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Abstract—While most previous research on forming coalitions
mainly concentrates on loosely coupled multirobot tasks, a more
challenging problem is to address tightly coupled multirobot tasks
that involve close robot coordinations, which often require capa-
bility sharing. General methods for autonomous capability sharing
have been shown to greatly improve the flexibility of distributed
systems. However, in addition to the interaction constraints be-
tween the robots and the environment as required by the tasks,
these methods may introduce additional interaction constraints
between the robots based on how the capabilities are shared. The
satisfiability of these constraints in the current situation deter-
mines the feasibility of the potential coalitions. To achieve system
autonomy, the ability to identify the potential coalitions that are
feasible for task execution is critical. In this paper, we demon-
strate a general approach that incorporates this capability based
on the ASyMTRe architecture. The extended architecture, which
is called IQ-ASyMTRe, is able to find coalitions in which these
required constraints are satisfied. When used to form coalitions,
IQ-ASyMTRe sets up only feasible coalitions, thus enabling tasks
to be executed autonomously. We formally present the new ar-
chitecture and prove that it is sound and complete, given certain
assumptions. Simulations and experimental results are provided
for different applications in which the robots are able to flexibly
form coalitions that are ready to execute.

Index Terms—Coalition formation, distributed robot systems.

I. INTRODUCTION

MULTIROBOT tasks are those that require multiple robots
to cooperate by forming subgroups (i.e., coalitions) to

accomplish the given task. An intuitive approach for reasoning
about forming coalitions to address a single multirobot task1 is
to divide the task into subtasks or roles that individual robots
can perform. For example, in a robot insertion task [1], a su-
pervisor robot would provide visual information to guide the
implementor robot, which would execute the insertion. An is-
sue with this approach, however, is that subtasks or roles have
to be predefined by the human designer, which is not practical
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1In this paper, we consider addressing an individual multirobot task, which

involves forming one or multiple coalitions.

for arbitrary tasks. It is also desirable for the reasoning to be
dynamically dependent on the capabilities (whether sensory,
motor, or computational) of the available robots so that coali-
tions can be formed at a more fine-grained scale. Such an ability
is especially required in tightly coupled multirobot tasks, which
require robots to continually share capabilities during task exe-
cution. These situations commonly occur when it is impractical
to install the required sensors on all (potentially heterogeneous)
robots, or when using sensors positioned on different robots is
more suitable in the current situation. Forming coalitions based
on subtasks or roles is often not informative enough for au-
tonomous capability sharing.

The representation of robot capabilities clearly has a critical
influence on the design of such desired systems. First, the capa-
bilities should be defined so that the systems can be implemented
with different robots and applied to various tasks. Modularity is
also important to make the systems easily extendable to differ-
ent task domains, such as extending the robot insertion task to
a robot box pushing task. Finally, it is necessary to define a uni-
form interface for the capabilities that models the interactions
among the robots and the environment so that the robots can
autonomously reason about how the capabilities must interact
in the environment for a given task.

General methods that satisfy the independence and modular-
ity requirements greatly increase system capability. Approaches
that also enable autonomous reasoning with capability shar-
ing [2], [3] have been shown to further improve the system
flexibility in tightly coupled multirobot tasks. However, an im-
portant issue that remains unaddressed is that the constraints
introduced by the required interactions are not considered; these
constraints determine the feasibility of the potential coalitions.
For example, a robot without a localization capability may need
help from another robot in order to navigate. This, in turn, re-
quires the robots to interact in close proximity since the relative
position between the robots has to be retrieved using sensors of
limited range (e.g., cameras). A coalition with robots that are
not in each other’s sensor field of view (FOV) is infeasible. It is
clear that the feasibility of the coalitions is not only influenced
by the capabilities of the robots, but also by the configuration
of the robots (e.g., position) and the environment. Previous ap-
proaches to form coalitions do not consider this issue and, thus,
cannot easily identify whether the formed coalitions are feasible
for execution.

This paper presents the IQ-ASyMTRe architecture,2 which,
to the best of our knowledge, is the first attempt to address the

2The architecture was initially presented in [4]. IQ is short for information
quality. This paper extends the previous work to include formal analyses and
more simulations and experiments.
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issue of forming coalitions that are executable. Our approach
can also be used in coalition execution to identify situations
when the feasibility of the coalitions dynamically changes, re-
quiring robots to adjust their behaviors. More discussions on
dynamic execution can be found in [4]. After an overview of the
related work (see Section II), we first provide some background
knowledge (see Section III). The new IQ-ASyMTRe architec-
ture is then explained (see Section IV). Afterward, we present
simulations and experimental results (see Section V). Finally,
we offer concluding remarks (see Section VI).

II. RELATED WORK

An extensive amount of work [5]–[13] has addressed mul-
tirobot cooperation with single-robot tasks, in which tasks are
independent. Compared with this problem, addressing multi-
robot tasks is more complex. Approaches that divide multirobot
tasks into subtasks or roles using domain knowledge [1], [14]
effectively reduce them to single-robot tasks so that the previous
work can easily apply. Variants of the contract net protocol [15]
are often used to coordinate the robots [8], [13], [16]. How-
ever, these approaches can limit the capability of the systems in
tightly coupled multirobot tasks, in which robots are required to
share capabilities.

To reason about forming coalitions at a more fine-grained
scale, researchers often adopt a numeric representation [17]–[
21] for robot capabilities. The advantage is that this represen-
tation is more conveniently subject to theoretic analysis. The
disadvantage, however, is that it does not facilitate autonomous
capability sharing. Alternatively, a behavior-based representa-
tion, such as schema theory [22], [23], can be designed for mod-
ularity and provides an interface for the modules so that they
can interact with each other, although the unstructured interface
is too generic to enable autonomous reasoning. An advantage of
this approach is that more complex behaviors can be achieved
using the basic ones, enabling high-level decision-making ar-
chitectures [12], [24]–[26] to be applied.

Building upon schema theory, the ASyMTRe [2] architecture
was introduced to address tightly coupled multirobot tasks; it
is also the first architecture to enable autonomous capability
sharing at the sensory and computational levels. For a more
structured interface, ASyMTRe uses information type3 as input
and output labels of schemas (i.e., modules) to attach informa-
tion with semantic meanings. Schemas can only be activated
when their input information types are satisfied; they also pro-
duce specified output information types. This way, ASyMTRe
is able to autonomously reason about the interactions between
the schemas based on how information should flow within the
distributed system to where it is required. Capability sharing
is implicitly achieved through the communication of informa-
tion. Unlike sensor fusion architectures [27], [28] that address
the problem of combining sensory information from different
robots, ASyMTRe is designed to model the information flow
among very different modules (e.g., motors and sensors).

3While data type refers to the format of the data (i.e., integer), information
type defines the semantic meaning of the data (e.g., global or relative position).

While other approaches [17], [29], [30] to address tightly
coupled multirobot tasks exist, they do not enable autonomous
capability sharing. Some of them are designed to work at the
robot level. As a result, coordination between the robots is im-
plemented in a task-dependent manner; these solutions cannot
be easily extended to different task domains. For example, the
work in [29] introduces a market-based framework for tight
coordination in a security sweep task domain. Passive coordina-
tion is used to quickly produce solutions for local robots, while
active coordination is used to produce complex solutions via co-
ordination between teammates. Other approaches [17], [30] that
model robot capabilities, however, do not facilitate autonomous
capability sharing, due to the lack of a structured interface.
Unlike in the multiagent domain, sensory capabilities are lo-
cated on different robots and cannot be easily transferred. Vig
and Adams [30] first noted this, and addressed it by restricting
coalitions to those that satisfy the location constraints of the sen-
sors. A better solution is for the robots to autonomously share
capabilities as enabled in [2] and [3], such that these constraints
are relaxed.

Meanwhile, although application-specific methods for capa-
bility sharing [1], [8], [14], [31] can often be used (by specifying
how each agent or robot interacts with others to share informa-
tion), such an approach is often restricted to work with specific
systems, in which the solutions for the interactions are easy to
characterize. As a result, these methods cannot generalize to sce-
narios that require complex interactions with dynamic systems.
Hence, we believe that a general architecture is required and
that a schema-based design, which is coupled with a structured
interface based on information types, satisfies the requirements
to address tightly coupled multirobot tasks. However, while this
approach enables us to reason about the required interactions for
creating potential coalitions, it cannot determine which coali-
tions are feasible for execution in the current situation, since
the constraints that are introduced by these interactions are not
considered. The information type (to specify the interactions)
is statically defined with respect to the capabilities of schemas
and does not include information on how the coalitions are be-
ing instantiated in the environment. This paper addresses these
issues, enabling the formation of executable coalitions in the
current situation.

III. ASYMTRE

Based on schema theory [22], [23], the ASyMTRe archi-
tecture [2] defines basic building blocks of robot capabili-
ties to be collections of environmental sensors (ESs), percep-
tual schemas (PSs), motor schemas (MSs), and communication
schemas (CSs). A set of information types F s is introduced to
label the inputs and outputs of schemas. Connections between
schemas can be made when the output label of one matches
the input label of another. To reason about coalition solutions,
ASyMTRe searches through all possible ways to connect differ-
ent schemas in order to activate the required MSs on the robots
to achieve a task. The activation of each schema is associated
with a cost, which is used in ASyMTRe to compare alternative
solutions. ASyMTRe uses an anytime algorithm with heuristics
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Fig. 1. Example of how schemas are connected in ASyMTRe [2].

Fig. 2. Retrieving the same information in different ways in ASyMTRe [2].

to return good solutions earlier. Fig. 1 illustrates an example
of schema connections found by ASyMTRe. While a solid line
represents an AND condition, dashed lines represent OR. For
example, the figure shows that the requirement of information
type F2 can be provided by either PS3 or CS2 (see [2] for more
details).

While ASyMTRe and other architectures that are based on a
similar idea (see, e.g., [3]) have been shown to improve the flex-
ibility of multirobot systems, they all suffer from several issues.
First, the definition of information type limits the referenced in-
formation to only be statically dependent on the capabilities of
the schemas, instead of dynamically dependent on the actual in-
formation retrieved. This can cause problems when sensors that
are capable of producing an information type cannot retrieve
the required information in the current situation. For example,
in a navigation task, a robot without a localization capability,
and a robot with this capability, may not always be within each
other’s FOV. In such cases, these architectures may choose to
form infeasible coalitions. To address this issue, schemas must
be activated in the planning phase when necessary. The incor-
poration of such a process is missing in ASyMTRe and these
previous architectures for forming coalitions. Furthermore, PSs
(or a specific type of action in [3]) can be dependent on how
the input information is retrieved, which requires application-
specific code to be designed. Fig. 2 shows two scenarios for
how robots without a localization capability (R4 and R1 in the
figure) retrieve their global position information with help from
another robot. In the top scenario, position information relative
to R3 (with a laser-based localization capability) is retrieved by
R4 using a camera, whereas in the bottom scenario, the relative
information is retrieved by R7 . These previous shortcomings
are addressed by IQ-ASyMTRe, which is presented next.

IV. IQ-ASYMTRE ARCHITECTURE

We begin by first extending the representation of informa-
tion to introduce a complete definition of information type that
includes referent information. This extended representation is
needed to dynamically reason about the feasibility of coalitions.
A new type of PS, which is called reduction PS, is also in-
troduced to model the conversions between information types.
We then present the new solution space and potential solutions
which result from these extensions and discuss how they re-
late to the coalition solutions (to specify the coalitions and the
required interactions). Finally, the IQ-ASyMTRe algorithm is
presented; its properties are discussed and proven afterward.

A. Information Type and Information Instance

The incompleteness of information type, as originally defined
in [2], is due to the fact that the relationships between entities4

and information are not explicitly captured. Intuitively, infor-
mation must be specified with a set of referents. For example,
the information of rA ’s global position is not useful without
specifying rA . IQ-ASyMTRe uses both information type and
information instance for a complete definition.

Definition 4.1 (Information Type): An information type in IQ-
ASyMTRe is specified by a pair (F , N ), where F is a label for
the semantic meaning of the information that defines the specific
sensing or computational data of a schema or a sensor. F is
consistent with the definition of information type in ASyMTRe,
while N is the number of referents that should be associated
with F . �

For example, the information type of global position can
be specified by (FG , 1). This information type has only one
referent, which refers to one entity’s global position. In order to
specify the complete semantic meaning, however, information
type alone is not sufficient. As an example, (FG , 1) does not
inform us about whose global position it is. To address this issue,
we introduce the definition of information instance.

Definition 4.2 (Information Instance): An information in-
stance in IQ-ASyMTRe not only contains the semantic meaning
expressed in its information type, but it also captures information
about the referents. An information instance of a particular in-
formation type (F , N ) can be represented as F (Ref1:N ), where
Refj is the jth referent for F (Ref1:N ). �

Each referent Refj can be instantiated to a particular entity
or remain uninstantiated for future instantiation. Fully instanti-
ated information instances represent actual information that can
be used. Partially instantiated information instances represent
a class of information. For example, FG (X) can be the global
position information of any entity to which X is instantiated.
The use of information instance creates a complete reference of
information. For example, after instantiating the two referents of
an information instance of the relative position information type
(FR , 2) to robots rA and rB , respectively, the reference of in-
formation FR (rA , rB ) has a unique meaning (i.e., rA ’s position

4Entities can be locations, robots, agents, or objects that can be identified in
the environment.
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relative to rB ), no matter how the information is retrieved or
used.

The definition of a complete reference of information en-
ables dynamically reason about coalition solutions, based on
how capabilities or information is shared, such that infeasible
coalitions for execution can be identified. To achieve this dy-
namism, statically labeling the schemas with information types
as in ASyMTRe is insufficient; instead, in IQ-ASyMTRe, the
semantic labels (information instances) are also encoded in the
information flowing through the schemas. For example, for sen-
sory information retrieved by an ES, an associated PS extracts
the semantic information in order to dynamically instantiate the
referents of its static label; it then outputs the new label along
with the actual data. In such a way, IQ-ASyMTRe can use ac-
tual sensory or communicated information to form coalitions,
making it more powerful compared with other approaches.

We further introduce the concept of generality for information
instances for later use. In the rest of this paper, referents for
information instances are not shown unless necessary.

Definition 4.3 (Generality of Information Instance): For two
information instances (Fx and Fy ) of the same type (F , N ),
Fx is more general than Fy (denoted by Fx � Fy ), if and only
if the following two statements are true.

1) ∃ Refk ∈ Ref1:N in Fy that is instantiated while the cor-
responding referent (Refk ) in Fx is not.

2) ∀ Refk ∈Ref1:N in Fx that is instantiated, the correspond-
ing referent (Refk ) in Fy is also instantiated.

In addition, Fx is as general, or has the same generality, as
Fy (denoted by Fx = Fy ), if and only if the following two
statements are true.

1) ∀ Refk ∈ Ref1:N in Fy that is instantiated, the corre-
sponding referent (Refk ) in Fx is also instantiated.

2) ∀ Refk ∈ Ref1:N in Fx that is not instantiated, the corre-
sponding referent (Refk ) in Fy is also not instantiated.

�
Note that Definition 4.3 only specifies partial orders for in-

formation instances of the same type in IQ-ASyMTRe, since
two information instances of the same type may or may not be
comparable. For example, given that Fx � Fy and Fx �= Fy ,
it is not necessarily true that Fy � Fx .

B. Information Conversion (Reduction PS)

The Reduction PS (denoted by RPS henceforth) is introduced
in IQ-ASyMTRe to express information conversions. The idea
is to provide a constructive way to reason about the relation-
ships between different information systems, as first introduced
in information invariants theory [32]. This capability is desir-
able to reason about forming coalitions, since potential coalition
solutions represent ways to connect different components (i.e.,
schemas) to form equivalent information systems (i.e., to re-
trieve the required information). Since information conversions
are general, no application-specific code needs to be designed
for the reasoning process.

Furthermore, combined with a complete reference of infor-
mation, IQ-ASyMTRe can express information conversions in
which multiple information instances of the same type are used;

such flexibility is not accessible to architectures that are based
solely on information types. For example, from the relative po-
sition of robot rB to robot rA and robot rC to robot rA , one can
compute the relative position of rB to rC .

Information conversions that are expressed in IQ-ASyMTRe
can be specified in the Backus–Naur form (BNF) as follows.

Definition 4.4 (Information Conversion): Information conver-
sions in IQ-ASyMTRe express relationships between compos-
ite information instances (abbreviated as comp inst in the BNF
specifications). �

A composite information instance is constructed from con-
nected information instances using logic operators {iAND,
iOR}, which are similar to {AND, OR} in propositional logic,
such that the distributive property also holds. Information con-
versions convert the composite information instance on the left-
hand side to the one on the right:

< info conversion >::=< l-comp inst >⇒< r-comp inst >.

The BNF of a composite information instance is given as
follows, in which information instance is abbreviated as info
inst. Since iOR operators on the right-hand side are not well
defined5, the definitions for the two sides are different:

< l-comp inst >::= (< l-comp inst > iAND < l-comp inst >)

| (< l-comp inst > iOR < l-comp inst >)

| < info inst >

< r-comp inst >::= (< r-comp inst > iAND < r-comp inst >)

| < info inst > .

Lemma 4.1: Information conversions in IQ-ASyMTRe can
always be defined with one or multiple information instances
connected with only iAND operators on the left-hand side and a
single converted information instance on the right.

Proof: First, since information instances on the right are con-
nected with only iAND operators, we can easily divide any infor-
mation conversions in Definition 4.4 into multiple conversions
with a single information instance on the right. This is done
by creating a separate conversion for each information instance
on the right with the left-hand side unchanged. Afterward, by
using the distributive property, we can transform the composite
information instances on the left into their respective disjunctive
normal forms (DNFs). Finally, we simply need to divide each
of the transformed information conversions into multiple con-
versions by introducing a new conversion for each conjunctive
clause on the left. �

As an example, for an information conversion having the form
(A iOR B) iAND C ⇒ D iAND E, we can first divide it into
two information conversions for each information instance on
the right-hand side. The two conversions are (A iOR B) iAND
C ⇒ D, and (A iOR B) iAND C ⇒ E. Next, we apply the
distributive rule to the first conversion to get (A iAND C) iOR

5For example, saying that the information instance of A can be converted to
B or C implies that both B and C can be converted; therefore, iAND should be
used instead of iOR.
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TABLE I
EXAMPLES OF RPS’S USED IN IQ-ASYMTRE

(B iAND C) ⇒ D. The second one can be transformed simi-
larly. Finally, by introducing a conversion for each conjunctive
clause, we have A iAND C ⇒ D, and B iAND C ⇒ D.

Definition 4.5 (IQ Information Conversion): Lemma 4.1 al-
lows us to express any valid information conversion in the fol-
lowing form (called the “IQ form” henceforth):

< info conversion >::=< l-comp inst >⇒< r-comp inst >

< l-comp inst >::= (< l-comp inst > iAND < l-comp inst >)

| < info inst >

< r-comp inst >::=< info inst > . �

The advantage of defining information conversions in the IQ
form is that the reasoning process to create the solution spaces is
significantly simplified. In the following discussions, we assume
that all information conversions are defined in the IQ form; we
also denote the iAND operator by “+,” for conciseness. Table I
shows several RPSs that can be used in IQ-ASyMTRe. They
are general since the referents can be instantiated to different
entities, as long as the same referent labels are instantiated to
the same entities.

C. Solution Space and Potential Solution

Potential solutions represent the possible alternative ways that
schemas can be connected on a robot to retrieve the required in-
formation for the task; a solution space is created on this robot
to encode all such potential solutions. Although the introduction
of information instance and RPS significantly changes the solu-
tion space and potential solutions in IQ-ASyMTRe, the reason-
ing process to create them remains similar to [2]. To create the
solution space, the reasoning algorithm checks all schemas that
can output the required information instances and then checks
recursively for the inputs of those schemas until the path ei-
ther ends in a conflict with the referent instantiation constraint6

or in a terminal state (i.e., CS or ES–EPS pair7 that can be the
source of the required information instance). Note that while the
reasoning to create the solution space is similar to STRIPS [24]
planning (considering sets of information instances as states and
RPSs as reduction rules), IQ-ASyMTRe provides a more man-

6The referent instantiation constraint requires the same labels to be instanti-
ated to the same entities in the inputs and outputs of the same schemas. Validation
of this constraint occurs in both of the algorithms presented in Section IV-G. In
the algorithm to create the solution space, it is used to remove invalid potential
solutions, while it is used in the second algorithm to determine the feasibility
of the coalitions.

7Sensory information instances are extracted from raw sensor data using PSs
that are designed for the specific ESs. PSs of this kind are denoted by EPSs in
the following discussions.

Fig. 3. Solution space in the cooperative robot navigation task [2] for a robot
to obtain its global position with only a camera sensor. The referent local
refers to the robot itself. This solution space encodes two potential solutions.
One solution is to have another robot X send over its global position (CS:
FG (X ) ⇒ FG (X )) and use the camera sensor to sense the relative position
(EPS: Camera ⇒ FR (X, local)). An RPS (PS: FR (Y, X ) ⇒ FR (X, Y )) is
used to convert FR (X, R1 ) to FR (R1 , X ). The other solution (tOR) is to have
both information instances (CS: FG (X ) ⇒ FG (X ) and CS: FR (R1 , X ) ⇒
FR (R1 , X )) sent over by X .

ageable reasoning system for the problems that we address by
restricting the spaces of states and rules.

A solution space can be represented in a directed graph rep-
resentation as an and–or tree (e.g., see Fig. 3). Each node in
the solution space represents a schema or an ES–EPS pair.
Each edge represents an information instance that constantly
flows from the output of one node into the input of another (ex-
cept for the edges connecting ESs and EPSs). The root of the
and–or tree, which specifies the required information instances,
can either be an MS or a CS; it acts as a sink node that infor-
mation flows into. Since we assume that RPSs are defined in
the IQ form, every node has one or more incoming edges and
a single outgoing edge. Every leaf node (i.e., the information
source) is either a CS, representing information communicated
from others, or an ES–EPS pair, representing information re-
trieved using sensors. Nodes that are closer to the sink node
(i.e., the root) are said to be downstream of the nodes further
away on the same branching path,8 as information flows from
the leaves to the root. Fig. 3 shows a solution space for the co-
operative robot navigation task [2]. The tOR node is introduced
to manage multiple options of connection. Another example
that involves different information types is provided in Fig. 4; it
shows the box pushing task presented in [32], which uses force
feedback, infrared, bumper, and position sensors. A cooperative
robot transportation task that requires robots to be physically
connected can be similarly represented. These examples show
the applicability of IQ-ASyMTRe to varying task domains.

After the solution space is created, potential solutions can be
extracted from the root to the leaves by making decisions on
which schema node to use at each tOR node; the rest of the
nodes are trimmed. Note that after the selections for the nodes
are made, the tOR nodes are no longer necessary and can be
removed for a clearer representation. The cost to use a potential

8A branching path is the path that starts from any leaf node and follows the
information flow until the root node (i.e., the sink node) is reached.
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Fig. 4. Solution space that represents one of the protocols presented in [32]
for two robots to cooperatively push a box in a given direction. For the robots
to coordinate actions, they must estimate the net torque on the box based on
the torque information FT and use the bumper information FB to determine
whether the robots are in contact with the box. The torque for each robot is
computed from its exerted force on the box FF and its relative position to the
box FR . Other protocols that were presented in [32] (e.g., using the offsets from
the robots’ starting positions) can be similarly represented.

solution can be computed as the sum of the costs of all schemas
in the solution. Clearly, potential solutions also have and–or tree
representations.

However, one issue with IQ-ASyMTRe is that the solution
space can be of infinite size without restricting the use of RPSs.
This is due to the fact that the same RPSs can potentially be
used an unlimited number of times. To address this issue, we
introduce the Generality Imposition constraint as follows.

1) Generality Imposition constraint—For each RPS, prohibit
the use of the same RPS to convert information instances
of the same type that have less or equal generality upstream
on the same branching path.

Lemma 4.2: The Generality Imposition constraint ensures
that solution spaces and potential solutions have finite graphical
representations.

Proof: The representation of a solution space can become in-
finite when loops occur. This occurs when information instances
of the same type that have the same generality with the same
entity instantiations appear more than once on the same branch-
ing path of the solution space as outputs of the same RPS. The
Generality Imposition constraint directly prohibits these occur-
rences of loops. Otherwise, we note that the numbers of RPSs,
information types, and referents which are associated with in-
formation types are finite given a task domain. Hence, in the
worst case, every branching path would terminate after infor-
mation instances of all types reach the most general forms (i.e.,
have no instantiated referents). Hence, solution spaces have fi-
nite representations. As potential solutions are trimmed solution
spaces, the conclusion is straightforward. �

An additional conclusion is that the sizes of solution spaces
(i.e., number of potential solutions) are also finite. To further
reduce their sizes, we introduce two more constraints.

1) Localness in Reasoning constraint—No schema connec-
tion except for CS should be created if none of the referents
for the information instance to be provided is instantiated

to the local entity (except for those with all referents in-
stantiated to nonrobot entities).9

Given this constraint, for example, rA would not directly
provide FR (rB , rC ), even though rA can compute it from
FR (rB , rA ) and FR (rC , rA ). However, the information required
for the computation is available upon request.

1) External Communication constraint—CSs are used only
when some referents are not instantiated to the local entity.

For example, if rA needs FG (rA ), it cannot request it directly.
Instead, it must first seek other ways to obtain the information
(e.g., computing it from FG (X) and FR (X, rA )). In this manner,
computation load is also distributed. Note that rA may request
information from itself.10

D. Coalition and Coalition Solution

In IQ-ASyMTRe, potential solutions only specify how the
local robot11 rL directly interacts with others. To make this
difference for later discussions, we define local coalitions dif-
ferently from traditional coalitions [33].

Definition 4.6 (Local Coalition): A local coalition defined
in IQ-ASyMTRe consists of rL and the robot teammates that
directly feed information to rL to activate a required MS for the
task or a CS for helping other robots. �

To search for local coalitions, IQ-ASyMTRe checks potential
solutions in the solution space in a nondescending order based
on the costs. For each potential solution, IQ-ASyMTRe acti-
vates the ES–EPS pairs to retrieve sensory information, and/or
the CSs to send out information requests, as specified in the
potential solution. ES–EPS pairs are only activated temporarily,
and the information requests are sent only once (or a few times
when communication links are unreliable). Robots that receive
an information request create a solution space for the required
information and follow the same search process for this space.
If the information is retrievable, these robots keep sending the
information until the temporary activations of the schemas ex-
pire. IQ-ASyMTRe uses the collected information to instantiate
the required information instances in the potential solution and
perform validation of the referent instantiation constraints. The
resulting local coalition is feasible only if all such constraints
are satisfied. A chosen feasible local coalition can then be set up
by sending coalition requests to the relevant robot members. The
instantiated potential solution is referred to as a local coalition
solution, which is defined as follows.

Definition 4.7 (Local Coalition Solution): A local coali-
tion solution (LCS) for a local coalition is the potential so-
lution (selected by rL ) after fully instantiating all information
instances. �

9For a robot to reason about information for helping others upon request, when
there is no referent instantiated to the local entity but there are uninstantiated
referents, the robot checks all possible ways to instantiate one of them to the
local entity.

10This is a technical detail needed to prove completeness. However, in
practice, less-costly alternative solutions often exist that do not involve self-
communication. Note that self-communication can always be avoided by opti-
mizing the implementation.

11The local robot refers to the specific robot that initiates the coalition.
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Fig. 5. Possible coalition solution for a potential solution in Fig. 3, in which
the left part corresponds to the LCS.

Note that a potential solution can be instantiated to different
LCSs. The left part of Fig. 5 shows the LCS for a valid instanti-
ation of a potential solution in Fig. 3. To define coalitions, note
that robots in the local coalition may often be interacting with
others in order to retrieve the requested information for rL . For
example, in Fig. 3, FG (X) may be retrieved by X with help
from another robot.

Definition 4.8 (Coalition): A coalition includes all robots in
the local coalition and robots that indirectly support rL . �

A robot that directly feeds information to rL (i.e., in the
local coalition for rL ) might also be using a local coalition
to retrieve the necessary information, which introduces another
coalition (which could be of size 1) for this robot. Such a process
can continue recursively. That is, a coalition may include (or
require) other coalitions, which may recursively include yet
others. Hence, recursively, the feasibility of a coalition can only
be determined when the feasibility of these required coalitions
is determined; a coalition can only be set up after these required
coalitions are set up. While the cost of a local coalition is that
of the corresponding potential solution, the coalition may incur
additional cost due to these required coalitions. The coalition
cost is the sum of all these costs.

Definition 4.9 (Coalition Solution): The coalition solution for
a coalition includes the LCS, as well as solutions for fulfilling
the required coalitions recursively. �

Coalition solutions also have and–or tree representations
since they are created by connecting LCSs, which are and–or
trees. One characteristic of the coalition solutions, which differs
from LCSs, is that the leaves always represent the ultimate infor-
mation sources, i.e., ES–EPS nodes. Note that dummy sensors
can be created to provide any prior information when necessary.
Fig. 5 shows a coalition solution that instantiates a potential
solution in Fig. 3.

Although the Generality Imposition constraint that was in-
troduced in the previous section prevents loops in the potential
solutions (and hence in the LCSs), it does not prevent loops in the
coalition solutions. For example, while rA is requesting some
information from rB , rB may in turn request necessary infor-
mation from rA to retrieve the requested information, which can
lead to rA requesting the same information from rB again. To
address this issue, we introduce the Distinct Requests constraint
as follows.

1) Distinct Requests constraint—For any robot, prohibit the
use of CS if the robot has already used CSs to request the
same information instance.

Lemma 4.3: Given the Generality Imposition and the Distinct
Requests constraints, LCSs and coalition solutions have finite
graphical representations.

Proof: As LCSs are instantiations of potential solutions, given
Lemma 4.2, the conclusion for LCSs is straightforward. The
representation of coalition solutions can become infinite when
loops occur; this occurs only when one robot is requesting an
information instance, which ultimately leads to itself requesting
the same information again. The Distinct Requests constraint di-
rectly prevents loops from occurring. Hence, coalition solutions
also have finite representations. �

Lemma 4.3 implies that any information request is populated
only a finite number of times in the distributed system, although
the information requested during the population may not neces-
sarily be the same as in the initial request.

E. Completeness of Solution Space

An important question is whether the solution spaces are
influenced by the introduced constraints. Interestingly, the fol-
lowing lemma shows that the solution spaces are still complete
in IQ-ASyMTRe.

Lemma 4.4: The combination of the following four con-
straints does not influence the completeness of the solution space
for the distributed system.

1) the Generality Imposition (GI) constraint;
2) the Localness in Reasoning (LR) constraint;
3) the External Communication (EC) constraint;
4) the Distinct Requests (DR) constraint.
Proof: By definition, a coalition solution has an and–or tree

representation. Furthermore, the leaf nodes, which are located
on robots within the coalition, are ES–EPS nodes to retrieve the
required sensory information instances, which flow within and
across robots through schemas to the root (i.e., the sink node)
of the coalition solution.

With no constraint, the simplest solution is to have sensory
information instances from other robots sent directly to rL (i.e.,
where the root is located) and move RPSs to process them to
rL . Since no constraints are imposed here, self-communicating
CSs on rL are unnecessary and can be easily removed via con-
catenation. All information instances are fully instantiated in
this solution. The goal is to show how this simple solution can
be reconstructed equivalently (via pruning and grafting) on the
robots so that the potential solutions before the instantiations
satisfy all constraints.

We start thinking in a reverse order; that is, given the created
simple coalition solution, what could the potential solutions have
looked like? First, note that potential solutions are LCSs before
the instantiations and that the LCSs are part of the coalition
solutions. Hence, any referent that is not instantiated statically
(i.e., referents with instantiations specified a priori by the task
or the EPSs) would not be instantiated in the potential solutions.
After removing all nonstatic instantiations, we next show how



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

to reconstruct the uninstantiated coalition solution to resolve all
possible violations.

First, for the ES–EPS nodes that remain on other robots,
observe that for most sensors, the retrievable information in-
stances are always related to the robots on which the sensors are
located. Based on this observation, these information instances
must have a referent instantiated to the respective local robot
entities. Hence, the schema connections do not violate the LR
constraint. It is easy to verify that they also do not violate the
other constraints, since the node (schema) types do not apply.

Now, we can concentrate on the LCS for rL . We start the
process in a reverse breadth search fashion (i.e., from deeper to
shallower nodes), until we encounter a violation at a node v. In
the following, we use Down(x) to denote downstream nodes of
x on the same branching path and Fx to denote the information
instance produced by node x. We also use Subtree(x) to denote
the upstream subtree rooted at x and CS(F ) to denote a CS for
requesting F . There are four possible situations.

a) In the case of a violation of the DR constraint, without
changing anything, we can simply implement the communi-
cation module in such a way that for all CSs on a robot that
request the same information instance, only the first CS created
may send the request. The intuition is simple: There is no need
to make duplicate requests.

b) We can argue that the case of a violation of the EC con-
straint would not occur. If it does occur, we know that v is a
CS and the only referent in Fv is statically instantiated to rL ,
since instantiating two or more referents of an information in-
stance to the same entity would not be informative by definition.
Hence, Fv must not be communicated from other robots based
on our previous observations (or there should be instantiations
with other robot entities). Consequently, v should be an ES–
EPS or an RPS node, instead of a CS node, according to the
construction of the simple coalition solution. Note also that the
resolution process for the violations of other constraints does
not introduce this type of violation.

c) In the case of a violation of the GI constraint, we know that
∃u ∈ Down(v), for which Fu � Fv or Fu = Fv . Furthermore,
given the search order, we also know that Subtree(v) contains
no violations on rL .

c.1) If there exists a referent in Fv that is instantiated to a
robot entity in the coalition, which is denoted by rE (rE �= rL ),
we can trim off Subtree(v) and replace it with CS(Fv ). The
creation of the CS does not violate any constraints; furthermore,
Subtree(v) can be moved to rE to reason about Fv incurring no
violations by using the following process.

For leaf nodes that are ES–EPS nodes in Subtree(v), we need
to replace them with CSs. This occurs after moving Subtree(v)
to rE to request the sensory information instances from rL . For
the rest of the leaf nodes (CSs), if the transferred information is
not from rE , we need not do anything. Otherwise, the process is
more complicated. In the following, we denote the information
that is transferred from rE by FE , and the node that is imme-
diately upstream of CS(FE ) on rE by E. If FE has more than
one referent and one of them is instantiated to rE , we need not
do anything. Otherwise, we have two cases.

c.1.1) FE has only one referent: If the only referent is not
instantiated to rE , the situation falls into the second case (i.e.,

c.1.2); else, if the only referent is not statically instantiated to
rE , nothing needs to be done; else, the only referent is stati-
cally instantiated to rE . Since instantiations are only inherited
upstream until reaching the ES–EPS leaf nodes, Fv must have
a referent statically instantiated to rE as well.

If Fv has only one referent, then following the same referent
inheritance property Fu too has a referent statically instantiated
to rE . According to the definition of the GI constraint, we must
have that Fv and Fu represent the same information. As a result,
we can move Subtree(v) back to rL to replace Subtree(u). Oth-
erwise, Fv has more than one referent. In that case, if E is an
ES–EPS node, we can remove the leaf node CS(FE ) from Sub-
tree(v) and concatenate it with Subtree(E) on rE ; else, we know
that Subtree(E) must have only violated the LR constraint before
being moved from rL to rE , since it clearly did not violate the
EC constraint. Furthermore, it must not have violated the GI
constraint, since otherwise, Subtree(E) should have been used
to replace the node in violation on rL (assuming that the reso-
lution of the GI constraint takes precedence over that of the LR
constraint). In such a case, we can simply remove the leaf node
CS(FE ) from Subtree(v) and concatenate it with Subtree(E).

c.1.2) No referent of FE is instantiated to rE : We can argue
that this case would not occur. First, E cannot be an ES–EPS
node; otherwise, rE should be present. Meanwhile, FE must not
have been reasoned out using an RPS either, since otherwise,
Subtree(E) should not have been moved to rE due to a violation
with the LR constraint.

c.2) Following c.1, if such a referent does not exist, there
are three cases: 1) Fv has more than one referent, and one of
them is instantiated to rL : In such a case, Subtree(v) can be
replaced by a self-communicating CS for Fv ; 2) Fv has only
one referent: If the only referent is not instantiated to rL , the
situation falls into the third case; else, if the only referent is not
statically instantiated to rL , Subtree(v) can be replaced by a self-
communicating CS for Fv ; else, the only referent is statically
instantiated to rL . It follows that Fv and Fu are the same;
therefore, we can replace Subtree(u) with Subtree(v). 3) No
referent of Fv is instantiated to rL : In such a case, all referents
in Fv are statically instantiated to nonrobot entities, since these
entities must be specified a priori by the task. Given that fully
instantiated information instances of the same type with the
same set of entities are almost always equivalent (i.e., there
exists an RPS that can convert one to the other), we can use such
an RPS to convert Fv to Fu and then replace Subtree(u) with
the modified Subtree(v). New GI violations that are introduced
on the modified subtree can be resolved in a similar manner.

d) In the case of a violation of the LR constraint, we know
that none of the referents of Fv is statically instantiated to rL .
We can apply a similar process as in (c).

We can iterate the aforementioned process until all violations
are resolved. On termination, we have created an equivalent
coalition solution in which the potential solutions satisfy all of
our constraints. Hence, the conclusion holds. �

An example scenario for the navigation task is given in
Fig. 6(a) in which four robots must activate the same MS to
go to the same global position. The robots are positioned in a
column formation, as shown in the figure. The simple coalition
solution for the example scenario is shown in Fig. 6(b) for the
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Fig. 6. (a) Scenario for the navigation task in which only the red robot (at the top) has a GPS for global positioning. The other robots only have a camera for
relative positioning, and each can only see the robot immediately in front of it, since they are in a column formation. (b) Simple coalition solution for the scenario
in (a). (c) LCS before instantiations. (d) After resolving the violation of the GI constraint. (e) Violation of the LR constraint. (f) After resolving the violation of the
LR constraint. (g) Possible coalition solution after applying the potential solution in (f).
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bottom robot. Fig. 6(c) shows the LCS before instantiations.
Note that a violation of the GI constraint from two information
instances is shown in red. Fig. 6(d) shows the uninstantiated
LCS after the resolution, with the red block in Fig. 6(c) replaced
by the blue block in Fig. 6(d). However, a violation of the LR
constraint is still present in Fig. 6(e) due to the information
instance shown in red. Fig. 6(f) shows the potential solution af-
ter resolving all violations. Fig. 6(g) shows a possible coalition
solution.

F. Forming Executable Coalitions

For searching and setting up coalitions, we assume that all
robots are always within communication range, such that every
robot can communicate with any other robot when necessary.
Given an MS to activate, the robot first creates a solution space
and searches through this space for potential coalitions. A coali-
tion is feasible for execution when all the required coalitions
are feasible. Note that no coalitions are set up in this phase.
Among all feasible coalitions that are found so far (after the
given search time has elapsed), IQ-ASyMTRe chooses the one
with the least coalition cost to set up. The coalition is only set
up when all the required coalitions are also set up. For setting
up coalitions in a distributed manner, we use the same request-
and-wait negotiation protocol as used in the distributed version
of ASyMTRe [34].

G. Algorithms and Properties

The recursive algorithm to generate the solution space is
shown in Algorithm 1. It checks all possible schemas to re-
trieve the required information and recursively checks these

schemas. Each reasoning path terminates either in a conflict
with the referent instantiation constraint or in a terminal state.

The algorithm to form coalitions in IQ-ASyMTRe is shown
in Algorithm 2, which sets up and returns the coalition with
the least cost found in a given time. For searching the solution
space, the algorithm sequentially checks the potential solutions
in a nondescending order that is based on the cost. It activates
the required ES–EPS pairs or CSs temporarily to retrieve the in-
formation, as specified in the potential solutions. The algorithm
then uses the collected information to dynamically determine
the feasibility of the coalitions for execution.

Next, we prove important properties of IQ-ASyMTRe, which
include the soundness and completeness of the approach.

Theorem 4.5: If the set of RPSs expresses all valid informa-
tion conversions, given sufficient search time, the IQ-ASyMTRe
algorithm is complete.

Proof: If the set of RPSs expresses all valid information con-
versions for a given application, then since Algorithm 1 explores
all possible ways to retrieve information in a recursive manner,
all potential solutions that satisfy the constraints in Lemma 4.4
will be checked. Given that these constraints do not influence the
completeness of the solution space, the IQ-ASyMTRe algorithm
is complete, given sufficient search time. �

Theorem 4.6: The IQ-ASyMTRe algorithm is sound.
Proof: First, since schema connections are made only when

the inputs and outputs have matching information types, given
that the referent instantiation constraints are respected, solution
spaces are created using only valid connections. This also holds
for potential solutions. Moreover, since connections are made
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until the leaf nodes, which are information sources, the required
constant information flow can be maintained. For potential solu-
tions, since one (and only one) branch remains at each tOR node,
all inputs of the downstream nodes are still satisfied. Hence, all
necessary connections are present in the potential solutions to
maintain the information flow. Thus, the IQ-ASyMTRe algo-
rithm is sound. �

H. Complexity Analysis

The computational and space complexity of Algorithm 1 is
equal to the space required to represent the solution space (us-
ing an and–or tree). To retrieve a single information instance,
given the constraints in Lemma 4.4, it is not difficult to con-
clude that the worst-case complexity for this representation12 is
O(Nt2Nr Nc

Nt 2N r ), given the following:
1) Nc : the maximum number of RPSs producing the same

information type;
2) Nt : the number of information types related to the infor-

mation instance to be retrieved;
3) Nr : the maximum number of referents associated with

information instances for all related information types.
Given a task domain, these numbers are fixed. Hence, the size

of the solution space for any information instance is bounded

by a constant Nc
Nc

N t 2 N r

. Meanwhile, the size grows exponen-
tially with the number of information instances to be retrieved.
However, most practical problems are still small enough to
be computed in reasonable time in practice. For applications
in which the size of the solution space is large, the methods
in [35] can be applied to achieve online performance by signifi-
cantly reducing the size of the search spaces for certain problem
instances.

In Algorithm 2, the communication complexity for send-
ing information requests to search the entire solution space is
bounded by the number of distinct information instances in the
solution space, which is bounded by the maximum length of
any branching path (i.e., Nt2Nr ). However, the complexity is
significantly influenced by how the referents of the information
instances in the requests are instantiated. If the information in-
stances do not have any instantiated referents, the complexity
is only linear in Nt , which is based on the Distinct Requests
constraint. For example, if we have sent a request for FG (X),
no requests need to be sent for FG (r1) or FG (r2). As the coali-
tions are setting up, the communication in the distributed system
drops gradually until becoming stable, since only a constant in-
formation flow is required to maintain the coalitions.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we provide simulations and experimental re-
sults to demonstrate the capabilities of IQ-ASyMTRe for various
applications. All simulations are implemented in Player/Stage
[36] and are run on a 2.4-GHz Core 2 Duo laptop with 2 GB
memory; wall-clock times are reported.

12The maximum length of any branching path, subject to all constraints, is

Nt 2N r ; the number of all possible distinct branching paths is Nc
N t 2N r

.

TABLE II
INFORMATION REQUIRED IN THE NAVIGATION TASK

TABLE III
POTENTIAL SOLUTIONS OF THE NAVIGATION TASK

A. Simulations

1) Solution Space and Potential Solutions: First, we show
the solution spaces that are produced by IQ-ASyMTRe for the
navigation task, in which the goal is to activate an MS for nav-
igation on different robots. The information instances that are
required are listed in Table II along with brief descriptions. The
potential solutions are ordered based on the costs of schemas
they use13, which are currently statically defined as follows:
cost(RPS) = 0.5, cost(ES–EPS) = 1.0, cost(CS) = 2.0, and
cost(MS) = 4.0. FG (goal), and FM are provided a priori, which
incur no costs. Since FA (local) can only be retrieved using the
local laser sensor, it is also ignored for conciseness. Table III
lists the potential solutions for robots that are equipped with
a fiducial, a laser, and a GPS sensor; RPSs are not shown for
brevity. As an example, the first potential solution involves an
ES–EPS node inputting into the required MS, with a total cost of
1 + 4. Encoding entity information into information enables IQ-
ASyMTRe to find solutions (i.e., 6–11) that are not discernible
by architectures that use only information types. Hence, more
flexibility and completeness are achieved. Note that potential
solutions that require the same set of information instances with
higher costs can be removed to reduce the search space with-
out affecting the completeness (e.g., using a post-processing
algorithm).

2) Forming Executable Coalitions: In this simulation, we
present a scenario of the navigation task to demonstrate the in-
tuition behind forming executable coalitions. We assume that
there are three robots (of type 1 in Table IV) without a local-
ization capability that need to navigate to certain goal positions,

13Since the required schemas are always activated during task execution, the
cost of a potential solution is proportional to the execution cost. This observation
is useful for task allocation.
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TABLE IV
INFORMATION USED BY PREVIOUS APPROACHES

Fig. 7. Forming executable coalitions in the robot navigation task. (a) IQ-
ASyMTRe considers the satisfaction of the relative configurations. (b) Formed
coalitions are feasible and can be executed.

and there are six other robots of type 2 that can localize. Fidu-
cial sensors on all robots can be used to retrieve relative position
information between robots. Previous approaches for forming
coalitions use only the information in Table IV, for which any
type 2 robots would be considered equivalently by type 1 robots
to form coalitions, since there is no way to distinguish between
them.

The use of laser or localization sensors does not introduce
constraints, since the retrieved information instances FG are
associated with only one referent. However, capability sharing
introduces a constraint, since robots must be in the proper phys-
ical configuration for one of them to retrieve the relative robot
position using a fiducial sensor. Previous approaches do not
consider this constraint and thus cannot form executable coali-
tions. IQ-ASyMTRe considers this constraint by using available
information to dynamically instantiate the potential solutions
(shown in Table III in this case). For any robot X that can pro-
vide FG (X), the robots also check to see if FR (X, local) or
FR (local,X) is retrievable.

For example, when the robots happen to be grouped into
three clusters that are relatively distant from each other [but
still within the communication range as shown in Fig. 7(a)], it is
clear that the consideration of the relative positions is important.
The three type 1 robots are shown in red, green, and yellow
in Fig. 7(a) (labeled “R,” “G,” “Y ”) with the goals shown as
small square beacons in their respective colors (labeled “r,”
“g,” “y”). Type 2 robots are labeled from 1 to 6. The FOVs
of the fiducial sensors are restricted to be 180◦ facing forward
with a maximum range of 4 m (shown as semicircles). When
a robot can see another robot, we draw an arrow between the
two. Table V summarizes this scenario for coalitions, along with
the overall costs for two robots (see Figs. 5 and 12 for how the

TABLE V
COALITIONS WITH TWO ROBOTS IN FIG. 7

costs are computed14). Fig. 7(b) shows the coalitions that are
set up, indicated by ellipses. This illustrates that IQ-ASyMTRe
considers the current configuration of the robots when forming
coalitions.

Note that the two potential coalitions for the red robot (“R”)
correspond to potential solutions 2 and 3 in Table III. The coali-
tion with a lower cost (i.e., with the red robot in the back) is
preferred. For the green robot (“G”), only one executable coali-
tion is found, although the coalition with robot 5 is close to
an executable state and may be beneficial when no executable
coalitions are found. In such cases, the proximity information
can be used by a task planner to create an executable plan for
the task. However, discussions about such scenarios are outside
the scope of this paper.

3) Dynamic Monitoring Task: Next, we show in simulation
a scenario of a monitoring task involving more complicated
interactions in complex environments, in which the topology
of a sensor-connected network15 of robots is dynamic. In this
task, eight mobile robots have to monitor the environment,
while keeping a sensor-connected network with fiducial sensors.
When targets enter the environment [shown as black squares in
Fig. 8(a)], the robots have to provide global positions of the
targets. The robots in this simulation are heterogeneous, having
different capabilities. The fiducial sensors on robots 1 and 2
have longer ranges with 360◦ FOVs. Only robot 4 can local-
ize. For exploration, the robots simply use the fiducial sensor
to search the space while maintaining a sensor-connected net-
work. Fig. 8(b) shows a scenario of the current sensor-connected
network of the robots (i.e., with network edges shown as red
(narrower) arrows) and two targets (T1 and T2) that enter the
environment. In order to provide the target positions, two coali-
tions are dynamically formed. Members in each coalition and
the respective target are sensor-connected, as shown by differ-
ent line segments in Fig. 8(a); their interactions are shown in
Fig. 8(b) as blue (wider) arrows, which are labeled with the
communicated information.

We can see from this simulation that IQ-ASyMTRe can form
coalitions with complicated interactions between the robots.
The completeness of the solution space guarantees that a solu-
tion, when it exists, will be found given sufficient time. When
the interactions must be determined dynamically based on the
robot capabilities and the current configuration of the robots
and the environment, it becomes impractical to always design

14Note that how FA is retrieved is not shown in Fig. 5. In addition to the costs
of the coalition solutions shown, there is also a cost to activate a necessary MS
(to maintain the relative position) on the robot that is chosen to help, which is
the same (i.e., 6) in this simulation. Finally, note that each pair of CSs connected
by arrows (between the robots) in the figures is considered as one CS usage.

15Two robots are sensor-connected if one robot is in the other’s sensor FOV.
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Fig. 8. Scenario for the dynamic monitoring task with mobile robots. (a) Con-
figuration when targets enter the environment. (b) Connections of the network
and the interactions among the robots and the environment.

application-specific methods; thus, general techniques such as
that provided by IQ-ASyMTRe can be powerful. Another aspect
is that the same robots can appear in different coalitions (such
as robots 1 and 4 in this simulation), such that synergy between
coalitions can be achieved.

4) Distributed Search of the Solution Space: In this simu-
lation, we analyze how fast IQ-ASyMTRe finds solutions dis-
tributively in difficult-to-search scenarios. We first provide a
formulation of the search time in general scenarios. The search
process always starts with the local robot rL (or denoted by r(0)).
We denote R(1) as the set of robots from which rL requests help.
For any robot r(1) ∈ R(1) , it may recursively request informa-
tion from another set of robots, which is denoted by R(2) ; any
r(2) ∈ R(2) can recursively request information, and the process
continues. Assuming that the maximum step of this recursive
process for the search is N and there is no message loss, the
time required to find the coalition is bounded by

T = max
r ( 0 :N )

(
N −1∑
k=0

TD

(
r(k) , r(k+1)

)
+ TD

(
r(k+1) , r(k)

)

+
N∑

k=0

P
(
r(k)

)
· S

(
r(k)

)
· TG

)
+ 2 · N · TC (1)

in which r(0:N ) are robots in a recursive path, P (r(k)) repre-
sents the index of the potential solution (after ordering) used by
r(k) , and S(r(k)) represents the number of solution spaces that
are created by r(k) during the search. TG is a constant time gap
inserted between checking two consecutive potential solutions;
the message queue sends received messages to process every TC

seconds. TG and TC are introduced due to a thread implemen-
tation. TD (r1 , r2) is the communication delay to send (from r1)
and receive a message (by r2).

For a concrete example, we create a scenario in which all
robots are aligned in a column formation, and there is only one
robot with a localization capability (i.e., the one in the front). All
robots are assumed to be facing the front and have a fiducial to
detect position information relative to nearby robots in the front.
We are interested in determining how long the robot in the back
takes to find a coalition solution. Since the view of any robot is
blocked by the one immediately in front of it, the localization
capability of the front-most robot is shared in a sequential order
from the nearest to the farthest robot.16

Fig. 9 shows the time used by the farthest robot to find
the coalition solution (which must include all robots) as the
number of robots increases, averaged over five runs. As N (i.e.,
the number of robots without a localization capability) in (1)
increases, the number of hops that the information must travel
also increases. Although the joint search space is exponential
in the number of robots, we can see that the algorithm of IQ-
ASyMTRe is able to distributively find the coalition involving
ten robots (N = 9) in about 30 s, when TG and TC are set to be
0.2 s. In this simulation, TD is implemented to follow a normal
distribution N(μ, σ) in which μ = 3.85 ms and σ = 5.05 ms.
(These communication parameters are based on physical ex-
periments with the Pioneer robots in our laboratory, which use
the 802.11n wireless standard.) P (r(k)) is bounded by 11 (see
Table III) and S(r(k)) is bounded by 10, since only global and
relative position information (relative to the other nine robots)
is involved. We can see that the results in Fig. 9 are consistent
with (1).

Fig. 9 also illustrates (in the lower two figures) the messages
sent and received for the scenario with ten robots in one of the
runs. Peaks in the plots for the sent messages (the figure in the
center) are created when robots share the retrieved information
instances with others. The farthest robot finds the coalition so-
lution at the 28th second, which corresponds to the black peak
(with circle data point) in the figure. We can also see the phase
delay of the peaks as we gradually move away from the front-
most robot, which reflects the hops of information. Compared
with the plots for the sent messages, the plots for the received
messages are more in phase. This is due to the fact that informa-
tion requests are often addressed to all robots (whenever there
are uninstantiated referents).

A 60-s gap is manually inserted to clearly separate the search-
ing phase from the maintaining phase (after setting up a coali-
tion). In Fig. 9, we can also see that the numbers of sent or

16For example, any robot (except the front-most one) can only provide its
localization information to the robot behind it after it localizes itself, which is
achieved from the retrieval of its relative position to the robot immediately in
front and the robot’s global position.
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Fig. 9. Distributed search of the solution space in difficult-to-search scenarios.
The top figure shows the time to find the coalition solution as the number of
robots increases. The bottom two figures show the messages sent and received
(that are addressed to individual robots) for four of the robots in the 10-robot
(N = 9) scenario.

received messages become stable after the coalition is set up
(after the 90th second), which represents the constant informa-
tion flows (between different robots) required to maintain the
coalitions. We can see from this simulation that IQ-ASyMTRe
can quickly find solutions even for scenarios that are difficult to
search in distributed systems.

5) Cooperative Robot Box Pushing Task: Next, we show
how executable solutions can be used to solve a cooperative
robot box pushing task in a general scenario. Instead of pushing
in a given direction as discussed in [32], the robots are more of-
ten required to push boxes to specified locations. For oversized
boxes, it is more efficient for robots to push cooperatively, since
the pushing direction of the box may need to be realigned fre-
quently through rotations. The solution space for this task with
two robots is presented in Fig. 10, in which the goal position
is known. The bumper information is shared, and used to de-
termine whether the teammate is ready to push, to synchronize
their behaviors.

The initial configuration is shown in Fig. 11(a), in which the
purple box (labeled “1”) needs to be pushed to the position

Fig. 10. Solution space that encodes the potential solutions used in the coop-
erative robot box pushing task in simulation.

of the blue box (labeled “2”). There are five robots of three
different types in the environment. Robots from the first type
(labeled “R”) are equipped with a bumper sensor to push the
box; robots from the second type (labeled “L”) are equipped
with a GPS sensor for localization; the last type (labeled “G”)
has both sensors. All robots are also equipped with a fiducial and
a laser sensor. Since box “2” is in the way of box “1,” another
MS for box pushing (with a single robot) must be activated on a
robot to push “2” out of the way.17 As a result, three robots with
a bumper sensor need to be assigned (in this case, two “R”s and
one “G” are assigned). However, directly executing the MSs
for box pushing in the initial configuration is not possible due
to the unavailability of the required information FG (box). To
obtain the missing information, three MSs for navigation must
be activated first on these three robots to find the boxes. Since
two of the three robots cannot localize (two “R”s), they set up a
coalition with two robots that can (two “L”s), respectively. Once
the boxes are found, the MSs for box pushing can be activated.
Fig. 11 shows snapshots from this simulation. A supplemental
video of this simulation is also attached.

To use IQ-ASyMTRe for different tasks, one only needs to
implement the behaviors (MSs) and specify the required infor-
mation. IQ-ASyMTRe is then able to reason about possible ways
to retrieve the information in the current situation. In cases when
certain information is not retrievable, higher level task planning
may be required, which is manually implemented in this simu-
lation. The first step toward creating task plans autonomously
based on the missing information identified by IQ-ASyMTRe
is presented in [38].

B. Physical Experiments

1) Cooperative Robot Navigation Task: To demonstrate the
flexibility of IQ-ASyMTRe, we create two scenarios for the nav-
igation task with physical robots, as shown in Figs. 13 and 14.
Instead of working with fiducial sensors, the robots are equipped

17Since these two tasks are dependent, they may require sequential execution
(using the approach in [37]) to avoid conflicts, such as one box being pushed
into other robots or boxes. In the attached video for this simulation, these two
tasks are executed simultaneously to shorten the running time.
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Fig. 11. Robots performing a cooperative box pushing task in a general sce-
nario, in which the goal is to push the purple box (“1”) to the blue box (“2”). (a)
Initial configuration in which robots are distributed in two distant clusters. Two
robots with a bumper need to be assigned to activate the MS for cooperative box
pushing, while one is needed to push box “2” out of the way. (b) Robots (“L”)
with a localization capability help two of the robots assigned for box pushing to
localize to find the boxes. (c) Robots are in positions ready to push. (d) Robots
start pushing the boxes; two of them are being helped to achieve localization via
constant information sharing; the bumper information between the two robots
assigned for the cooperative box pushing is also constantly shared. (e) Task is
completed. (a) 0 s. (b) 40 s. (c) 80 s. (d) 305 s. (e) 635 s.

Fig. 12. Coalition solution with the robot that can localize in the back.

Fig. 13. Robots in a navigation task, with the robot with a localization capa-
bility (labeled “2”) in front. (a) Initial configuration with robot “2” in the front.
(b) Robot “2” goes to the goal, while the other robot without the localization
capability (labeled “1”) is trying to set up a coalition with it. (c) Coalition is set
up, and the robots navigate through the environment.

Fig. 14. Robots in a navigation task, with the robot with a localization capa-
bility (labeled “2”) in back. (a) Initial configuration with robot “2” at the back.
(b) Robot “2” starts first while robot “1” is trying to set up a coalition with it.
(c) Coalition is set up, and the robots start navigation.

with camera sensors pointing forward (with a 60◦ FOV) to
retrieve the relative positions of nearby robots. The robot with
a localization capability (labeled “2”) is in front of the robot
without it (labeled “1”) in one scenario and is behind robot “1”
in the other. The coalition solution for the first scenario is similar
to that shown in Fig. 5; the coalition solution for the second sce-
nario is shown in Fig. 12. One can compare these solutions with
Fig. 2 to see the differences from the ASyMTRe architecture.
Both robots are assigned to activate the MS for navigation to go
to the same position. For both scenarios, the robot with the local-
ization capability starts execution first since it is self-sufficient
for the MS. This experiment shows that the IQ-ASyMTRe
architecture can distinguish among different robot configura-
tions in the current situations and form executable coalitions
accordingly.

2) Cooperative Robot Box Pushing Task: Finally, with phys-
ical robots, we show that IQ-ASyMTRe can provide flexible and
robust solutions. We illustrate several scenarios in the coopera-
tive box pushing task with different robot capabilities and envi-
ronmental settings, in which IQ-ASyMTRe provides different
solutions. Unlike in the simulations, we assume that the robots
can localize, but FG (goal) is not given and has to be retrieved.
This is useful for tasks with dynamic goal positions (e.g., push-
ing a box while following a person). The bumper information
and the box’s relative position to the robot are approximated
using the sonar sensors.

We start with the simplest scenario as shown in Fig. 15(a),
in which both robots (referred to as robot L and R) assigned
to activate the MS can see the goal marker. In Fig. 15(b), we
add a view blocker that blocks R from viewing the goal marker.
We block both robots from viewing the goal marker in the third
scenario, as shown in Fig. 15(c). Meanwhile, we also add an
intermediate robot I , which can localize itself and can see the
goal marker. The last scenario, which is shown in Fig. 15(d), is
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Fig. 15. Cooperative box pushing task. (a) Simple box pushing scenario where
the robots assigned to activate the MS can see the goal marker. (b) Right robot’s
view is blocked. (c) Both robots’ views are blocked, while the intermediate
robot can localize and can see the goal. (d) Both robots are blocked and the
intermediate robot can see the goal but cannot localize. In all scenarios, the
barcode markers are used to extract the relative position information using
cameras.

Fig. 16. Information flow for scenarios shown in Fig. 15.

the most interesting case: We remove the localization capability
from robot I . In this last scenario, robot L obtains FG (goal)
by first helping robot I to localize by providing FR (I, L) and
FG (L). Robot I then starts helping robot L and R in retrieving
FG (goal). In this scenario, the helper also needs to be helped
in order to accomplish the task. Fig. 16 illustrates the various
ways that information flows among the robots for these four
scenarios.

VI. CONCLUSION AND FUTURE WORK

This paper has discussed the IQ-ASyMTRe approach, which
forms executable coalitions for multirobot tasks, in which robots
can share sensory and computational capabilities. This approach

significantly extends the previous ASyMTRe architecture to
consider the current robot configuration and environment set-
tings to form coalitions. The soundness and completeness of
the approach is proven. We show that IQ-ASyMTRe can dy-
namically and flexibly form coalitions that are executable for
various multirobot tasks. To the best of our knowledge, this is
the first attempt to create a general solution to form executable
coalitions for multirobot tasks.

In future work, we plan to study techniques to reduce the
computational requirements so that scalability can be improved
for systems of moderate to large sizes (e.g., 100 robots). Other
interesting aspects include addressing sensor fusion [28] across
multiple robots.
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