
CS360 Final Exam - April 30, 2015 - James S. Plank

Question 1 - 16 points

In this question, please assume that malloc() is implemented as described in
class, and that pointers are 32 bits. Also, assume that the malloc() calls are
successful. Take a look at the following snippet of code to the right:

Please answer the following questions:

A: What is the most likely value of *p after statement XXX is executed?
B: What is the most likely value of *q after statement XXX is executed?
C: I say "most likely" value of *p. Tell me another possible value of *p,
and why it would have that value instead of your answer to A?
D: Now, assume that the first malloc() call returned 0x5008, and that the
second malloc() call returned 0x8008. Explain to me exactly why
subsequent malloc() and free() calls are going to be problematic.
E: Given your answers to A and B, suppose that the first malloc() call
returned 0x5008. Tell me a return value of the second malloc() call that
causes no problem to subsequent malloc() and free() calls. You don't need
to tell me why -- just give me the return value.

void a()

{

 int *p, *q, *r;

 p = (int *) malloc(7);

 q = (int *) malloc(84);

 r = p;

 q -= 2;

 p -= 2; /* XXX */

 *p += *q;

 free(r);

}

Question 2 - 16 points

Your boss suspects that your co-worker, Del Nileppez is encrypting secrets in the output of his program, del.
Del is a simple program that takes no command line arguments. It reads lines of text on standard input and
prints lines of text on standard output. Your boss is going to do the following. Unbeknownst to anyone else in
the company, the program del is going to be moved to /home/boss/del, and then del is going to be replaced
by a program that you are going to write. When a user launches your program, you will create a second
process that executes /home/boss/del. You will have /home/boss/del read standard input from the user, but
every time that /home/boss/del prints a line on standard output, you are going to send that line to a server that
will be running on boss.evilcorp.com, port 6666. Of course, to be surreptitious, you will also send the line of
text to the user as well.

Write the code. You don't need threads for this, and you only need to call fork() and pipe() once. You may
assume that lines of text are 1000 characters or less. I advocate using fdopen() to make I/O easier.

Question 3 - 16 points

On the next page is a program called q3.c. On Page 4, there are 7 different runs of the program. You are to
answer all possible outputs of each run of the program. Choose your answers from the multiple choice
answers. They are in alphabetical order so that you can find the correct answer(s) easily. If the program is
deadlocked, you may assume that it will exit immediately.

struct ts { /* This is q3.c (skipping includes) */
 pthread_mutex_t *lock;
 pthread_cond_t *cv1, *cv2;
 char *command;
 int id;
};

void *thread(void *arg)
{
 struct ts *T;
 int i;

 T = (struct ts *) arg;

 pthread_mutex_lock(T->lock);
 for (i = 0; T->command[i] != '\0'; i++) {
 if (T->command[i] == 'S') {
 pthread_mutex_unlock(T->lock);
 sleep(1);
 pthread_mutex_lock(T->lock);
 }
 if (T->command[i] == 'X') pthread_cond_wait(T->cv1, T->lock);
 if (T->command[i] == 'Y') pthread_cond_wait(T->cv2, T->lock);
 if (T->command[i] == 'A') pthread_cond_signal(T->cv1);
 if (T->command[i] == 'B') pthread_cond_signal(T->cv2);
 if (T->command[i] == 'P') { printf("%c ", T->id); fflush(stdout); }
 if (T->command[i] == 'E') { printf("\n"); exit(1); }
 }
 pthread_mutex_unlock(T->lock);
 return NULL;
}

main(int argc, char **argv)
{
 pthread_mutex_t lock;
 pthread_cond_t cv1, cv2;
 int i;
 pthread_t *tids;
 struct ts *T;
 void *dummy;

 pthread_mutex_init(&lock, NULL);
 pthread_cond_init(&cv1, NULL);
 pthread_cond_init(&cv2, NULL);

 T = (struct ts *) malloc(sizeof(struct ts)*(argc-1));
 tids = (pthread_t *) malloc(sizeof(pthread_t)*(argc-1));
 for (i = 0; i < argc-1; i++) {
 T[i].id = 'A' + i;
 T[i].lock = &lock;
 T[i].cv1 = &cv1;
 T[i].cv2 = &cv2;
 T[i].command = argv[i+1];
 pthread_create(tids+i, NULL, thread, (void *) (T+i));
 }
 for (i = 0; i < argc-1; i++) pthread_join(tids[i], &dummy);
 printf("\n");
}

CS360 Final Exam - April 30, 2015 - James S. Plank -- Page 3

Question 4 - 16 points

Below is a program called q4.c. On the next page, there are 8 different runs of the program, followed by 16 multiple
choice statements. For each run of the program, circle all statements that are true. There will be four true statements
per run.

You should assume that PIPE_BUF is 16K (16,384) bytes.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>

#define BSIZE 16000

main(int argc, char **argv)
{
 int p[2];
 int id, i, j;
 char s[BSIZE];
 FILE *f;

 pipe(p);
 id = fork();

 if (id == 0) {
 id = 1;
 f = fopen("OC.txt", "w");
 } else {
 id = 2;
 f = fopen("OP.txt", "w");
 }

 for (i = 0; argv[id][i] != '\0'; i++) {
 if (argv[id][i] == 'A') close(p[0]);
 if (argv[id][i] == 'B') close(p[1]);
 if (argv[id][i] == 'C') {
 for (j = 0; j < BSIZE-2; j++) s[j] = 'A';
 s[BSIZE-1] = '\n';
 write(p[1], s, BSIZE);
 }
 if (argv[id][i] == 'D') {
 j = read(p[0], s, BSIZE);
 if (j != BSIZE) exit(1);
 fwrite(s, 1, BSIZE, f);
 fflush(f);
 }
 if (argv[id][i] == 'S') sleep(1);
 }
 exit(0);
}

Useful Prototypes

FILE *fdopen(int fd, char *mode);
FILE *fopen(char *filename, char *mode);
char *fgets(char *buf, int sz, FILE *f);
char *fputs(char *buf, FILE *f);
int accept_connection(int fd);
int dup2(int fd1, int fd2);
int execl(char *path, char *arg0, ... NULL);
int execv(char *path, char **argv);
int fflush(FILE *f);
int fork();
int fread(void *buf, int sz, int n, FILE *f);
int fwrite(void *buf, int sz, int n, FILE *f);
int pipe(int filedes[2]);
int read(int fd, void *buf, int size);
int request_connection(char *hn, int port);
int serve_socket(int port);
int wait(int *stat_loc);
int write(int fd, void *buf, int size);

CS360 Final Exam - April 30, 2015 - James S. Plank - Page 4

Question 3 - The runs of q3

Run 1: q3 PP PP
Run 2: q3 PX PX PE
Run 3: q3 XYP SAP SSBP
Run 4: q3 XYP SASPBP
Run 5: q3 XP PASE
Run 6: q3 PX SPE
Run 7: q3 XP SPAB YP

The answers:

a: A

b: A A

c: A A B B

d: A B

e: A B A B

f: A B B

g: A B B A

h: A B C

i: A C

j: A C B

k: B

l: B A

m: B A A B

n: B A B

o: B A B A

p: B A C

q: B B

r: B B A

s: B B A A

t: B C

u: B C A

v: C

w: C A

x: C A B

y: C B

z: C B A

Question 4 - The runs of q4

Run 1: q4 C DD
Run 2: q4 ACCC BD
Run 3: q4 SD CCBDD
Run 4: q4 CD SCD
Run 5: q4 BDD C
Run 6: q4 CCCC DD
Run 7: q4 CC D
Run 8: q4 BD ACSC

The statements:

a: The child process exits with a return code of 0.

b: The child process exits with a return code of 1.

c: The child process never exits.

d: The child process exits because of SIGPIPE.

e: The parent process exits with a return code of 0.

f: The parent process exits with a return code of 1.

g: The parent process never exits.

h: The parent process exits because of SIGPIPE.

i: When the program is done, OC.txt has 0 characters.

j: When the program is done, OC.txt has 16,000 characters.

k: When the program is done, OC.txt has 32,000 characters.

l: When the program is done, OC.txt has something else.

m: When the program is done, OP.txt has 0 characters.

n: When the program is done, OP.txt has 16,000 characters.

o: When the program is done, OP.txt has 32,000 characters.

p: When the program is done, OP.txt has something else.

Major: __________Name: _________________________ Email: _________________________

QUESTION 1:

A: __________

Name: _________________________

B: __________

E: __________

C:

D:

QUESTION 3: Circle all that apply:

Run 1: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 2: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 3: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 4: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 5: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 6: a b c d e f g h i j k l m n o p q r s t u v w x y z

Run 7: a b c d e f g h i j k l m n o p q r s t u v w x y z

QUESTION 4: Circle all that apply:

Run 1: a b c d e f g h i j k l m n o p

Run 2: a b c d e f g h i j k l m n o p

Run 3: a b c d e f g h i j k l m n o p

Run 4: a b c d e f g h i j k l m n o p

Run 5: a b c d e f g h i j k l m n o p

Run 6: a b c d e f g h i j k l m n o p

Run 7: a b c d e f g h i j k l m n o p

Run 8: a b c d e f g h i j k l m n o p

Major: __________Name: _________________________ Email: _________________________

QUESTION 2:

Name: _________________________

Don't bother with include files.

