
CS360 Final Exam - April 30, 2014 - James S. Plank

Question 1 - 16 points

Use the "Answer Sheet for Question 1" for this one.

Draw the state of memory addresses 0xb8000 through 0xb80fc under the following conditions:

Pointers are four bytes.
malloc() and free() work as described in lecture notes.
The user has called malloc() and free() a bunch. Currently, the user holds six pointers that were return
values of malloc(), and he/she has not called free() on them. They are as follows:

1. malloc(5) returned 0xb80f8.
2. malloc(12) which returned 0xb8008.
3. malloc(8) which returned 0xb8028.
4. malloc(8) which returned 0xb8050.
5. malloc(16) which returned 0xb8078.
6. malloc(20) which returned 0xb80b8.

The free list has a minimum number of nodes, and the addresses of the nodes on the free list are in
ascending order.
The free list is doubly linked and NULL terminated.

If you know a value of memory, then fill it in. If you don't know the value, leave it blank.

Question 2 - 12 points

Explain to me what setjmp() and longjmp() do. Illustrate your explanation with a small program where the
program calls setjmp() and longjmp(), and you explain its output. Don't be fancy with this -- have it all occur
in main().

The prototypes are:

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

Question 3 - 16 points

You are writing the code for a matchmaking service called "2014mingle.com." You don't wish to be
politically incorrect, so rather than match people by gender, you're going to match them by keyword. You've
written your IOS and Android apps, which clients will use, and you've filmed your commercial -- "2014
Mingle. Can you hear your heartstrings tingle?"

Time to write the server. The server is going to serve a socket and fork off a thread for every client. Each
thread is going to do some initialization, and then call the procedure find_match() with the following
prototype:

void find_match(Person *me, char *keyword);

A Person struct has all of the contact information for a person, plus:

A pointer to a condition variable in the field cond. This condition variable is unique to the person.
A field called match, which is of type Person *. This is initialized to be NULL.

When find_match() is called, the variable me is pointing to the contact information for the client that is
calling it. You need to find a match for this client. To help you, you get to use two global variables: A JRB
named tree, and a pointer to a mutex called lock. You may assume that they have both been initialized
correctly.

When find_match() is called, you are going to search the tree for a match. If you find one, you'll need to set
the match field for both clients and have them return. If you don't find a match, you should insert the client
into the tree and have him/her wait for a match.

Part A: Go ahead and write find_match().

Part B: Is it possible in your code for the following to occur:

Clients A and B match on a keyword.
Clients C and D subsequently match on the same keyword.
Clients D returns from find_match() before client A does.

If so, tell me how that happens, in terms of mutexes and condition variables and the order in which operations
occur. If not, convince that it cannot.

Question 4 - 5 points

On at least one student's chat_server lab, he would pass each gradescript individually, but his server seg
faulted in gradeall, around case 50. The reason is that he forgot to call pthread_detach(). Explain why the
seg fault occurred, and why calling pthread_detach() fixed the problem.

Question 5 - 24 points

You are taking CS402, and your design team consists of you, Larry, Moe and Curly. Professor Birdwell has
made you all sign non-disclosure agreements, but for the life of you, you don't know why Larry, Moe or
Curly would want to disclose their disastrous programming skills to anyone! Whatever, you have taken the
design lead, and you have decided that the four of you will each write your own C programs. Moe's will be
compiled into the executable moe; Larry's will be compiled into the executable larry, and Curly's will be
compiled into the executable curly. None of the executables will have command line arguments, and none of
them will be multi-threaded.

Your program (named shemp.c, of course), is going to be the master program. It is going to create processes
so that when the system runs, it is going to look as follows:

As you can see:

The shemp program will fork a child. We'll call the two processes, "shemp parent" and "shemp child,"
but they are going to share code.
Moe's standard output goes to Larry's standard input.
Larry's standard output goes to Curly's standard input.
Curly's standard output goes to Moe's standard input.
Moe, Larry and Curly's standard error will all go standard input of "shemp parent." Shemp parent is
going to read its standard input, process it a bit and write to standard output.
Moe, Larry and Curly will all be children of "shemp child."

You may wonder why we're splitting shemp into a parent and a child? The reason is as follows. Larry, Moe
and Curly can't be trusted. Their processes are supposed to talk to each other forever, but in reality, they may
seg fault or go into infinite loops. The child is there to detect when any of them die. When that happens, it is
going to kill the others and then exit. When the others are dead, the parent will be able to detect it. It will then
print "NFS not responding, still trying" and go into an infinite loop. That way, when you demo your project,
professor Birdwell will hopefully be suckered into thinking that we have network problems, and he won't
realize that disaster has occurred.

Fun as it would be, I'm not making you write shemp.c. However, I'm sure you would write it flawlessly,
using only the system calls fork(), execlp(), close(), wait(), pipe(), dup2() and kill().

Now, answer the following questions:

Question 5A: How many times is "shemp-parent" going to call fork()? Why?
Question 5B: How many times is "shemp-child" going to call fork()? Why?
Question 5C: How many times is "shemp-parent" going to call one of the exec()'s? Why?
Question 5D: How many times is "shemp-child" going to call one of the exec()'s? Why?
Question 5E: "Shemp-Child" is going to call pipe() three times. How many times is "shemp-parent"
going to call pipe()? Why?
Question 5F: How many times is "shemp-parent" going to call close()? For which file descriptors?
Question 5G: How many times is "shemp-child" going to call close()? For which file descriptors?
Question 5H: How many times is the larry process going to call dup2()? Why?
Question 5I: During the demo, disaster indeed occurs. Larry goes into an infinite loop and stops
reading and writing. Curly doesn't bother reading from standard input, and instead goes into an infinite
loop writing to standard output. And moe seg faults. How does "shemp child" detect that moe has died
on a seg fault?
Question 5J: After detecting that moe has died, "shemp child" kills larry and tries to kill curly, but
curly is already dead. Why?
Question 5K: How does "shemp-parent" detect that larry, moe and curly are dead?
Question 5L: When "shemp-parent" goes into its infinite loop, you want to make sure that there are no
zombie processes. How many times must it call wait() to do that? Why? (In your explanation, explain
why larry, moe and curly do not end up as zombies).

Prototypes from Pthreads

typedef void *(*pthread_proc)(void *);
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
 pthread_proc start_routine, void *arg);

int pthread_join(pthread_t thread, void **value_ptr);
void pthread_exit(void *value_ptr);
int pthread_detach(pthread_t thread);
pthread_t pthread_self();

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Prototypes from JRB.h

extern JRB make_jrb(); /* Creates a new rb-tree */
extern JRB jrb_insert_str(JRB tree, char *key, Jval val);
extern JRB jrb_find_str(JRB root, char *key); /* Returns NULL if it's not there */
extern void jrb_delete_node(JRB node); /* Deletes and frees a node (but not the key or val) */

