
CS360 Midterm Exam. March 13, 2012. James S. Plank

Put your answers on the answer sheets provided. Do not answer on this exam.

Question 0

Write a procedure atos() which takes a NULL-terminated array
of strings as its parameter and returns a string. What it should do
is allocate, construct and return a single string composed of each
string in the array separated by a space. The procedure should
run in O(n) time, where n is the total number of characters in the
string that you return.

Question 1

In your jtar program, you called lstat(), and it filled in a data
structure of type struct stat. List for me all of the ways in which
that data structure was used by your jtar program. There may be
parts of the data structure that were used for multiple purposes --
list each of these separately.

Question 2

Suppose rv, fd and sz are integers and buf is a pointer; and suppose I have the following line in my program:

rv = read(fd, buf, sz);

Below are 25 potential outcomes of the read() call. For each outcome, label it either "P" for "Possible" or "I" for "Impossible." In other
words, if it is possible for the outcome to occur, label it "P". If there is no way for the outcome to occur, label it "I". I don't want
explanation. I just want P's and I's.

A Fewer than sz bytes are read from a file to buf, and rv is set to the number of bytes that were read.
B sbrk(0)-buf is less than sz, and as a result, the read generates a segmentation violation
C fd is not an open file, and the read call generates a segmentation violation.
D fd is a file opened for writing only, and the read call returns -1 as a result.
E buf is pointing to a chunk of memory that is fewer than sz bytes, and the read call generates a segmentation violation.
F buf is pointing to the stack segment and sz bytes are read successfully.
G Fewer than sz bytes are read from a file to buf, and rv is set to -1.
H buf is pointing into the void and the read call returns -1.
I buf is pointing to a chunk of memory that is fewer than sz bytes, and the read call corrupts memory in the process.
J buf is pointing to a region of sz bytes in the globals segment,and the read call returns -1 because of where buf is pointing
K A bus error occurs because buf is not a multiple of four.

L buf is pointing to sz bytes in the code segment, and the read call generates a segmentation violation because of where buf is
pointing.

M Zero bytes are read from any file, and rv is set to 0.
N buf is pointing to the code segment and sz bytes are read successfully.
O sbrk(0)-buf is less than sz, and as a result, the read call returns -1
P sz bytes are read from a file to buf, and rv is set to sz.
Q fd is a file opened for writing only, and the read call generates a segmentation violation.
R buf is pointing to the stack segment and a segmentation violation occurs because of where buf is pointing
S A buffer overflow attack occurs as a result of the read statement.
T buf is pointing to a region of more than sz bytes in the globals segment and sz bytes are read successfully.

U buf is pointing to a region of more than sz bytes in the globals segment and a segmentation violation occurs because of where
buf is pointing.

V fd is not an open file, and the read call returns -1 as a result.
W buf is pointing to the stack segment and the read call returns -1 because of where buf is pointing
X buf is pointing to sz bytes in the code segment, and the read call returns -1 because of where buf is pointing.
Y buf is pointing into the void and the read call generates a segmentation violation.

Question 3

When the procedure messy_proc(), is called, the state of memory from addresses 0xbfffdb30 to 0xbfffdb87 is pictured below. In the
picture, I show the value of every four bytes in three ways -- I show the value as an integer, in hexadecimal, and as four characters. If
the character is not a printable character or the NULL character, I show that with "--".

For example, the four bytes starting at address 0xbfffdb30 are equal to -1073751220 when represented as an integer. They are equal to
0xbfffdb4c when represented as hexadecimal. The byte at 0xbfffdb30 is equal to the 'L' character. The bytes at 0xbfffdb31, 0xbfffdb32
and 0xbfffdb33 are all non-printable characters.

Here is messy_proc():

void messy_proc(int **a, int *b, char **c)
{
 int i, j;
 char *s, *t;

 printf("a: 0x%x\n", (unsigned int) a);
 printf("b: 0x%x\n", (unsigned int) b);
 printf("c: 0x%x\n", (unsigned int) c);
 printf("\n");

 for (i = 0; i < 5; i++) printf("%12d ", b[i]);
 printf("\n");
 printf("\n");

 for (i = 0; i < 5; i++) printf("%s\n", c[i]);
 printf("\n");

 for (i = 0; i < 3; i++) {
 for (j = 0; j < 3; j++) {
 printf("%12d ", a[i][j]);
 }
 printf("\n");
 }
 printf("\n");

 for (b = a[0]; b < (int *) a[0][0]; b += 2) {
 printf("%12d\n", *b);
 }
 printf("\n");

 /* Make this the last thing you do on the test.
 Don't burn time on it if you don't have the
 time to burn. */

 s = c[0];
 t = s+1;
 for (i = 0; i < 6; i++) {
 s[i] = *t;
 t += 7;
 }
 b = (int *) s;
 printf("%s 0x%x\n", s, *b);
}

The first three lines printed by messy_proc() are "a: 0xbfffdb30", "b: 0xbfffdb48" and "c: 0xbfffdb3c". Tell me what the rest of the
output is. There are no segmentation violations or bus errors in this program (I have compiled and run it).

Question 4

Suppose your heap is composed
of 384 bytes starting at address
0x1c230, pictured on the right.
You are given the following
assumptions:

Memory is allocated as
described in class, where
the size of an allocated
block is stored eight
bytes before the pointer.

The free list starts at
0x1c280.

Free list nodes contain
size, flink and blink.

Pointers are four bytes.

Part A: Tell me all of the nodes
on the free list, in order. For
each node, tell me the address
of the node and its size.

Part B: Tell me all of the
allocated chunks of memory.
For each chunk, tell me the
value that was returned from
malloc(), and the total size of
the chunk.

Part C: What would sbrk(0)
return?

Part D: Suppose I have an
integer pointer j whose value is
0x1c3c4. If I execute "*j = 55",
will the operation complete
successfully, cause a
segmentation violation or cause
a bus error? Explain why.

Some useful prototypes

int strlen(char *s); - Returns the length of a string

char *strcpy(char *dest, char *src); - Copies the string in src to memory pointed to by dest.
 - Returns its first argument.

char *strdup(char *s); - Allocates room for a copy of s, copies it and returns it.

char *strcat(char *dest, char *src); - Assumes that dest is a string, and appends src to it.

char *strchr(char *s, char c) - Returns a pointer to the first occurrence of c in s, or NULL.

char *strrchr(char *s, char c) - Returns a pointer to the last occurrence of c in s, or NULL.

char *strstr(char *s, char *st) - Returns a pointer to the first occurrence of st in s, or NULL.

int read(int fd, char *buf, int size);

