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Spatial Data Structure

• Octree, Quadtree
• BSP tree
• K-D tree



Spatial Data Structures

• Data structures for efficiently storing geometric 
information. They are useful for
– Collision detection (will the spaceships collide?)
– Location queries (which is the nearest post office?)
– Chemical simulations (which protein will this drug 

molecule interact with?)
– Rendering (is this aircraft carrier on-screen?), and more

• Good data structures can give speed up rendering 
by 10x, 100x, or more



Bounding Volume

• Simple notion: wrap things that are hard to check 
for ray intersection in things that are easy to 
check.
– Example: wrap a complicated polygonal mesh in a box. 

Ray can’t hit the real object unless it hits the box
• Adds some overhead, but generally pays for itself .
• Can build bounding volume hierarchies



Bounding Volumes

• Choose Bounding Volume(s)
– Spheres
– Boxes
– Parallelepipeds
– Oriented boxes
– Ellipsoids
– Convex hulls



Quad-trees

• Quad-tree is the 2-D 
generalization of binary tree
– node (cell) is a square
– recursively split into four 

equal sub-squares
– stop when leaves get “simple 

enough”



Octrees

• Octree is the 3-D generalization of quad-tree
• node (cell) is a cube, recursively split into eight 

equal sub- cubes
– stop splitting when the number of objects intersecting 

the cell gets “small enough” or the tree depth exceeds a 
limit

– internal nodes store pointers to children, leaves store 
list of surfaces

• more expensive to traverse than a grid
• adapts to non-homogeneous, clumpy scenes better



K-D tree

• The K-D approach is to 
make the problem space a 
rectangular parallelepiped 
whose sides are, in general, 
of unequal length. 

• The length of the sides is 
the maximum spatial extent 
of the particles in each 
spatial dimension. 



K-D tree



K-D Tree in 3-D

• Similarly, the problem 
space in three 
dimensions is a 
parallelepiped whose 
sides are the greatest 
particle separation in 
each of the three 
spatial dimensions. 



Motivation for Scene Graph

• Three-fold
– Performance
– Generality
– Ease of use

• How to model a scene ?
– Java3D, Open Inventor, Open Performer, 

VRML, etc.



Scene Graph Example



Scene Graph Example



Scene Graph Example



Scene Graph Example



Scene Description

• Set of Primitives
• Specify for each primitive

• Transformation
• Lighting attributes
• Surface attributes

• Material (BRDF)
• Texture
• Texture transformation



Scene Graphs

• Scene Elements
– Interior Nodes

• Have children that inherit state
• transform, lights, fog, color, …

– Leaf nodes
• Terminal
• geometry, text

– Attributes
• Additional sharable state (textures)



Scene Element Class Hierarchy



Scene Graph

• Graph Representation
– What do edges mean?
– Inherit state along edges

• group all red object instances together
• group logical entities together

– parts of a car

– Capture intent with the structure



Scene Graph

• Inheritance -- Overloaded Term
– Behavior inheritance (subclassing)

• Benefit of OO design
– Implementation inheritance

• Perhaps provided by implementation language
• Not essential for a good API design

– Implied inheritance
• Designed into the API



Scene Graph



Scene Graph (VRML 2.0)



Example Scene Graph



Scene Graph Traversal

• Simulation
– Animation

• Intersection
– Collision detection
– Picking

• Image Generation
– Culling
– Detail elision
– Attributes



Scene Graph Considerations

• Functional Organization
– Semantics

• Bounding Volumes
– Culling
– Intersection

• Levels of Detail
– Detail elision
– Intersection

• Attribute Management
– Eliminate redundancies



Functional Organization

• Semantics:
– Logical parts
– Named parts



Functional Organization

• Articulated Transformations
– Animation
– Difficult to optimize animated objects



Bounding Volume Hierarchies



View Frustum Culling



Level Of Detail (LOD)

• Each LOD nodes 
have distance 
ranges



Attribute Management
• Minimize transformations

– Each transformation is expensive during rendering, 
intersection, etc. Need automatic algorithms to 
collapse/adjust transform hierarchy.



Attribute Management
• Minimize attribute changes

– Each state change is expensive during rendering



Question: How do you manage 
your light sources?

• OpenGL supports only 8 lights. What if there are 
200 lights? The modeler must ‘scope’ the lights 
in the scene graph?



Sample Scene Graph



Think!

• How to handle optimization of scene graphs 
with multiple competing goals
– Function
– Bounding volumes
– Levels of Detail
– Attributes



Scene Graphs Traversal

• Perform operations on graph with traversal
– Like STL iterator
– Visit all nodes
– Collect inherited state while traversing edges

• Also works on a sub-graph



Typical Traversal Operations

• Typical operations
– Render
– Search (pick, find by name)
– View-frustum cull
– Tessellate
– Preprocess (optimize)



Scene Graphs Organization

• Tree structure best
– No cycles for simple traversal
– Implied depth-first traversal (not essential)
– Includes lists, single node, etc as degenerate 

trees
• If allow multiple references (instancing)

– Directed acyclic graph (DAG)
• Difficult to represent cell/portal structures



State Inheritance

• General (left to right, top to bottom, all state)
– Open Inventor
– Need Separator node to break inheritance
– Need to visit all children to determine final state

• Top to bottom only
– IRIS Performer, Java3D, …
– State can be determined by traversing path to node



Scene Graphs Appearance 
Overrides

• One attempt to solve the “highlighting” problem
– After picking an object, want to display it differently
– Don’t want to explicitly edit and restore its appearance
– Use override node in the scene graph to override 

appearance of children
• Only works if graph organization matches model 

organization



Appearance Override



Multiple Referencing 
(Instancing)

• Convenient for representing multiple 
instances of an object
– rivet in a large assembly

• Save memory
• Need life-time management

– is the object still in use
– garbage collection, reference counts



Multiple Referencing

• Changes trees into DAGs
• Instance of an object represented by its path, (path 

is like a mini-scene)
• Difficult to attach instance specific properties

– e.g., caching transform at leaf node



Other Scene Graph Organizations

• Logical structure (part, assembly, etc.)
– Used by modeling applications

• Topology structure, e.g., boundary
– surfaces, faces, edges, vertices
– Useful for CAD applications

• Behaviors, e.g., engine graph
• Environment graph (fog, lights, etc.)
• Scene graph is not just for rendering!!



Specifying Rotation

• How to parameterize rotation
– Traditional way: use Euler angles, rotation is specified 

by using angles with respect to three mutually 
perpendicular axes

• Roll, pitch and yaw angles (one matrix for each 
Euler angle)

• Difficult for an animator to control all the angles 
(practically unworkable)

– With a sequence of key frames, how to interpolate??
– Separating motion from path

• Better to use parameterized interpolation of 
quaternions



Quaternion

• A way to specify rotation
• As an extension of complex numbers
• Quaternion:

u = (u0, u1, u2, u3) = u0 + iu1 + ju2 + ku3 = u0 + u
• Pure quaternion: u0 = 0
• Conjugate: u* = u0 - u
• Addition: u + v = (u0 +v0, u1+v1, u2+v2, u3+v3) 
• Scalar multiplication: c.u = (cu0, cu1, cu2, cu3)



Quaternion multiplication 
• u x v 

= (u0 + iu1 + ju2 + ku3)x(v0 + iv1 + jv2 + kv3) 
= [u0 v0 – (u.v)]+(uxv) + u0v + v0u

• The result is still a quaternion, this operation is not 
commutative, but is associative

• u x u = - (u . u)
• u x u* = u0

2 + u1
2 + u2

2 + u3
2= |u|2

• Norm(u) = u/|u|
• Inverse quaternion: 

u-1 = u*/|u|2, u x u-1 = u-1 x u = 1



Polar Representation of 
Quaternion

• Unit quaternion: |u|2 = 1, normalize with 
norm(u)

• For some theta, -pi < theta < pi, unit 
quaternion, u:

|u|2 = cos2(theta) + sin2(theta)
u = u0 + |u|s, s = u/|u|
u = cos(theta) + ssin(theta)



Quaternion Rotation

• Suppose p is a vector (x,y,z), p is the 
corresponding quaternion: p = 0 + p

• To rotate p about axis s (unit quaternion: u = 
cos(theta) + ssin(theta)), by an angle of 2*theta, all 
we need is : upu* (u x p x u*)

• A sequence of rotations:
– Just do: unun-1…u1pu*1…u*n-1u*n = 0 + p’
– Accordingly just concatenate all rotations together: 

unun-1…u1



Quaternion Interpolation

• Quaternion and rotation matrix has a strict one-to-
one mapping (pp. 489, 3D Computer Graphics, Watt, 3rd

Ed)
• To achieve smooth interpolation of quaternion, 

need spherical linear interpolation (slerp), (on pp. 
489-490, 3D Computer Graphics, Watt, 3rd Ed)
– Unit quaternion form a hyper-sphere in 4D space
– Play with the hyper-angles in 4D

• Gotcha: you still have to figure out your up vector 
correctly



More

• If you just need to consistently rotate an object on 
the screen (like in your lab assignments), can do 
without quaternion
– Only deal with a single rotation that essentially 

corresponds to an orientation change
– Maps to a ‘hyper-line’ in a ‘transformed 4D space’
– Be careful about the UP vector
– Use the Arcball algorithm proposed by Ken Shoemaker 

in 1985


