
CS360 Midterm – Spring, 2015 – James S. Plank – March 10
In all questions, assume that pointers are 4 bytes, and that the machine architecture is like jassem.

Do your answers on the answer sheets given. Do not do them on the exam itself.

Write me a single line of C code that has 60 characters or less, and that will require the assembly code to spill
a register. Don't worry about variable declarations – your code should be straightforward enough that I can
figure out any variables. After you write the line of code, explain to me exactly why it has to spill the register.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main()
{
 unsigned int i;
 unsigned int j;
 unsigned int h;
 unsigned char k[8];
 unsigned int *p;

 p = (unsigned int *) k;
 for (i = 0; i < 8; i++) k[i] = i;
 h = 0xf7d9c;
 i = 0x12345678;
 j = 0x90abcdef;

 memcpy(k+2, &j, sizeof(int));

 printf("Line 0: 0x%x\n", k[2]);
 printf("Line 1: 0x%x\n", (i >> 4));
 printf("Line 2: 0x%x\n", (h << 1));
 printf("Line 3: 0x%x\n", k[7]);
 printf("Line 4: 0x%x\n", k[5]);
 printf("Line 5: 0x%x\n", p[0]);
 printf("Line 6: 0x%x\n", p[1]);
}

Question 1 The first line of this
program's output is
“Line 0: 0xef”.

Tell me the
remaining lines.

Question 3

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *build_string(char **words, int numwords)
{
 int i, rvsize;
 char *rv;

 rvsize = (numwords == 0) ? 1 : numwords;
 for (i = 0; i < numwords; i++) {
 rvsize += strlen(words[i]);
 }
 rv = (char *) malloc(sizeof(char)*rvsize);

 strcpy(rv, "");
 for (i = 0; i < numwords; i++) {
 if (i > 0) strcat(rv, " ");
 strcat(rv, strdup(words[i]));
 }
 return rv;
}

Question 2

A colleague has presented you with the C procedure
build_string() above, which allocates and builds a string from
an array of words. Because you have taken the first half of
CS360, you instantly spot two major problems with this
procedure (besides the lack of comments). Tell me what they
are, and then rewrite build_string() so that it doesn't have
these problems.

I have reproduced the code above on the answer sheet, so that
you can simply cross out and add to it, rather than rewriting it.

Useful Prototypes:

void memcpy(void *to, void *from, int numbytes);
void strcpy(char *to, char *from);
void strcat(char *to, char *from);
char *strdup(char *string_to_duplicate)

Please give me the jassem assembly code for the C procedure to the right.
As always, your compiler should not optimize.

Question 4

int *a(int ***x, int *y)
{
 int i;
 int **b;

 i = *y;
 b = *x;
 return b[i];
}

Below, I present for you the contents of memory at the time that procedure a() above is called.
At that point, the frame pointer and the stack pointer both equal 0xfff40c.

Please answer the following questions when a() is just about to return. Your answers should be numbers in
hexadecimal. I don't want to see answers like “[fp]”. I want numbers.

Question 5

A: What is the address of x?
B: What is the address of y?
C: What is the address of i?
D: What is the address of b?
E: What is the address of (*x)?
F: What is the value of (*x)?
G: What is the value of (**x)?
H: What is the value of b?
I: What is the value of i?

J: What does a() return?
K: What is the value of *(b[i])?
L: How many bytes of local variables are in the procedure that called a()?
M: When a() returns, to what value will the program counter be set?
N: When a() returns, to what value will the frame pointer be set?
O: When a() returns, to what value will the stack pointer be set?
P: There are three stack frames on the stack.
 What are their three frame pointers?

0xfff400

0xfff404

0xfff408

0xfff40c

0xfff410

0xfff414

0xfff418

0xfff41c

0x0

0x0

0x0

0x0

0xfff41c

0x1054

0xfff42c

0xfff428

0xfff420

0xfff424

0xfff428

0xfff402c

0xfff430

0xfff434

0xfff438

0xfff43c

0xfff448

0x10b4

0x2

0xfff440

0xaa

0xbb

0xcc

0x0

0xfff440

0xfff444

0xfff448

0xfff434

0xfff438

0xfff430

You are programming an embedded device whose only stable storage is a 32MB solid state storage device
(otherwise known as an SSD). The interface to this device is as follows. The device is partitioned into 8192
pages, each of which is 4096 bytes. There are two global variables that you get to use. The first is a 4096-
byte buffer, which is in the global variable ssd_buf (its type is char *). It holds the contents of one of these
pages. The second is ssd_bufid, which is the page number of the page in ssd_buf. This will be a number
between 0 and 8191 (or -1 if there is no page in ssd_buf).

There are two system calls that you can use with respect to the SSD:

● void load_ssd_page(int pagenumber): This will read the specified page from the SSD into the memory
pointed to by ssd_buf, and it will set ssd_bufid to pagenumber.

● void flush_ssd_page(): This writes the page in ssd_buf to page ssd_bufid on the SSD.

Both of these do nothing if given a bad pagenumber, or if ssd_bufid is not between 0 and 8191.

Your company has hired a summer intern, whose sole job was to write two procedures:

● void ssd_read(char *buf, int size, int ssd_address)
● void ssd_write(char *buf, int size, int ssd_address)

These allow the users to treat the SSD as a big block of 32MB, and treat ssd_address as a pointer into that
block. For example, if you wanted to write the five characters “CS360” into the middle of the first page,
starting at byte 100, you would call ssd_write(“CS360”, 5, 100); If you wanted to write them to the
beginning of the second page, you would call ssd_write(“CS360”, 5, 4096). And if you wanted the
“CS” to go into the last two bytes of the first page, and the “360” to into the first three bytes of the second
page, you could call ssd_write(“CS360”, 5, 4094). That's convenient, isn't it?

The summer intern was, in my opinion, a little lazy, and wrote the following code:

At least it works. However, it is so slow that your embedded device is unusable. Your manager is worried
that the SSD itself is too slow, and is thinking of bidding new companies for faster SSD's, but just in case it's
not the SSD, she has hired you to to see if you can speed up ssd_read() and ssd_write(). Your job on this
exam is to explain to me all of the reasons why these two procedures are too slow – both major reasons and
minor reasons. Then, you need to rewrite ssd_read() (just ssd_read() --You don't have to write ssd_write()).
Rewrite it so that it has none of the problems of the previous ssd_read(). One hint (and this is just one hint,
because I'm thinking you might not think of it otherwise) – you should consider using memcpy() in your
implementation, and then think about why.

Question 6

void ssd_read(char *buf, int size, int a)
{
 int i;

 for (i = 0; i < size; i++) {
 load_ssd_page((a+i) / 4096);
 buf[i] = ssd_buf[(a+i)%4096];
 flush_ssd_page((a+i) / 4096);
 }
}

void ssd_write(char *buf, int size, int a)
{
 int i;

 for (i = 0; i < size; i++) {
 load_ssd_page((a+i) / 4096);
 ssd_buf[(a+i)%4096] = buf[i];
 flush_ssd_page((a+i) / 4096);
 }
}

