowledge Base

The knowledge base of information is represented as
(T, Ri), whereT = {MS1, MS2, · · · } is the set of motor
schemas that define the team-level task to be achieved, along



Fig. 1. An example of how the schemas are connected to accomplish a
task. The solid-line arrows going into a schema represent an“OR” condition,
meaning that it is sufficient for the schema to only have one ofthe specified
inputs. The dashed-line arrows represent an “AND” condition, where all the
indicated inputs are needed to produce a result. For example, MS1 can
calculate output only if it receives bothF1 and F2. However, PS2 can
produce output based on either the output ofPS1 or CS1.

TABLE I

CONNECTIONCONSTRAINTS FORSCHEMAS

Sensor/Schema Input Sources Output Feeds into:
ES Sensor Signals PS
PS ES, PS or CS PS, CS or MS
CS PS, or CS PS, CS, or MS
MS PS, CS, or ES Actuators

with application-specific parameters as needed.2 A robot, Ri,
is represented byRi = (ESi, Si). ESi is a set of environ-
mental sensors that are installed onRi, andSi is the set of
schemas that are pre-programmed intoRi at design time. Each
schema is represented by(Si

j , I
Si

j , OSi
j ). A schema can be

activated if and only if its input can be obtained from the
output of schemas or sensors on the local robot or can be
directly transferred from other robots. Additionally, a set of
Connection Constraintsare used to specify the restrictions on
correct connections between various schemas (see Table I).

C. Potential Solutions

A potential solutionis one way to connect schemas on an
individual robot for it to fulfill its part of the task (i.e,. for all
MSj ∈ T , the inputs ofMSj are satisfied, along with all the
inputs from the schemas that feed intoMSj). We represent a
potential solution by

PoSi
j = (Si

1, S
i
2, · · · , Si

k, F i
1 , F

i
2, · · · , F i

h). (1)

where PoSi
j is the jth potential solution forRi, Si

x (1 ≤
x ≤ k) is the xth schema ofRi that needs to be activated,
and F i

y (1 ≤ y ≤ h) is the yth information type that
needs to be transferred toRi. For example, in Fig. 1, if
we assume thatT = {MS1}, one potential solution is to
activate{PS1, PS2, PS3, MS1}, provided that the robot has
both ES1 and ES2. Another potential solution is to activate
{PS2, CS1, CS2, MS1} when F3 and F2 can be transferred
from other robots.

2In future work, we will develop a more general task specification, similar
to the formal specification of tasks in [5].

D. Solution Quality

With multiple potential solutions available, we introduce
utility to measure their qualities. We define asensori-
computational system(SCS) [4], which is a module that com-
putes a function of its sensory inputs and produces outputs.
It is represented bySCSi

j = (Si
j , ESi

j, O
Si

j ), where Si
j is

the jth PS/CS on Ri, ESi
j is the sensory input, andOSi

j is
the output. EachSCSi

j is assigned a costCi
j and a success

probabilityP i
j , whereCi

j represents the sensing cost of using
ESi

j and P i
j represents the success rate ofSi

j to generate a
satisfactory result. We calculate the utility3 of activatingSCSi

j

or producingOSi
j by U i

j :

U i
j = max(0, w · P i

j − (1 − w) · (Ci
j/ max

j
(Ci

j))). (2)

Here, w (0 ≤ w ≤ 1) is a weight factor that balances the
relative importance of the success probability and the cost.
According to (1), we can measure the quality of a potential
solutionPoSi

j by summing the utilities of all theSCSi
j that

need to be activated on the local robot and the utilities of the
information types that are obtained from other robots. The goal
is to maximize the utility of the selected potential solution.

E. Finding Solutions

In centralized ASyMTRe, solutions are found by searching
through the potential solution space for viable solutions of
high utility. Since the optimization problem is NP-hard, finding
optimal solutions quickly is not possible. However, we have
identified robot ordering heuristics that enable centralized
ASyMTRe to find good solutions quickly. If more time is
available, our anytime algorithm will continue to search for
better solutions and is guaranteed to find the optimal solution,
given sufficient time [14]. However, as previously noted, a
purely centralized approach may suffer from a lack of robust-
ness. Thus, we now show how this approach can be distributed
in order to improve system robustness. The solution generation
process is achieved through a distributed negotiation process
that is inspired by CNP. The purpose here is not to improve
the original protocol, but to apply it to our problem so that
the autonomous task solution capabilities of robots can be
achieved in a distributed manner.

III. T HE DISTRIBUTED ASYMTRE-D APPROACH

A. Negotiation Process

In ASyMTRe-D, robots are viewed as a set of information
sources, where some robots do not have sufficient information
to solve the task by themselves. To accomplish the task for
the team as a whole, more capable robots can provide useful
information to less capable robots. As previously noted, the
sharing of information, and thus the cooperation among robots,
are achieved through a distributed negotiation process, based
on the Contract Net Protocol [12]. Each robot decides what

3In fact, the utility of a solution should also consider otheraspects, such
as the quality of information, frequency of the output, the computational
complexity, etc. We will extend our utility definition to include these aspects
in future work.



TABLE II

MESSAGES USED IN THEASYMTRE-D PROTOCOL

Type Format
Simple Request (‘F1’, from, numinfo, F1, · · · , Fnuminfo)
Complex Request (‘F2’, from, numinfo, F1, · · · , Fnuminfo)
Simple Reply (‘H1’, from, to)
Complex Reply (‘H2’, from, to, utility)
Confirmation (‘C ’, from, to)
Cancellation (‘A’, from, to)

information it needs and then requests it from others. The so-
lution is evaluated based upon each robot’s local information,
and the final decision is determined by mutual selection. The
negotiation process is totally distributed, with no centralized
control or centralized data storage.

Such a distributed system offers a reliable, extensible, and
flexible mechanism to make ASyMTRe suitable for applica-
tions where robot or sensor failures are common, or the robot
team composition is dynamic (robots may join or leave fre-
quently). The negotiation process is triggered at the beginning
of each task to generate initial solution strategies, and iscalled
to re-plan solutions to accommodate changes in robot teams
or tasks. It is important to note, however, that the distributed
approach trades off solution quality for team robustness. We
note again that the intent of this approach is not to develop
a new negotiation protocol, but instead to develop a method
for the robot team to vary their reasoning between fully
centralized and fully distributed decision-making, according to
the desired balance between solution quality and robustness.

B. Distributed ASyMTRe-D Negotiation Protocol

The distributed negotiation protocol involves the following
major steps with the message types listed in Table II:

• Make request. Depending on the requirements of each
potential solution, a robot broadcasts requests for the
information types it needs to obtain from other robots.
Simple requests are sent out at the beginning to estimate
the potential number of robots (pn) that can provide
the required information. It has been shown in [14] that
the ordering in which robots are been considered in the
configuration process is an essential factor to solution
completeness and solution quality. Each robot will wait
for a period of time that is proportional to itspn value
before sending out the complex requests. Thus, the robots
with fewer potential helpers have higher priorities to
make requests, since they will likely have fewer chances
for success. However, sending simple requests increases
the communication and computation cost. For tasks that
are time critical, this step can be ignored and robots can
directly send out complex requests instead.

• Serve request and submit help. After evaluating the
required information, each robot replies based on a first-
come-first-serve (FCFS) order. Simple replies are sent out
without the estimation of utilities to enable the requesting
robot to collect information about itspn. Otherwise, the

TABLE III

HANDLING POSSIBLECOMMUNICATION FAILURES

Message Loss Countermeasures Time Result
Reply finite waiting time (t) 0.75s repeat requests
Request repetitive requests 10s report failure
Confirmation finite waiting time 4s cancellation

robots will estimate the utility of providing the required
information by (2). Since a requesting robot selects the
potential solution with the highest utility, some capable
robots are more likely to be chosen than others. Similar
to [11], we assume robots work in a non-super-additive
environment. Thus, the larger a coalition is, the higher
the communication and computation costs are. Thus, we
impose amax-to-help(k) constraint on each robot, which
limits the number of robots that one can provide infor-
mation. This constraint can reduce the complexity of the
robots executing the solution due to motion constraints
and balances the burden among capable robots.

• Rank and confirm help. Solutions are ranked by de-
creasing utilities. Each robot then selects the solution
with the highest utility and sends a confirmation message.
When there are multiple solutions with the same utility,
the selection also follows the FCFS rule. If no robot
responds to the request after the timeout, the robot will
repeat the negotiation process until it reports “failure”
after a period of time. The confirmation message will
be broadcast to all robots, so that the other robots that
are also willing to help can be released from their
commitment and serve more requests.

The distributed ASyMTRe-D negotiation protocol acts as
a greedy planner, since each robot selects the locally best
solution to accomplish the task. However, it may not yield
a global best solution, suffering from the usual problems of
greedy algorithms. In [14], we have given an example of this
problem and presented the centralized approach that takes into
account all the orderings of robots (if given enough time),
therefore generating the best solution for the team as a whole.
Clearly, this represents the tradeoff between the robustness of
a distributed solution and the solution quality of a centralized
solution, which will be discussed further in experiments.

To ensure a general and robust negotiation process, some
traditional mechanisms are built into the distributed protocol
[3]. First, our protocol employs timeouts during the negotiation
process (see Table III). The current settings of timeout values
are based on experiments and estimation, which can be tuned
as parameters to the program. A robot will wait for a finite
time (t) for any replies, and if there is no reply, it will send
out requests again. This process will continue for a period
of time before the robot reports “failure”, which is either
due to no robots being available to help, or to the requests
or replies getting lost. A helping robot will also wait for a
finite time for the confirmation. In this way, the robot can be
released to help other robots if the confirmation gets lost orit
is not selected to help. Similar to [6], our protocol also uses



broadcast messaging, rather than point-to-point, becauseit is
efficient in transferring data and does not require the system
to know specific destination information.

IV. EXPERIMENTS AND DISCUSSION

A. Task Description

The distributed ASyMTRe-D negotiation protocol has been
implemented and tested in simulation and physical robot teams
[10] on a multi-robot transportation task. Since only the
performance of the negotiation protocol is analyzed here, data
described in this section are all from simulation results. In a
transportation task, a team of robots is required to navigate
from a set of starting positions to a set of goal positions (one
per robot) in a global coordinate reference frame. This requires
that each robot be able to perceive its current position relative
to the goal position in global coordinates. For robots that
cannot localize, more capable robots can serve as navigation
assistants to guide them [10]. The environmental sensors used
for the robots in these experiments are the laser scanner
(laser) and an omnidirectional camera (camera). Addition-
ally, robots are assumed to possess communication devices
(comm). We have implemented the corresponding schemas
on the robots (both physical and simulated):PS1, which
estimates itsown global position(F1) using a laser and an
environmental map;PS2, which gives thegoal position(F4,
hard-coded);PS3, which estimatesrelative position of another
robot (F3) using camera and visual fiducial;PS4, which
estimates the current robot’s own global position according to
another robot’s global position and that other robot’s position
relative to the current robotPS5, which estimatesglobal
position of another robot(F2) according to its own global
position and the estimated relative position of that robot;CS1,
which transfers information between robots; andMS1, which
calculatesmotor commands(F5) that lead the robot toward
the commanded direction.

We also haveT = {MS1} and assume that all robots are
pre-programmed with the motor schemaMS1, as well as the
perceptual schemas corresponding to the physical sensors they
have available to them. The input and output information used
in this task is shown in Table IV. Here, we only provide fuzzy
estimates for costs and probabilities; in actual applications,
these estimates would be specific numeric values. Also, each
robot has the same scale of cost and probability estimation.

B. Simple Case

To illustrate the results, we now present a simple experiment
in which five robots are brought together to form a team, three
of which are of type I, III, and IV, respectively, and two of
which are of type II, as shown in Fig. 2. Type I robot has
a laser and can localize usingPS1. Type II robot only has
communication capability, thus it needs to obtain itsF1 from
other robots to navigate. Type III robot has a camera and can
estimateF3 usingPS3, however to accomplish the task, it still
needs to obtainF2. Type IV robot has both laser and camera,
thus it can localize and produceF2 andF3 at the same time.
Additionally, we set the max-to-help parameter (k) to be either

TABLE IV

INPUT AND OUTPUT INFORMATION TYPES FOR VARIOUS SCHEMAS AND

THEIR CORRESPONDING SENSING COSTS AND SUCCESS PROBABILITIES

Si ES ISi OSi Ci Pi

PS1 Laser Laser signal F1 High High
PS2 none Hardcoded F4 none none
PS3 Camera Camera signal F3 Medium Medium
PS4 Camera F2 andF3 F4 Medium Medium
PS5 Camera F1 andF3 F2 Medium Medium
CS1 Comm F1 F2 Low High

F2 F1

MS1 none F1 andF4 F5 none High

Fig. 2. Four types of robots (I, II, III, and IV) defined by various
connections of schemas to accomplish the task. The dashed-line box represents
the information required by the robot. The solid-line box represents the
information produced by the robot. We assume that all the robots have
communication capabilities andCS1 is omitted except for the type II robot.

1 or 2, the weightw to be 0.5, and various timeouts to be the
values in Table III.

We performed 120 trials (5!) with different orderings of
robots in both cases (k = 1, 2) and observed that the group of
robots successfully coalesced to accomplish the task 100% of
the time whenk is 2, and 50% of the time whenk is 1. The
unsuccessful cases are because all the capable robots were
engaged in activities helping others. However, those robots
that report “failure” can wait until other robots are finished
with their current activity, and try again to find solutions.In
this case, capable robots help the resource-bounded robotsin
a sequential manner. The order in which each robot starts
the negotiation process is also a factor because it assigns a
priority to the robot. A robot with a higher priority has a
better chance of obtaining the required information. Fig. 3
shows two successful coalitions of the five robots. On the left,
a type IV robot helps both type II robots by providingF1 to

Fig. 3. Two successful simulation results. The arrows represent the flow of
information among robots.
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Fig. 4. The size of the robot team (n) vs. the average time to achieve solutions
using parameter settings in Table III.
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Fig. 5. The size of the robot team (n) vs. the average solution quality.

them respectively, and a type I robot helps a type III robot by
providing F2. On the right, a type III robot helps one of the
type II robots by providing itF1 after the type III robot has
been helped by a type I robot.

C. Team Size and Timeouts

The above simple case presents the example operational
results of the negotiation protocol. The following experiments
explore the performance of this protocol by varying the size
of the robot team and the values of the timeoutt. First, we
enlarge the team by duplicating the robots with the same
set of capabilities as in the simple case. Fig. 4 shows that
the average time to find a solution increases linearly as we
increase the team size, because more messages need to be
processed when there are more robots. The computational
complexity is a function of the number of robots (n) and the
average number of potential solutions (m). As suggested in
[7], we consider the calculation and comparison of the utility
as the major operation in the protocol. Thus, the computational
complexity of the protocol isO(mn), since there are at most
mn requests/replies for a robot to process. Fig. 5 shows
the variation of the solution quality with increasing team
sizes. The solution quality degrades as the team size increases
because each robot greedily searches for the best solution for
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Fig. 6. Timeout value (t) vs. the average utility of the generated solutions
(n = 10).
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Fig. 7. Timeout value (t) vs. the average time to achieve solutions (n = 10).

itself without considering benefiting the whole team. Thus,the
more robots that are involved, the higher chance that the total
quality will be reduced.

In the second experiment, we try different lengths of the
timeout for the finite waiting time (t) to determine the optimal
setting.4 Given a specific robot team of sizen, each robot
receives a certain number of messages (e) before timeout to
select the robot helper with the highest utility. Assuming that
the average message size (s) and the maximum data transfer
rate (r = 11 Mb/s for wireless communication) are known,
we can use the following formula to calculate the minimum
timeout value (t) required for therank and confirm helpstep
of the negotiation process:

tmin = n · e · s/r + v (3)

Here, we introducev to account for the variations caused by
communication delays and communication load of the system
in actual experiments and set its value to be 0.5 to ensure
a robot receives an adequate number of messages. In our
experiment, a robot receives an average about 8 messages

4The other two timeout values in Table III are only from estimation. In our
future work of analyzing the robustness of the protocol, these two values will
be fine-tuned to obtain the optimal setting.



during therank and confirm helpstep and the average size
of a message is 11 bytes. Thus, the minimum timeoutt is
approximately 0.5 + 0.00064 (= 0.50064) seconds. If the
timeoutt is less than the minimum timeout, a robot will likely
receive fewer messages and the solution quality will degrade.
If the timeoutt is 0, a robot will receive no messages and will
remain idle until it reports failure. Fig. 6 shows that givena
timeout t, the solution quality fluctuates within a small range,
and as long ast is above some threshold (in our case, 0.5
seconds), the qualities remain similar. Fig. 7 shows that with
a team size of 10, a smallert is preferred, since smallert values
give quicker solutions. Combining the results from Fig. 6 and
Fig. 7 gives us a near-optimal setting of approximately 0.75
seconds fort in our example, because the solution quality is
high and the average time is low at that point.

D. Discussion

1) Solution quality: As shown in the above experiments,
the solution quality drops with increasing team sizes because
of the greedy search process. Additionally, the preference
of a smaller coalition size also plays an important role. A
larger coalition size would involve a penalty in the quality
calculation, since we assume that it would require higher com-
munication and computation costs. In centralized ASyMTRe,a
maximum cooperation sizeis specified [11], resulting in small-
sized robot coalitions (see Fig. 8, left). However, there isno
such limit to the coalition size in ASyMTRe-D (remember
that themax-to-helponly limits the number of robots that one
can help with), possibly resulting in a long chain, or hierar-
chical coalition structure (see Fig. 8, right), which introduces
more complex teaming solutions than are necessary. Ongoing
work includes applying the maximum coalition constraint to
ASyMTRe-D.

2) Robustness:The robustness of ASyMTRe-D over cen-
tralized ASyMTRe is enhanced through the characteristics
of the negotiation protocol and the introduction of timeouts
and broadcasting. It remains as future work to characterize
the robustness of the system in detail. However, several
prior works in multi-robot cooperation illustrate that similar
techniques generate robust multi-robot coordination (e.g., [9],
[3]), and thus we expect future experiments to show the
same for ASyMTRe-D. As identified in [3], three categories
of malfunctions (i.e., communication failures, partial robot
malfunctions, and robot death) will be considered in our future
work to validate the robustness. Communication failures are
handled in the traditional ways, such as acknowledgements,
timeouts, etc. Partial robot malfunctions or robot death will be
handled through the activation of the negotiation or reasoning
process among a coalition or the whole team to generate a
new solution based on current team capabilities.

3) Comparison:When comparing ASyMTRe-D with cen-
tralized ASyMTRe (see Table V), we observe that ASyMTRe-
D is robust and flexible with little maintenance of the knowl-
edge base since any change in the robot team only needs
to be updated locally. However, the solution quality is only
optimized locally because of the greedy search process. If we

Fig. 8. On the left, robot are grouped into small size coalitions. On the right,
coalition size is not limited.

run centralized ASyMTRe on a single robot (method 2 in Ta-
ble V), the best solution can be found given enough time [14].
However, except for the major concern of single point failure,
this method requires a complete sharing of robots’ capabilities
at the beginning and sending the solutions back to all robots
at the end. The centralized knowledge base also needs to be
updated when there is any change in the team composition. To
increase the robustness, we could run centralized ASyMTRe
on every robot (method 3 in Table V). However, robots still
need to share capability information with each other at the
beginning or whenever the team composition changes. This
method requires more work to maintain the knowledge base
than the centralized approach on a single base station, since
the knowledge base updates must be duplicated on all robots.
Our ongoing work also includes a formal comparison between
the solution qualities of the two approaches.

4) Automating Balance of Solution Quality and Robustness:
As previously noted, an ultimate objective of this researchis to
develop an automated decision maker that can choose the ap-
propriate balance of solution quality (as obtainable with more
complete information) with robustness (as obtainable witha
distributed decision-making process). This process is easily
automated for small problems, since method 3 in Table V
is clearly the best solution in this case. However, for larger
problems, it is unclear whether it is best to employ the fully
distributed solution, or to use the centralized solution (either at
a base station or on all robots), or perhaps to use the distributed
solution combined with more initial information sharing to
enable robots to reason with more complete information. Our
future work approach is to analytically formulate the desired
degree of solution quality and robustness and its relationship
to the team size, mix of capabilities, time available for the
solution, communications data rate, human user priorities,
and so forth, to determine the proper amount of information
exchange and computation that should be carried out by
each robot team member. This should enable an automated
system for determining the proper tradeoffs between the higher
solution quality possible with the centralized process andthe
robustness that is possible with the distributed process. The
distributed decision-making process reported in this paper is
a necessary foundation for achieving this ultimate objective.

V. RELATED WORK

Coalition formation is not a new concept in the multi-
agent community. Many approaches have been proposed to
coordinate agent behaviors, in which agents are organized
into coalitions to achieve a higher-level goal [11] that requires



TABLE V

COMPARISON BETWEEN CENTRALIZEDASYMTRE AND ASYMTRE-D

Method Computational Solution Robustness Maintenance of
Complexity Quality Knowledge Base

1. ASyMTRe-D O(mn) Locally optimal High Low
2. Centralized ASyMTRe Optimal solution:O(mn!) Globally optimal Single point
on one robot (base station) First solution:O(mn

2) given enough time failure Medium
3. Centralized ASyMTRe Optimal solution:O(mn!) Globally optimal Yes, with
on every robot First solution:O(mn

2) given enough time redundancy High

complex planning and calculation. Our work goes beyond the
mapping of capabilities to tasks by abstracting the problemat
the schema level, rather than the task level, and by automati-
cally instantiating solutions into executable code.

After Smith [12] first introduced the Contract Net Protocol,
several approaches addressing multi-robot cooperation through
negotiation were developed, such as M+ [2], Traderbots [16],
and MURDOCH [6]. M+ [2] is a cooperative scheme for task
allocation and has an interface to higher level task planner.
The Traderbots approach [16] presents a market-based method
that is distributed, but incorporates opportunistic centralized
planning to improve the solution quality. MURDOCH [6]
employs apublish/subscribecommunication model to carry
out auctions, which has the advantage of anonymous commu-
nication. All works assume that a task is divided into subtasks
or task trees by a general planner; the robots then bid and
negotiate to carry out the subtasks. The goal is to maximize the
utility for executing a certain task. Our approach is also based
upon the economy model, which utilizes broadcasting and
timeouts to ensure a robust communication model. However,
our approach is different in that we do not assume that a task
can be subdivided into independent subtasks/roles. Instead,
our approach addresses multi-robot tasks, which require more
than one robot working together to solve a single task. By
abstracting the problem at the schema level rather than at the
task level, we believe that we can generate more flexible solu-
tion strategies that determinehow to solve multi-robot tasks,
and are not dependent upon predefined solution strategies in
the form of task decompositions or roles that are specified in
advance by the human designer.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presented the distributed ASyMTRe-D ne-
gotiation protocol that coalesces multiple robots into teams
by synthesizing single-task solutions based upon the team
composition. The distributed negotiation process enableseach
robot to find the best solution locally by maximizing the utility
for executing the task. Compared with our prior centralized
ASyMTRe, distributed ASyMTRe-D provides a more robust
and flexible way to form coalitions. However, it also presents
a tradeoff between solution quality and robustness.

Our ongoing work includes developing the mechanisms to
allow ASyMTRe-D to automatically determine the appropriate
level of information sharing to achieve the desired balance
between solution quality and robustness. Additionally, weare
working towards verifying this approach with more physical

experiments, discovering motion constraints in the physical
applications, and incorporating the constraints into the solution
generation process.
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