Hierarchical Data Structures,
Scene Graph and Quaternion

Jian Huang

Spatial Data Structure

* Octree, Quadtree
 BSP tree
e K-D tree

Spatial Data Structures

« Data structures for efficiently storing geometric
information. They are useful for

— Collision detection (will the spaceships collide?)
— Location queries (which 1s the nearest post office?)

— Chemical simulations (which protein will this drug
molecule interact with?)

— Rendering (1s this aircraft carrier on-screen?), and more

* (Good data structures can give speed up rendering
by 10x, 100x, or more

Bounding Volume

* Simple notion: wrap things that are hard to check

for ray intersection in things that are easy to
check.

— Example: wrap a complicated polygonal mesh 1n a box.
Ray can’ t hit the real object unless it hits the box

* Adds some overhead, but generally pays for 1itself .

* Can build bounding volume hierarchies

Bounding Volumes

* Choose Bounding Volume(s)

— Spheres
Less complex More complex
— BOXCS Less exact More exact
— Parallelepipeds
— Oriented boxes
_ ElllpSOldS Axis—Aligned Parallepiped Convex Hull
Box

— Convex hulls

Quad-trees

* Quad-tree 1s the 2-D
generalization of binary tree

— node (cell) 1s a square

— recursively split into four
equal sub-squares

— stop when leaves get “simple
enough”

S

2/°9 ¢

Octrees

Octree 1s the 3-D generalization of quad-tree

node (cell) 1s a cube, recursively split into eight
equal sub- cubes

— stop splitting when the number of objects intersecting
the cell gets “small enough” or the tree depth exceeds a
limit

— 1nternal nodes store pointers to children, leaves store
list of surfaces

more expensive to traverse than a grid

adapts to non-homogeneous, clumpy scenes better

K-D tree

 The K-D approach i1s to

make the problem spacea _

rectangular parallelepiped
whose sides are, 1n general,
of unequal length.

" Node &

> Node 7

* The length of the sides 1s

the maximum spatial extent °
of the particles 1n each
spatial dimension.

—

Node 1

K-D tree

" Node &
®
@ -
@ @
% Node 7
rd
- AN — .l
Node 4 Node 5
—

Nodel

Node 2 Node 3

I

Node 4 Node 5 Node Node 7

T

Particle 6 —
Particle 7 —

Particle 8 —

K-D Tree in 3-D

* Similarly, the problem
space 1n three
dimensions 1s a
parallelepiped whose
sides are the greatest
particle separation 1n
cach of the three
spatial dimensions.

Motivation for Scene Graph

e Three-fold
— Performance
— Generality

— Ease of use

e How to model a scene ?

— Java3D, Open Inventor, Open Performer,
VRML, etc.

Scene Graph Example

Scene Graph Example

Scene Graph Example

Scene Graph Example

Scene Description

e Set of Primitives o N o ‘ 5 A
* Specify for each primitive
 Transformation

 Lighting attributes

e Surface attributes
e Material (BRDF)
o Texture

e Texture transformation

Scene Graphs

e Scene Elements

— Interior Nodes
« Have children that inherit state
e transform, lights, fog, color, ...
— Leaf nodes
e Terminal
e geometry, text
— Attributes
« Additional sharable state (textures)

Scene Element Class Hierarchy

Scene Graph

» Graph Representation
— What do edges mean?

— Inherit state along edges
* group all red object instances together

 group logical entities together
— parts of a car

— Capture intent with the structure

Scene Graph

 Inheritance -- Overloaded Term
— Behavior inheritance (subclassing)
* Benefit of OO design
— Implementation inheritance

 Perhaps provided by implementation language

* Not essential for a good API design

— Implied inheritance
* Designed into the API

Scene Graph

e o>

Leaf Nodes

Scene Graph (VRML 2.0)

a‘.;sk

Example Scene Graph

Scene Graph Traversal

 Simulation :
— Animation Lov

« Intersection LO
— Collision detection
— Picking

* Image Generation Hig
— Culling LO
— Detail elision

— Attributes
Culled Primitives

Scene Graph Considerations

Functional Organization
— Semantics

Bounding Volumes
— Culling
— Intersection

Levels of Detail

— Detail elision
— Intersection

Attribute Management
— Eliminate redundancies

Functional Organization

e Semantics:

— Logical parts

— Named parts

Functional Organization

e Articulated Transformations
— Animation

— Difficult to optimize animated objects

Bounding Volume Hierarchies

|

l s l

/
]

View Frustum Culling

Level Of Detail (LOD)

e Each LOD nodes m
have distance
ranges A
@
High Low

LOD LOD

Attribute Management

e Minimize transformations

— Each transformation is expensive during rendering,
intersection, etc. Need automatic algorithms to
collapse/adjust transform hierarchy.

s These are
Building - O :
transformation

-~ nodes

Attribute Management

 Minimize attribute changes

— Each state change 1s expensive during rendering

Material B

Question: How do you manage

your light sources?

* OpenGL supports only 8 lights. What 1f there are
200 lights? The modeler must ‘scope’ the lights
in the scene graph? (@)

Sample Scene Graph

BranchGroup Nodes

7 N\
4 N R

Think!

 How to handle optimization of scene graphs
with multiple competing goals
— Function
— Bounding volumes
— Levels of Detail
— Attributes

Scene Graphs Traversal

* Perform operations on graph with traversal
— Like STL 1terator
— Visit all nodes

— Collect iherited state while traversing edges

* Also works on a sub-graph

Typical Traversal Operations

* Typical operations
— Render
— Search (pick, find by name)
— View-frustum cull
— Tessellate

— Preprocess (optimize)

Scene Graphs Organization

* Tree structure best
— No cycles for simple traversal
— Implied depth-first traversal (not essential)

— Includes lists, single node, etc as degenerate
trees

 If allow multiple references (instancing)
— Directed acyclic graph (DAG)
 Daifficult to represent cell/portal structures

State Inheritance

* General (left to right, top to bottom, all state)

— Open Inventor
— Need Separator node to break inheritance

— Need to visit all children to determine final state

* Top to bottom only

— IRIS Performer, Java3D, ...
— State can be determined by traversing path to node

Scene Graphs Appearance
Overrides

* One attempt to solve the “highlighting” problem
— After picking an object, want to display 1t differently
— Don’ t want to explicitly edit and restore its appearance

— Use override node 1n the scene graph to override
appearance of children

* Only works 1f graph organization matches model
organization

Appearance Override

Appearance
override

Multiple Referencing
(Instancing)

* Convenient for representing multiple
instances of an object

— r1vet 1n a large assembly
e Save memory

* Need life-time management
— 1s the object still in use

— garbage collection, reference counts

Multiple Referencing

* Changes trees into DAGs

 Instance of an object represented by its path, (path
1s like a mini-scene)

 Diafficult to attach instance specific properties

— e.g., caching transform at leaf node

Other Scene Graph Organizations

* Logical structure (part, assembly, etc.)
— Used by modeling applications

* Topology structure, e.g., boundary
— surfaces, faces, edges, vertices
— Useful for CAD applications

* Behaviors, €.g., engine graph
* Environment graph (fog, lights, etc.)
* Scene graph 1s not just for rendering!!

Specifying Rotation

 How to parameterize rotation

— Traditional way: use Euler angles, rotation 1s specified
by using angles with respect to three mutually
perpendicular axes

 Roll, pitch and yaw angles (one matrix for each
Euler angle)

« Difficult for an animator to control all the angles
(practically unworkable)

— With a sequence of key frames, how to interpolate??
— Separating motion from path

» Better to use parameterized interpolation of
quaternions

Quaternion

A way to specify rotation
As an extension of complex numbers
Quaternion:
u=(uy, U, Uy, U3) =u,+1u, +ju, +kuy;=u,+ u
Pure quaternion: u, =0
Conjugate: u* =u, - u
Addition: u + v = (uy +vy, u; vy, U,Tv,, U3+Vvs)

Scalar multiplication: c.u = (cu,, cu,, cu,, cu,)

Quaternion multiplication

uxy
= (up + iuy + ju, + kus)x(vo + ivy +jv, + kvs)
= [ug vo— (u.v)]+(uxv) + uyv + vou

The result 1s still a quaternion, this operation 1s not
commutative, but 1s associative

uxu=-(u.u)
uxu*=uy’+u?+uy’+u’=uf?
Norm(u) = u/|u|

Inverse quaternion:

ul=u*|uf,uxul=ul

xu=1

Polar Representation of
Quaternion

 Unit quaternion: [u|* = 1, normalize with

norm(u)

* For some theta, -p1 < theta < p1, unit

quaternion, u:

lul> = cos?(theta) + sin?(theta)

u=1u,+

uls, s = u/lu|

u = cos(t

neta) + ssin(theta)

Quaternion Rotation

* Suppose p 1s a vector (X,y,z), p 1s the
corresponding quaternion: p=0+p
* To rotate p about axis s (unit quaternion: u =
cos(theta) + ssin(theta)), by an angle of 2*theta, all
we need 1s : upu™® (u X p x u™®)
* A sequence of rotations:
— Justdo: u,u,;...u;pu*,...u* _u*,=0+p’
— Accordingly just concatenate all rotations together:
uu, q...U

Quaternion Interpolation

* Quaternion and rotation matrix has a strict one-to-
one mapping (pp. 489, 3D Computer Graphics, Watt, 3™
Ed)

* To achieve smooth interpolation of quaternion,
need spherical linear interpolation (slerp), (on pp.
489-490, 3D Computer Graphics, Watt, 3 Ed)

— Unit quaternion form a hyper-sphere in 4D space
— Play with the hyper-angles in 4D

* Gotcha: you still have to figure out your up vector
correctly

More

 If you just need to consistently rotate an object on
the screen (like 1in your lab assignments), can do
without quaternion

— Only deal with a single rotation that essentially
corresponds to an orientation change

— Maps to a ‘hyper-line’ in a ‘transformed 4D space’
— Be careful about the UP vector

— Use the Arcball algorithm proposed by Ken Shoemaker
in 1985

