
CS360 Final Exam
May 5, 2016

James S. Plank

Instructions

There are four questions. You must answer all four questions.
Put your answers on the answer sheet. Do not hand in the exam.
Put your name and email on all of your answer sheets.
Put your major on the first answer sheet.
I suggest that after you answer question ##, you copy it cleanly on a new answer sheet and turn that
new one in.

Things to make your life easier

Do not bother writing down any #include statements.
You may abbreviate pthread_mutex_t as PMT.
You may abbreviate pthread_cond_t as PCT.
You may assume that the following two procedures exist -- these will save you some time:

pthread_mutex_t *new_mutex()
{
 pthread_mutex_t *m;
 m = (pthread_mutex_t *) malloc(sizeof(pthread_mutex_t));
 pthread_mutex_init(m, NULL);
 return m;
}

pthread_cond_t *new_cond()
{
 pthread_cond_t *c;
 c = (pthread_cond_t *) malloc(sizeof(pthread_cond_t));
 pthread_cond_init(c, NULL);
 return c;
}

I have all sorts of function prototypes on the last page of this exam.

CS360 Final Exam - May 5, 2016 - James S. Plank

Question 1 - 20 points

This question is about malloc(), as explained in class and in the lecture notes. Specifically, pointers are four
bytes, and free nodes contain [size,flink,blink] in that order. The free list is doubly-linked and NULL
terminated, with no sentinel.

Suppose memory is below, and the head of the free list is at address 0x10758.

Address	Value
0x10638 | 0x38
0x1063c | 0x106d0
0x10640 | 0x10680
0x10644 | 0x1079c
0x10648 | 0x1074c
0x1064c | 0x10640
0x10650 | 0x1076c
0x10654 | 0x10728
0x10658 | 0x1074c
0x1065c | 0x106fc
0x10660 | 0xc
0x10664 | 0x10
0x10668 | 0x1075c
0x1066c | 0x0
0x10670 | 0x10
0x10674 | 0x106f8
0x10678 | 0x1067c
0x1067c | 0xc
0x10680 | 0x38
0x10684 | 0x10638
0x10688 | 0x10758
0x1068c | 0x10778
0x10690 | 0x14
0x10694 | 0x10710
0x10698 | 0x1073c
0x1069c | 0x106b0
0x106a0 | 0x10680
0x106a4 | 0x10728
0x106a8 | 0x10690
0x106ac | 0x106b0

Address	Value
0x106b0 | 0x106f4
0x106b4 | 0x10670
0x106b8 | 0x18
0x106bc | 0x10674
0x106c0 | 0x0
0x106c4 | 0x106f0
0x106c8 | 0x1074c
0x106cc | 0x1063c
0x106d0 | 0x50
0x106d4 | 0x10790
0x106d8 | 0x10638
0x106dc | 0x0
0x106e0 | 0x1069c
0x106e4 | 0x1078c
0x106e8 | 0x10710
0x106ec | 0x0
0x106f0 | 0x106e8
0x106f4 | 0x106bc
0x106f8 | 0xc
0x106fc | 0x10690
0x10700 | 0x106b8
0x10704 | 0x1c
0x10708 | 0x10738
0x1070c | 0x10788
0x10710 | 0x0
0x10714 | 0x18
0x10718 | 0x10698
0x1071c | 0x10744
0x10720 | 0x20
0x10724 | 0x1065c

Address	Value
0x10728 | 0x10724
0x1072c | 0x18
0x10730 | 0x10694
0x10734 | 0x10760
0x10738 | 0x106c0
0x1073c | 0x106c8
0x10740 | 0x18
0x10744 | 0x1073c
0x10748 | 0x1079c
0x1074c | 0x10658
0x10750 | 0x10694
0x10754 | 0x10664
0x10758 | 0x10
0x1075c | 0x10680
0x10760 | 0x0
0x10764 | 0x10724
0x10768 | 0x28
0x1076c | 0x1073c
0x10770 | 0x10710
0x10774 | 0x1068c
0x10778 | 0x10794
0x1077c | 0x10790
0x10780 | 0x10674
0x10784 | 0x14
0x10788 | 0x106e4
0x1078c | 0x10734
0x10790 | 0x10
0x10794 | 0x0
0x10798 | 0x106d0
0x1079c | 0x106c0

Part 1: On the answer sheet, list for me the chunks of memory on the free list in the order in which they
appear on the free list. For each chunk, specify the starting addresss of the chunk, and its size, either in
decimal or hexadecimal (use "0x" if you are specifying hex).

Part 2: On the answer sheet, list for me the chunks of memory that have been allocated already using
malloc(). For each chunk, specify the starting addresss of the chunk and its size. You can specify these in any
order.

CS360 Final Exam - May 5, 2016 - James S. Plank

Question 2 - 20 points

On this page and the following page, there are 10 programs. Each of them prints a statement. You need to answer
"True" or "False" for each program, according to whether the statement printed by the program is true or false.
Assume that the program is compiled to an a.out file, and is executed from the shell by simply calling "./a.out".

q2-p0.c

int main()
{
 if (fork() == 0) {
 sleep(1);
 printf("I am an orphan process.\n");
 } else {
 sleep(2);
 }
 exit(0);
}

q2-p1.c

int main()
{
 int i = 5;

 if (fork() != 0) {
 i += 5;
 sleep(2);
 } else {
 sleep(1);
 printf("In my process, i equals 5.");
 }
}

q2-p2.c

int main()
{
 int fd;

 fd = open("f1.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
 dup2(fd, 1);
 close(fd);

 if (fork() != 0) {
 dup2(2, 1);
 sleep(3);
 } else {
 sleep(1);
 printf("This line will not be printed on the screen.");
 }
}

q2-p3.c

int main()
{
 int p[2];

 pipe(p);
 if (fork() == 0) {
 dup2(p[0], 0);
 printf("This process will never terminate.\n");
 execlp("cat", "cat", NULL);
 exit(0);
 } else {
 dup2(p[1], 1);
 sleep(1);
 exit(0);
 }
}

q2-p4.c

int main()
{
 if (fork() == 0) {
 sleep(1);
 printf("I will be a zombie process.\n");
 } else {
 sleep(2);
 }
 exit(0);
}

q2-p5.c

int main()
{
 char *s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ\n";
 int i;
 int p[2];

 pipe(p);
 close(p[0]);
 if (fork() == 0) {
 for (i = 2; i < 20; i++) dup2(p[1], i);
 printf("I am about to generate SIGPIPE.\n");
 while (1) write(10, s, strlen(s));
 }
}

file:///Users/plank/tmp-class/360/Final/q2-p0.c
file:///Users/plank/tmp-class/360/Final/q2-p1.c
file:///Users/plank/tmp-class/360/Final/q2-p2.c
file:///Users/plank/tmp-class/360/Final/q2-p3.c
file:///Users/plank/tmp-class/360/Final/q2-p4.c
file:///Users/plank/tmp-class/360/Final/q2-p5.c

CS360 Final Exam - May 5, 2016 - James S. Plank

Question 2 - Continued

q2-p6.c

int main()
{
 if (fork() == 0) {
 sleep(1);
 printf("I will be a zombie process.\n");
 }
 exit(0);
}

q2-p7.c

int main()
{
 char *s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ\n";
 if (fork() == 0) {
 printf("I am about to generate SIGPIPE.\n");
 while (1) write(10, s, strlen(s));
 }
 exit(0);
}

q2-p8.c

int main()
{
 int dummy;

 if (fork() == 0) {
 sleep(1);
 printf("I will be a zombie process.\n");
 } else {
 wait(&dummy);
 }
 exit(0);
}

q2-p9.c

int main()
{
 if (fork() == 0) {
 sleep(1);
 printf("I am an orphan process.\n");
 }
 exit(0);
}

Question 3 - 20 points

Recall from the lecture on the Dining Philosophers that there was a solution where a philosopher would not pick up
any chopsticks until both were free. At that point, the philosopher would pick up both chopsticks.

On the next page, there is an implementation of this solution which is similar to what we presented in class. In the
solution, you have to define a data structure (Myphil) in which you keep the data that your solution needs. You
initialize this once, before any threads are created, in initialize_v(). Philosopher i calls pickup(i, v) when he/she
wants to eat, and this procedure should not return until philosopher i can eat. Philosopher i calls putdown(i, v)
when he/she is done eating.

The implementation doesn't work. Actually, everything about it is ok, except for two things:

It should not be calling sleep() to make the philosopher wait.
It doesn't have any synchronization or protection of shared variables.

Your job is to change this program so that it implements the solution correctly. You will do this by deleting the
sleep() call and adding the proper synchronization. That means that you can add variables to Myphil, and you can
add code to the three procedures.

Note, you can't change any of this code -- your jobs is simply to add code in order to make it work.

file:///Users/plank/tmp-class/360/Final/q2-p6.c
file:///Users/plank/tmp-class/360/Final/q2-p7.c
file:///Users/plank/tmp-class/360/Final/q2-p8.c
file:///Users/plank/tmp-class/360/Final/q2-p9.c

CS360 Final Exam - May 5, 2016 - James S. Plank

Question 3 - Continued

Here's how I want you to communicate your answer to me. First, assume that
the sleep(1) call is gone. That means that line 29 is empty. Next, for each
place that you want to add code, specify the line number after which you want
to add the code, and then specify the code. For example, if you wanted to print
"Hi\n" at the end of pickup() and "There\n" at the end of putdown(), you
would make the answer to the right.

After 33:
 printf("Hi\n");

After 43:
 printf("There\n");

/* Line 1 */ typedef struct {
/* Line 2 */ int num;
/* Line 3 */ int *chopstick_states; /* 'U' is up, and 'D' is down. */
/* Line 4 */ } Myphil;
/* Line 5 */
/* Line 6 */ void *initialize_v(int phil_count)
/* Line 7 */ {
/* Line 8 */ Myphil *p;
/* Line 9 */ int i;
/* Line 10 */
/* Line 11 */ p = (Myphil *) malloc(sizeof(Myphil));
/* Line 12 */ p->num = phil_count;
/* Line 13 */ p->chopstick_states =
/* Line 14 */ (int *) malloc(sizeof(int)*p->num);
/* Line 15 */ for (i = 0; i < p->num; i++) {
/* Line 16 */ p->chopstick_states[i] = 'D';
/* Line 17 */ }
/* Line 18 */ return (void *) p;
/* Line 19 */ }
/* Line 20 */
/* Line 21 */ void pickup(int i, void *v)
/* Line 22 */ {
/* Line 23 */ Myphil *p;
/* Line 24 */
/* Line 25 */ p = (Myphil *) v;
/* Line 26 */
/* Line 27 */ while (p->chopstick_states[i] == 'U' ||
/* Line 28 */ p->chopstick_states[(i+1)%p->num] == 'U') {
/* Line 29 */ sleep(1);
/* Line 30 */ }
/* Line 31 */
/* Line 32 */ p->chopstick_states[i] = 'U';
/* Line 33 */ p->chopstick_states[(i+1)%p->num] = 'U';
/* Line 34 */ }
/* Line 35 */
/* Line 36 */ void putdown(int i, void *v);
/* Line 37 */ {
/* Line 38 */ Myphil *p;
/* Line 39 */
/* Line 40 */ p = (Myphil *) v;
/* Line 41 */
/* Line 42 */ p->chopstick_states[i] = 'D';
/* Line 43 */ p->chopstick_states[(i+1)%p->num] = 'D';
/* Line 44 */ }

CS360 Final Exam - May 5, 2016 - James S. Plank

Question 4 - 20 points

You have brilliant ideas, and you feel the urge to share them with the world. So, you write an IOS app and an
Android app called "MyBrilliantIdeas." The idea is to display one of your brilliant ideas on the app, and the
idea changes every hour. YOU HAVE SO MANY IDEAS!!!!

Of course, you'll eventually sell advertising and make millions. See how brilliant your ideas are!

Ok, down to business. You need a server. Here's how it's going to work. It will serve a socket on port 30602.
Why port 30602? Because the MD5 hash of "MyBrilliantIdeas" is 778a724e0e68a62e03bd96b36eb9e859,
and 778a in decimal is 30602. That's a brilliant idea!!

You will have a thread accepting socket connections, and for each connection, you fork off a thread to handle
the connection. We'll call that a "connection" thread.

Before I describe connection threads, I'm going to describe the "idea" thread. This thread reads a line from
the file MBI.txt and stores it into a buffer. It then sleeps for an hour, before it reads another line, overwriting
the current line in the buffer. It does this forever. Since your ideas are pithy, you know that each line has a
maximum of 499 characters. You don't have to bother closing the open file while the "idea" thread sleeps --
your server is never going to crash.

Now, the connection thread writes the buffer over the socket connection. It then sleeps for an hour, and
repeats the process. It doesn't need to check that buffer has actually changed -- if all is working well, the
buffer will have changed almost 100% of the time.

Write the server. You need to avoid any race conditions, and you need to handle clients closing the
connection gracefully. When you write your code, you don't need #include statements. And you can use
global variables if you want (only on this question!!)

If you run out of ideas (I'm sure that would never really happen!), simply have the idea thread exit.

You will lose points for memory leaks and for holding a mutex while writing to a socket connection.

Remember the abbreviations and code on the cover page of this exam -- they will make your life easier!

Prototypes of various useful system and library calls

int fork();
int wait(int *stat_loc);
int dup2(int fildes, int fildes2);
int pipe(int fildes[2]);

int open(const char *path, int oflag, ...);
int close(int fildes);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
off_t lseek(int fd, off_t offset, int whence);

char *strcpy(char *destination, char *source);
char *strdup(char *source);
int *strcmp(char *s1, char *s2);

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);
int sigsetjmp(sigjmp_buf env, int savesigs);
void siglongjmp(sigjmp_buf env, int val);

int execl(const char *path, const char *arg, ...); /* End the argument list with NULL */
int execlp(const char *file, const char *arg, ...); /* End the argument list with NULL */
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

Prototypes of Standard IO Library Calls

char *fgets(char *s, int size, FILE *stream); /* Returns NULL on EOF */
int fputs(const char *s, FILE *stream); /* Returns EOF when unsuccessful */
int fflush(FILE *stream); /* Returns 0 on success, EOF on failure */
FILE *fdopen(int fd, char *mode); /* Returns NULL on failure */

int fgetc(FILE *stream); /* Returns EOF on EOF */
int fputc(int c, FILE *stream); /* Returns EOF when unsuccessful */

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *stream);

int atoi(char *s); /* Converts a string to an integer - returns zero if unsuccessful */

Prototypes from Pthreads

typedef void *(*pthread_proc)(void *);
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
 pthread_proc start_routine, void *arg);

int pthread_join(pthread_t thread, void **value_ptr);
void pthread_exit(void *value_ptr);
int pthread_detach(pthread_t thread);
pthread_t pthread_self();

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Prototypes from sockettome.h

extern int serve_socket(int port);
extern int accept_connection(int s);
extern int request_connection(char *hn, int port);

