

Topcoder SRM 641, D1, 250-Pointer
"TrianglesContainOrigin"

James S. Plank
EECS Department

University of Tennessee

CS494 Class
September 3, 2020

The problem

● You are given the (x,y) values of points on a two-
dimensional grid:

Example 1:
(-1,-1)
(-1, 1)
(1, 2)
(2, -1)

The problem
● Of all the

triangles with
these points as
endpoints,
how many
have the origin
inside?

● Example 1:
There are 4
triangles, two
of which
include the
origin.

Prototype and Constraints

● Class name: TrianglesContainOrigin
● Method: count()
● Parameters:

● Return Value: long long
● Constraints:

– x.size() == y.size() ≤ 2500.
– x and y values between -10,000 and 10,000.
– No three values co-linear
– No two values co-linear with the origin.

x X coordinates
y Y coordinates

vector <int>

vector <int>

Brain-dead enumeration of triangles

● Let n = x.size().

● Then the number of triangles is:

 ()
● When n = 2500, this is 2,590,630,000. Too slow.

● Our solution can be O(n2), but not much slower.

n
3

= O(n3)

The Key Insight

● Draw a line from the origin to each point, and then
calculate the angles of adjacent lines:

90

71.5

90

108.5

The Key Insight

● Consider a triangle – it will include the origin if
and only if each of the angles of lines from the
origin is less than 180:

161.5
90

108.590

71.5

198.5

The Strategy

● Enumerate all pairs of points whose angle to the origin is
less than 180 degrees:

● For a given pair, there is a minimum and maximum angle
that the third point can have.

Point 1

Point 2

Any point between
here and here works.

Any point between
here and here is > 180

degrees to point 1.

Any point between
here and here is > 180

degrees to point 2.

An Algorithm
● For each point, calculate the point's angle a from the origin.

● Insert the points into a map keyed by angle.
● Also insert the points keyed by angle+360.
● Number the points in the map by ascending angle.

Let's look at example 3

1/20

0/19

2/21

3/22
4/23

5/24

6/25

7/26

8/27

9/28

10/29

11/30 12/31

13/32

14/33

15/34

16/35

17/36
18/37

An Algorithm, Continued
● For each point x < 360 and each point y whose angle to x is

less than 180 degrees, use upper_bound() to find:

● The smallest point whose angle is > 180 to x.
● The smallest point whose angle is > 180 to y.
● The difference in vals is the number of points that can

complete the triangle!

● Sum the triangles and divide by 3 for the answer!

Let's look at example 3

Consider points
0 and 4.

Upper-bound will
find points
9 and 13.

Therefore, there
are four points that
can complete the

triangle with
points 0 and 4.

1/20

0/19

2/21

3/22
4/23

5/24

6/25

7/26

8/27

9/28

10/29

11/30 12/31

13/32

14/33

15/34

16/35

17/36
18/37

Improvements

1

0

2

3
4

5

6

7

8

9

10

11 12

13

14

15

16

17
18

● Insert a giant
sentinel, and:

● You only have
to insert each
point once.

● You don't have
to divide by
three.

● (0 triangles
when b-a > 180)

19

Time for some clicker questions

We can make it faster.
Label the points: P1, P2, P3, P4

Point 2 = P2

P3 = The first point in here. P4 = The first point in here.

Point 1 = P1

We can make it faster.
Label the points: P1, P2, P3, P4.
● The number of triangles for (P1,P2) is (P4->val – P3->val)
● Set P3, and set P4 = P3 when you set P1.
● For each P2, increment P4 until it's right.
● A total of O(n) increments for all P2 makes it O(n2) overall.

Point 1 = P1

Point 2 = P2

P3 = The first point in here. P4 = The first point in here.

Experiment
● MacBook Pro 2.2 Ghz, optimized with -O2
● Increments of 100, each point the average of ten runs.

How did the Topcoders Do?

● 580 competitors
● 285 (48%) submitted a solution.
● 216 (76%) of the submissions were correct.
● That's 38% - I suspected this one would be hard!

(For class)

● Go over the program that makes the jgraph (in the
lecture notes directory).

● But delete the part that does the calculation, so
you can do the calculation live (maybe even give
the students a chance to do it).

● Remember txt/points-500.txt and txt/points-
2500.txt.

Topcoder SRM 641, D1, 250-Pointer
"TrianglesContainOrigin"

James S. Plank
EECS Department

University of Tennessee

CS494 Class
September 3, 2020

