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Abstract— This paper presents a distributed reasoning system, and computational capabilities from each robot, resultimg
called ASyMTRe-D, which enables a team of robots to form coal  automatically formed coalitions that serve specific pugsos
tions to accomplish a multi-robot task through tightly-coupled To address this challenge, we present our ASyMTRe ap-

sensor sharing. The theoretical foundation of the negotian 1 LS - .
protocol is ASyMTRe, an approach we developed previously proach: This approach is aimed at increasing the autonomous

to synthesize task solutions according to the task requireents task solution capabilities of heterogeneous multi-roleatns

and the team composition. The goal of the ASyMTRe approach by changing the fundamental abstraction that is used to rep-
is tq increase the task solu_tion capabilities of heterogeoes resent robot competences from the typica| “task” abstacti
multi-robot teams by changing the fundamental abstraction 4 5 biologically-inspired “schema” ([1], [8]) abstraatipand
from the typical “task” abstraction to a “schema” abstracti on . - e ! .

and automatically reconfigure the schemas to address the tas providing & mechanism for the auto_matlc reconfiguration OT
at hand. The decision-making in this prior work was fully these schemas to address the teaming task at hand. In doing
centralized; the current paper presents a distributed verson of this, we are able to simultaneously obtain a number of signif
this approach based on the Contract Net Protocol, which can jcant new benefits in coalescent multi-robot teaming thaeha
achieve higher levels of robustness than the centralized rston. previously been difficult to achieve. These benefits include

The purpose here is not to improve the original protocol, but . .
to apply it to our problem so that the autonomous task solutio (1) enabling robots to generate solutions to new tasks that

capabilities of robots can be achieved in a distributed maner, Were not explicitly programmed by the human designer, but
Simulation results are provided to validate the protocol wth instead consist of new, automated combinations of lowtleve
performance analysis. Finally, we compare ASyMTRe-D with puilding blocks, or schemas; (2) enabling robot team member
the centralized ASyMTRe. Our future objective is to enable 4 automatically generate task solutions based on sensor-

the human designer to specify the desired balance between hari i b . fi fi t ordvi
solution quality and robustness, enabling the reasoning gpoach ~ >'12fINg across team Members, in contigurations not preylous

to invoke the appropriate level of information-sharing amang €Xplicitly defined by the human designer; (3) providing a way

robots to reach the specified solution characteristics. for robots to develop coalitions to address multi-roboksas
and (4) enabling flexible software code reuse from one robot
I. INTRODUCTION teaming application to another through the task-independe

schema abstraction that is viewed as a generator of semantic
Multi-robot coalition formationdeals with the issue of how information content which can be used in many ways by
to organize multiple robots into subgroups to accompliskga various diverse tasks. In the formal multi-robot task adkban
collectively. The motivation behind coalition formatios to (MRTA) framework of [7], our approach addresses the class
enable the team members to work together as a groupatfoproblems encompassing “Single-Task” robots (ST), “Mult
accomplish tasks that cannot be handled by individual mboRobot” tasks (MR), and “Instantaneous Assignment” (IA).
A challenging class of problems in coalition formation iSpecifically, we are addressing the development of hetero-
determining when it is appropriate to form a coalition angeneous robot coalitions that solve a single multi-robskta
how the robots should cooperate within a coalition. We afeventually, we expect that the ASyMTRe approach can be
particularly interested in automated techniques for deitging layered with prior task planning/allocation approacheghw
howto solve a multi-robot task, when the specific task solutioRSyMTRe serving as a lower-level solution generatortow
is highly dependent upon the available capabilities of the solve tasks, with the higher-level, more traditionalktas
multi-robot team, and thus cannot be specified in advangdanning/allocation strategies using these lower-legkit®ns
This is especially challenging in heterogeneous robot seanfor implementing the task solutions.
in which sensory and computational resources are diseribut We have developed a centralized ASyMTRe configuration
across different robots. In such teams, some robots may agorithm ([13], [14]) that generates single-task solasidor
more resource-bounded than others (e.g., have more limitethot teams. In this prior work [14], we have proven that the
sensing capabilities) and thus may not be able to accompligntralized approach is sound, complete, and optimal ifgive
certain tasks. For example, a robot with only an acoustis@enenough processing time). It is well-known that centralized
cannot navigate autonomously in an environment, but is alslpproaches suffer from lack of robustness. One approach to
to navigate successfully with direct assistance from asoth - . .
‘ASYMTRe” is an abbreviation for Atomated Sgthesis of Milti-robot

robot. For such a t_eam to accompHSh the task as a whole, tﬂ%@k solutions through software &mfiguration, pronounced “Asymmetry”,
team must determine how to couple the appropriate sensanjch is first introduced in [13].



achieving robustness is to duplicate the configurationgsec were to change (or, similarly, if new members were added
on every robot, but this approach requires that every robot that have very different sensor capabilities), their apphoto
aware of the capabilities of all the other team members. Asplving the same task would be significantly different.

change in the team would require an update of the knowledgeNe address this problem in ASyMTRe by changing the
base on all the robots. This type of system would not wodommon “task” abstraction to a “schema” abstraction, and
efficiently when robot failure or sensor failure is common, qroviding a method enabling the robot team members to au-
when robots join or leave the team dynamically. To increasenomously reconfigure the connections between the schemas
the robustness of the system, we have developed a disttibute solve the task at hand. ASyMTRe is based upon a distributed
negotiation-based ASyMTRe, which we call ASyMTRe-Dextension to schema theory ([1], [8]) and the informatioe-th
This work shares the same theoretical foundation as tbeetical work of Donald, et al. [4]. The following subsect®
centralized ASyMTRe and is built upon the well-known Coneutline this approach, which is the foundation upon which
tract Net Protocol (CNP) [12]. The purpose here is not t&SyMTRe-D is built.

improve the Contract Net Protocol, but to demonstrate thet t

autonomous solution generation process can also be disttdib A. Schema Theory and Information Types

among robots to achieve the robustr_1es_s of a distributedrayst The basic building blocks of ASyMTRe are collections of
over a centralized system. The distributed approach offers .
. o . environmental sensors (ES), perceptual schemas (PS)r moto
a more flexible and robust approach to coalition formation oo
. . . schemas (MS), and communication schemas (CS). A PS

than the centralized approach. However, it trades off Emiut rocesses input from ES(s) to provide information to an MS
quality for robustness. Thus, for any particular applimatithe b P P '

. . ; ; which then generates an output control vector correspgndin
human designer will have to determine the appropriate bala . .
. . .. 10 the way the robot should move in response to the perceived
along the quality-robustness spectrum. Our future objeds

. . : stimuli. A CS transfers information between various schema
to allow the human designer to specify the desired balance, . L -

. . IStributed across robots, which is introduced to distislythe
between robustness and solution quality, and to have thé

. i . oo connections within a robot from the connections acrosstsobo
reasoning system utilize the appropriate amount of infdiona .
) X . : All schemas are assumed to be pre-programmed into the
sharing among robots to achieve this balance. This pa

pe L L
provides the foundational groundwork for this future work. ro[)otslgt. design time, and represent the.fundamental il
capabilities of the robots. The connections between schema

The remainder of this paper is organized as follows. Segfe not fixed, but can be configured at run time.

tion 1l surveys our prior work on ASyMTRe, which provides ASyMTRe allows robots to reason about how to solve

a foundation of the distributed ASyMTRe-D. Section Il then lti-robot task based the fund tal inf i
presents in detail the distributed negotiation processthad a Mufti-robot task basec upon he fundamental information

corresponding protocol. Experimental results are disaiis needed to accomplish the task. The information needed to

Section IV. We briefly outline related work in Section V, an hc:vva\;;e ?hai:tetr:]aelnrosbcorle;]n: rgl:r)rt]:ilgso:heens(jrgtz irteg'l?rzilses\?ve()f
provide concluding remarks in Section VI. Y y Y . '

can label inputs and outputs of all schemas with a set of
Il. PRIOR WORK ONASYMTRE information typesF = {Fy,F»,..}. I® and 0% C F
represent the input and output of scherfig respectively.

te that we use the terinformation typesas distinct from
et%a’[a types Semantics of the information is built into these
information types, and does not just refer to a data typeh(suc
acsa_boolean or integer). For example, the input information
types of ago_to_goal schema could be{currentposition,
eo&)al_position}, and its output types could be the specific motor
commands. We assume that each schema has multiple inputs
and outputs. An output of a schema can be connected to an
input of another schema if and only if their information l&be
“forage”, “defend home goal”, etc.). The prevalence of thig]atc.h' Using th_e mapping from schemas to information types,
task-centric abstraction is evidenced by the significaot$o solution strategies can be configured at the schem_a levierra

trz)qn the sensor level, to determimawto solve tasks in a much

of the heterogeneous robot teaming research on the topic . _
task allocation (e.g., [9], [2], [15], [16], [6]) more general manner. The benefit of the schema approach is

However, the development of software libraries of robépat we can build up libraries of task-independent schemas,

control code at the task level can severely restrict theerefis Which also helps with code reuse.
this software in other applications. A fundamental probiem
that software developed at the task level is often highlyssgn
effector, and application-dependent. This dependency preThe knowledge base of information is represented as
defines how the robot team members will solve the given tasi’, R;), whereT = {MS;, M Ss,,---} is the set of motor
However, if the sensor capabilities of robot team membesshemas that define the team-level task to be achieved, along

We now briefly review the foundation of the ASyMTRe
approach, which is based on one key idea — changing
fundamental abstraction of how we view robot capabiliti
from a “task” abstraction to a “schema” abstraction. Tyfljca
the research community has defined heterogeneous robot
pabilities in terms oftasksor roles Under this view, a robot
is provided with a set of software methods (usually referr
to as control algorithms or “behaviors”) enabling the rotuot
accomplish a set of pre-defined, application dependens sk

roles (such as “push the box”, “track the target”, “go home

B. Knowledge Base



D. Solution Quality

With multiple potential solutions available, we introduce
utility to measure their qualities. We define sensori-
computational systefSCS) [4], which is a module that com-
putes a function of its sensory inputs and produces outputs.
It is represented by5C'S; = (S;-,ES;-,OSJ), where S; is

@ @ ] — the jth PS/CS on R;, ES! is the sensory input, an@®; is
from other robots the output. EacttCS} is assigned a cost’ and a success
, _ probability P?, whereC' represents the sensing cost of using
Fig. 1. An example of how the schemas are connected to acimal J J

task. The solid-line arrows going into a schema represeriO&1 condition, ES_J' and Pj represents the success !’ateS;f t.O glenerate, a
meaning that it is sufficient for the schema to only have onthefspecified Satisfactory result. We calculate the utifityf activatingSC's’;
inputs. The dashed-line arrows represent an “AND” condijtiwhere all the : St .

indicated inputs are needed to produce a result. For exanmiglé; can or producmgO ! by Uj'
calculate output only if it receives both} and F>. However, PSy can

produce output based on either the outputR#; or C'S;. U; = max (0, w - P; -(1-w)- (C;/ m?X(C;)))- 2
TABLE | Here,w (0 < w < 1) is a weight factor that balances the
CONNECTIONCONSTRAINTS FORSCHEMAS relative importance of the success probability and the. cost
Sensor/Schemal Input Sources | Output Feeds into: According to (1), we can measure the quality of a potential
ES Sensor Signald PS solution PoS; by summing the utilities of all the&§C'S} that
PS ES, PSor CS | PS, CS or MS need to be activated on the local robot and the utilities ef th
CS PS, or CS PS, CS, or MS information types that are obtained from other robots. Tt g
MS PS, CS, or ES| Actuators is to maximize the utility of the selected potential solatio

E. Finding Solutions

In centralized ASyMTRe, solutions are found by searching
through the potential solution space for viable solutiofis o
high utility. Since the optimization problem is NP-hard diing

. Lo optimal solutions quickly is not possible. However, we have
schemas that are pre-programmed iRtaat design time. Each . o . T )
bre-prog ed Iy g identified robot ordering heuristics that enable centealiz

schema is represented m$§,15§,05§). A schema can be : . : L
activated if and only if its input can be obtained from théASyMTRe to find good solutions quickly. If more time is

%vailable, our anytime algorithm will continue to search fo
output of schemas or sensors on the local robot or can better solutions and is guaranteed to find the optimal smiuti
directly transferred from other robots. Additionally, & sé 9 P "

Connection Constraintare used to specify the restrictions orpVen sufficient time [14]. However, as previously noted, a

: : urely centralized approach may suffer from a lack of robust
correct connections between various schemas (see Table IE. . o
ess. Thus, we now show how this approach can be distributed

in order to improve system robustness. The solution geerat
process is achieved through a distributed negotiationga®c

A potential solutionis one way to connect schemas on athat is inspired by CNP. The purpose here is not to improve
individual robot for it to fulfill its part of the task (i.e,of all the original protocol, but to apply it to our problem so that
MS; € T, the inputs ofM S; are satisfied, along with all thethe autonomous task solution capabilities of robots can be
inputs from the schemas that feed intHS;). We represent a achieved in a distributed manner.
potential solution by

with application-specific parameters as neetiédrobot, R;,
is represented byz; = (ES, S%). ES' is a set of environ-
mental sensors that are installed 8y, and S is the set of

C. Potential Solutions

IIl. THE DISTRIBUTED ASYMTRE-D APPROACH
PoS; = (81,85, -+, Sy, F1, Fa, -+, Fy). (1) A. Negotiation Process

where PoS;'. is the jth potential solution forR;, Si (1 < In ASyMTRe-D, robots are viewed as a se_t _of m_formatlo_n
z < k) is the zth schema ofR; that needs to be activated,sources' where some robots do not have sufficient informatio
i . . . to solve the task by themselves. To accomplish the task for
and Fy (1 < y < h) is the yth information type that h y P g
e team as a whole, more capable robots can provide useful

needs to be transferred t&;. For example, in Fig. 1, if | ) X
we assume thal’ = {MS,;}, one potential solution is to information to less capable robots. As previously noted, th

activate{ PS, PS», PSs, M S, }, provided that the robot hassharing _ofinformation, anq th_us the coope_raFion amongtxnbo
both ES, and ES,. Another potential solution is to activate®® achieved through a distributed negotiation processma

(PS,,CS1,CSs, MS;} when F; and F» can be transferred on the Contract Net Protocol [12]. Each robot decides what

from other robots. 3In fact, the utility of a solution should also consider otkmpects, such

as the quality of information, frequency of the output, themputational
2|n future work, we will develop a more general task specifizgtsimilar  complexity, etc. We will extend our utility definition to ihme these aspects
to the formal specification of tasks in [5]. in future work.



TABLE I TABLE Il

MESSAGES USED IN THEASYMTRE-D PrROTOCOL HANDLING POSSIBLECOMMUNICATION FAILURES
Type Format Message Loss| Countermeasures Time Result
Simple Request | (‘' F'1’, from, numinfo, k, ---, Fauminfo Reply finite waiting time €) | 0.75s | repeat requests
Complex Reques{ (F2’, from, numinfo, i, -, Fruminfo Request rgpetitivg requests 10s report failyre
Simple Reply (HT, from, 10) Confirmation | finite waiting time 4s cancellation

Complex Reply | (‘H?2', from, to, utility)
Confirmation (‘C’, from, to)
Cancellation (“A’, from, to)

robots will estimate the utility of providing the required

information by (2). Since a requesting robot selects the
potential solution with the highest utility, some capable
information it needs and then requests it from others. The so  robots are more likely to be chosen than others. Similar

lution is evaluated based upon each robot's local inforomati to [11], we assume robots work in a non-super-additive
and the final decision is determined by mutual selection. The environment. Thus, the larger a coalition is, the higher
negotiation process is totally distributed, with no celieteal the communication and computation costs are. Thus, we
control or centralized data storage. impose amax-to-help(k) constraint on each robot, which

Such a distributed system offers a reliable, extensibld, an  limits the number of robots that one can provide infor-
flexible mechanism to make ASyMTRe suitable for applica- mation. This constraint can reduce the complexity of the
tions where robot or sensor failures are common, or the robot robots executing the solution due to motion constraints
team composition is dynamic (robots may join or leave fre- and balances the burden among capable robots.
quently). The negotiation process is triggered at the egn  « Rank and confirm help. Solutions are ranked by de-

of each task to generate initial solution strategies, amcdlisd creasing utilities. Each robot then selects the solution
to re-plan solutions to accommodate changes in robot teams with the highest utility and sends a confirmation message.
or tasks. It is important to note, however, that the distebu When there are multiple solutions with the same utility,

approach trades off solution quality for team robustness. W  the selection also follows the FCFS rule. If no robot

note again that the intent of this approach is not to develop responds to the request after the timeout, the robot will

a new negotiation protocol, but instead to develop a method repeat the negotiation process until it reports “failure”

for the robot team to vary their reasoning between fully after a period of time. The confirmation message will

centralized and fully distributed decision-making, acliog to be broadcast to all robots, so that the other robots that

the desired balance between solution quality and robustnes  are also willing to help can be released from their
commitment and serve more requests.

B. Distributed ASyMTRe-D Negotiation Protocol The distributed ASyMTRe-D negotiation protocol acts as
The distributed negotiation protocol involves the follogi 3 greedy planner, since each robot selects the locally best
major steps with the message types listed in Table II: solution to accomplish the task. However, it may not yield

« Make request Depending on the requirements of each global best solution, suffering from the usual problems of
potential solution, a robot broadcasts requests for tigeeedy algorithms. In [14], we have given an example of this
information types it needs to obtain from other robotqroblem and presented the centralized approach that tates i
Simple requests are sent out at the beginning to estimatcount all the orderings of robots (if given enough time),
the potential number of robotgxm() that can provide therefore generating the best solution for the team as aewhol
the required information. It has been shown in [14] thatlearly, this represents the tradeoff between the robastoé
the ordering in which robots are been considered in tl@edistributed solution and the solution quality of a cereal
configuration process is an essential factor to soluti@olution, which will be discussed further in experiments.
completeness and solution quality. Each robot will wait To ensure a general and robust negotiation process, some
for a period of time that is proportional to its: value traditional mechanisms are built into the distributed pcot
before sending out the complex requests. Thus, the robf8} First, our protocol employs timeouts during the negtitin
with fewer potential helpers have higher priorities t@rocess (see Table Ill). The current settings of timeoutesl
make requests, since they will likely have fewer chancese based on experiments and estimation, which can be tuned
for success. However, sending simple requests increaassparameters to the program. A robot will wait for a finite
the communication and computation cost. For tasks thi@he () for any replies, and if there is no reply, it will send
are time critical, this step can be ignored and robots cant requests again. This process will continue for a period
directly send out complex requests instead. of time before the robot reports “failure”, which is either

o Serve request and submit help After evaluating the due to no robots being available to help, or to the requests
required information, each robot replies based on a firsir replies getting lost. A helping robot will also wait for a
come-first-serve (FCFS) order. Simple replies are sent dirtite time for the confirmation. In this way, the robot can be
without the estimation of utilities to enable the requeastinreleased to help other robots if the confirmation gets lost or
robot to collect information about itsn. Otherwise, the is not selected to help. Similar to [6], our protocol alsosuse



TABLE IV

broadcast messaging, rather than point-to-point, beciause
INPUT AND OUTPUT INFORMATION TYPES FOR VARIOUS SCHEMAS AND

efficient in transferring data and does not require the syste

g . . . . THEIR CORRESPONDING SENSING COSTS AND SUCCESS PROBABILES
to know specific destination information.

S ES |5 07 C; P;
IV. EXPERIMENTS AND DISCUSSION PS Laser Laser signal | Fi High High
PSs none Hardcoded Fy none none

A. Task Description PSs; | Camera| Camera signall Fjs Medium | Medium
The distributed ASyMTRe-D negotiation protocol has been PS, | Camera| F, and F3 F, | Medium | Medium

implemented and tested in simulation and physical robongea| PS5 | Camera] F) and Fs F, | Medium | Medium

[10] on a multi-robot transportation task. Since only the €51 | Comm I3 Iy | Low High

perfor_manc_:e of_ the ne_gotiation protocol_ is analyzed heaitg d 775, rone i ;;r?d T ?; rone Figh

described in this section are all from simulation resultsal

transportation task, a team of robots is required to nagigat

from a set of starting positions to a set of goal positionse(on 1 [F,] 1 F
per robot) in a global coordinate reference frame. Thisiregu
that each robot be able to perceive its current positiortivela faser ™ C5) i

to the goal position in global coordinates. For robots that

1
cannot localize, more capable robots can serve as nauigatio III_Ij 7] v 7]
assistants to guide them [10]. The environmental sens@w us |Fy —{PS, MMSI [t | [taser 5y fvfras, [
for the robots in these experiments are the laser scanner -’-‘M [ps, |+[F
(I aser) and an omnidirectional camerader a). Addition- : pameraps PS: [P |
ally, robots are assumed to possess communication devices |F_3|
(comm). We have implemented the corresponding schemas ‘ _
on the robots (both physical and simulated)S;, which Fig. 2. Four types of robots (I, Il, lll, and 1V) defined by veuis

. . L. . connections of schemas to accomplish the task. The dastestex represents
estimates itsown global position(#1) using a laser and an e information required by the robot. The solid-line boxpresents the

environmental mappSs, which gives thegoal position(Fy, information produced by the robot. We assume that all theotsothave
hard-coded)PSg,, which estimategelative position of another communication capabilities an@.S; is omitted except for the type Il robot.
robot (F3) using camera and visual fiduciakSs, which
estimates the current robot’s own global position accardm
another robot’s global position and that other robot’s posi
relative to the current robofS5;, which estimatesglobal
position of another robo{F,) according to its own global
position and the estimated relative position of that robtf;,

1 or 2, the weightv to be 0.5, and various timeouts to be the
values in Table III.

We performed 120 trials (5!) with different orderings of
robots in both cases:(= 1, 2) and observed that the group of

which transfers information between robots: and;, which robots successfully coalesced to accomplish the task 1G0% o

calculatesmotor commandgFs) that lead the robot toward the time wherk is 2, and 50% of the time whehis 1. The

the commanded direction. unsuccessful cases are because all the capable robots were
We also havel’ = {MS;} and assume that all robots areengaged in activities helping others. However, those mbot

pre-programmed with the motor schemas;, as well as the that report “failure” can wait until other robots are finishe

perceptual schemas corresponding to the physical serieayrs with their current activity, and try again to find solutions.

have available to them. The input and output informatiorduséhIS case, papable robots help the.resogrce—bounded robots
in this task is shown in Table IV. Here, we only provide fuzz sequential manner. The order in which each robot starts

estimates for costs and probabilities; in actual applcei he negotiation process is also a factor because it assigns a

these estimates would be specific numeric values. Also, edtprity to the robot. A robot with a higher priority has a

robot has the same scale of cost and probability estimatiorP€er chance of obtaining the required information. Fig. 3
shows two successful coalitions of the five robots. On thie lef

B. Simple Case a type IV robot helps both type Il robots by providikg to

To illustrate the results, we now present a simple experimen
in which five robots are brought together to form a team, three
of which are of type I, Ill, and IV, respectively, and two of
which are of type I, as shown in Fig. 2. Type | robot has
a laser and can localize usingS;. Type Il robot only has
communication capability, thus it needs to obtainAtsfrom
other robots to navigate. Type lll robot has a camera and can
estimateF; using P.S3, however to accomplish the task, it still D laser @ camera W source of communication
needs to obtaidy. Type IV robot has both laser and camera,

thus it can localize and produde and F; at the same time. Fig. 3. Two successful simulation results. The arrows gethe flow of
Additionally, we set the max-to-help parametg) (o be either information among robots.
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Fig. 5. The size of the robot team)(vs. the average solution quality. ~Fig. 7. Timeout valuet] vs. the average time to achieve solutions<(10).

them respectively, and a type | robot helps a type IIl robot hself without considering benefiting the whole team. Ttibs,
providing F>. On the right, a type Il robot helps one of themore robots that are involved, the higher chance that tta tot
type Il robots by providing itF; after the type Il robot has quality will be reduced.
been helped by a type | robot. In the second experiment, we try different lengths of the
timeout for the finite waiting timet) to determine the optimal
) _setting? Given a specific robot team of sizg each robot
The above simple case presents the example operatiq@ives a certain number of messaggsbefore timeout to
results of the negotiation protocol. The following expegims gejact the robot helper with the highest utility. Assumihgtt
explore the performance of this protocol by varying the sizgq average message siz} 4nd the maximum data transfer
of the robot team and the values of the timebuFirst, we (40 ¢ = 11 Mb/s for wireless communication) are known
enlarge the team by duplicating the robots with the samg, can use the following formula to calculate the minimum

set of capabilities as in the simple case. Fig. 4 shows thaheoyt value () required for therank and confirm helgstep
the average time to find a solution increases linearly as Weine negotiation process:

increase the team size, because more messages need to be
processed when there are more robots. The computational
complexity is a function of the number of robots) (and the ) o
average number of potential solutions)( As suggested in Here, we |.ntroduce to account for t.he yarlatlons caused by
[7], we consider the calculation and comparison of thetytili ©mMmunication delays and communication load of the system
as the major operation in the protocol. Thus, the computatio N actual exp_erlments and set its value to be 0.5 to ensure
complexity of the protocol i€)(mn), since there are at most® robot receives an adequate number of messages. In our
mn requestsireplies for a robot to process. Fig. 5 sho&Periment, a robot receives an average about 8 messages

the variation of the solution quality with increasing team , , . i
The other two timeout values in Table Il are only from estiima In our

sizes. The solution quahty _degrades as the team size mee}uture work of analyzing the robustness of the protocols¢hsvo values will
because each robot greedily searches for the best solationtk fine-tuned to obtain the optimal setting.

C. Team Size and Timeouts

tmin =M -€-8/r+v 3)



during therank and confirm helgtep and the average size i
of a message is 11 bytes. Thus, the minimum timeoist !
approximately 0.5 + 0.00064 (= 0.50064) seconds. If the ﬁb (j/% !
timeoutt is less than the minimum timeout, a robot will likely !
receive fewer messages and the solution quality will degyrad
If the timeoutt is 0, a robot will receive no messages and WiIII:ig. 8. On the left, robot are grouped into small size caaigi On the right,
remain idle until it reports failure. Fig. 6 shows that given coalition size is not limited.

timeoutt, the solution quality fluctuates within a small range,

and as long a¢ is above some threshold (in our case, 0.5

seconds), the qualities remain similar. Fig. 7 shows th#t wirun centralized ASyMTRe on a single robot (method 2 in Ta-
a team size of 10, a smalleis preferred, since smallevalues ble V), the best solution can be found given enough time [14].
give quicker solutions. Combining the results from Fig. @ anffowever, except for the major concern of single point faijur
Fig. 7 gives us a near-optimal setting of approximately 0.#Bis method requires a complete sharing of robots’ catasili
seconds fott in our example, because the solution quality idt the beginning and sending the solutions back to all robots

high and the average time is low at that point. at the end. The centralized knowledge base also needs to be
_ _ updated when there is any change in the team composition. To
D. Discussion increase the robustness, we could run centralized ASyMTRe

1) Solution quality: As shown in the above experimentsOn every robot (method 3 in Table V). However, robots still
the solution quality drops with increasing team sizes bgeauneed to share capability information with each other at the
of the greedy search process. Additionally, the prefereneginning or whenever the team composition changes. This
of a smaller coalition size also plays an important role. Method requires more work to maintain the knowledge base
larger coalition size would involve a penalty in the qualitfhan the centralized approach on a single base statiorg sinc
calculation, since we assume that it would require higherco the knowledge base updates must be duplicated on all robots.
munication and computation costs. In centralized ASyMTare Our ongoing work also includes a formal comparison between
maximum cooperation siig specified [11], resulting in small- the solution qualities of the two approaches.
sized robot coalitions (see Fig. 8, left). However, therads ~ 4) Automating Balance of Solution Quality and Robustness:
such limit to the coalition size in ASyMTRe-D (remembeAs previously noted, an ultimate objective of this reseasdhb
that themax-to-helponly limits the number of robots that onedevelop an automated decision maker that can choose the ap-
can help with), possibly resulting in a long chain, or hierapropriate balance of solution quality (as obtainable withren
chical coalition structure (see Fig. 8, right), which intuwes complete information) with robustness (as obtainable with
more complex teaming solutions than are necessary. Ongofhgiributed decision-making process). This process islyeas
work includes applying the maximum coalition constraint teutomated for small problems, since method 3 in Table V
ASyMTRe-D. is clearly the best solution in this case. However, for large

2) RobustnessThe robustness of ASyMTRe-D over cenproblems, it is unclear whether it is best to employ the fully
tralized ASyMTRe is enhanced through the characteristigéstributed solution, or to use the centralized solutidthge at
of the negotiation protocol and the introduction of timeouta base station or on all robots), or perhaps to use the distdb
and broadcasting. It remains as future work to characterigelution combined with more initial information sharing to
the robustness of the system in detail. However, sevefilable robots to reason with more complete information. Our
prior works in multi-robot cooperation illustrate that sian future work approach is to analytically formulate the dedir
techniques generate robust multi-robot coordination. (9§ ~degree of solution quality and robustness and its relatipns
[3]), and thus we expect future experiments to show tHe the team size, mix of capabilities, time available for the
same for ASyMTRe-D. As identified in [3], three categorie§olution, communications data rate, human user prioyities
of malfunctions (i.e., communication failures, partiaboy and so forth, to determine the proper amount of information
malfunctions, and robot death) will be considered in ounfet €xchange and computation that should be carried out by
work to validate the robustness. Communication failures a@ach robot team member. This should enable an automated
handled in the traditional ways, such as acknowledgemertgstem for determining the proper tradeoffs between thleehig
timeouts, etc. Partial robot malfunctions or robot deathlve  Solution quality possible with the centralized process ted
handled through the activation of the negotiation or reaspn robustness that is possible with the distributed procebe. T
process among a coalition or the whole team to generatdligtributed decision-making process reported in this pape

new solution based on current team capabilities. a necessary foundation for achieving this ultimate obyjecti
3) Comparison:When comparing ASyMTRe-D with cen- V. R W
tralized ASyMTRe (see Table V), we observe that ASyMTRe- - RELATED VVORK

D is robust and flexible with little maintenance of the knowl- Coalition formation is not a new concept in the multi-
edge base since any change in the robot team only neadent community. Many approaches have been proposed to
to be updated locally. However, the solution quality is onlgoordinate agent behaviors, in which agents are organized
optimized locally because of the greedy search processe If mto coalitions to achieve a higher-level goal [11] thatuiegs



TABLE V
COMPARISON BETWEEN CENTRALIZEDASYMTRE AND ASYMTRE-D

Method Computational Solution Robustness| Maintenance of
Complexity Quality Knowledge Base

1. ASyMTRe-D O(mn) Locally optimal High Low

2. Centralized ASyMTRe | Optimal solution:O(mn!) | Globally optimal | Single point

on one robot (base station) First solution:O(mn?) given enough timg  failure Medium

3. Centralized ASyMTRe | Optimal solution:O(mn!) | Globally optimal Yes, with

on every robot First solution:O(mn?) given enough time redundancy High

complex planning and calculation. Our work goes beyond tlegperiments, discovering motion constraints in the phatsic
mapping of capabilities to tasks by abstracting the protdémapplications, and incorporating the constraints into tiatsn
the schema level, rather than the task level, and by autemagneration process.

cally instantiating solutions into executable code.

After Smith [12] first introduced the Contract Net Protocol,
several approaches addressing multi-robot cooperationdin
negotiation were developed, such as M+ [2], Traderbots, [16]
and MURDOCH [6]. M+ [2] is a cooperative scheme for task[z]
allocation and has an interface to higher level task planner
The Traderbots approach [16] presents a market-based thetho
that is distributed, but incorporates opportunistic calitzed [3]
planning to improve the solution quality. MURDOCH [6]
employs apublish/subscribecommunication model to carry 4]
out auctions, which has the advantage of anonymous commu-
nication. All works assume that a task is divided into sukgas
or task trees by a general planner; the robots then bid al
negotiate to carry out the subtasks. The goal is to maxirhize t
utility for executing a certain task. Our approach is alssduha
upon the economy model, which utilizes broadcasting an
timeouts to ensure a robust communication model. However, robot coordination. IEEE Transactions on Robotics and Automation
our approach is different in that we do not assume that a task 16(5):758-768, 2002. _ _
can be subdivided into independent subtasksiroles. isted") 5 Cerey and .. atarc  foral anlyis and wonet sk,
our approach addresses multi-robot tasks, which requir@ mo  23(9):939-954, September 2004.
than one robot working together to solve a single task. By8] D. M. Lyons and M. A. Arbib. A formal model of computatiororf
abstracting the problem at the schema level rather thareat th ;’fgfg%ﬁ’gggd{gggf'ﬁﬁ Transactions on Robotics and Automaion
task level, we believe that we can generate more flexible sol] L. E. Parker. ALLIANCE: An architecture for fault tolens, cooper-
tion strategies that determirie®w to solve multi-robot tasks, ative control of ’heterogeneous_mobile robots. Rroc. of the ,1994
and are not dependent upon predefined solution strat_e.gies. in Liggfﬁéﬂggf IM%On?Z'h?%gﬁlgﬂ?tssﬁ?oltgﬂ'd SystefROG '94)
the form of task decompositions or roles that are specified (i)
advance by the human designer.

REFERENCES

[1] R. C. Arkin. Motor schema based navigation for a mobildab
an approach to programming by behavior. Pnoceedings of IEEE
Conference on Robotics and Automatipages 264-271, 1987.

S. Botelho and R. Alami. M+: A schema for multi-robot cawption

through negotiated task allocation and achievementPrbteedings of

the IEEE International Conference on Robotics and Autoomatpages

1234-1239, 1999.

M. B. Dias, M. Zinck, R. Zlot, and A. Stentz. Robust muttirot coordi-

nation in dynamic environments. RProceedings of IEEE International

Conference on Robotics and Automafi@d04.

B. R. Donald, J. Jennings, and D. Rus. Towards a theorpfofination

invariants for cooperating autonomous mobile robotsPioceedings of

the International Symposium of Robotics Reseaktidden Valley, PA,

October 1993.

Q C. H. Fua, S. S. Ge, and K. W. Lim. Boas: Backoff adaptiveesue
for task allocation with fault tolerance and uncertaintynagement. In
Proceedings of the IEEE Intl. Symposium on Intelligent @dniaipei,
Taiwan, September 2004.

] B. Gerkey and M. J. Mataric. Sold!: Auction methods for Itiu

L. E. Parker, M. Chandra, and F. Tang. Enabling autonsneensor-
sharing for tightly-coupled cooperative tasks. In L. E.KearA. Schultz,
and F. Schneider, editorslulti-Robot Systems Volume IIl: From Swarms
to Intelligent AutomataKluwer, 2005.

0. Shehory. Methods for task allocation via agent ¢imedi formation.
Artificial Intelligence 101(1-2):165-200, 1998.

R. G. Smith. The Contract Net Protocol: high-level coumication
and control in a distributed problem solvelEEE Transactions on
Computers C-29(12), December 1980.

F. Tang and L. E. Parker. ASyMTRe: Automated synthesisnalti-
robot task solutions through software reconfiguration. Plnceedings
of IEEE International Conference on Robotics and Autonmat2D05.
F. Tang and L. E. Parker. Coalescent multi-robot tegmihrough

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presented the distributed ASyMTRe-D n[é-l]
gotiation protocol that coalesces multiple robots intorrtsa [12]
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