## Topcoder SRM 641, D1, 250-Pointer "TrianglesContainOrigin"

James S. Plank<br>EECS Department<br>University of Tennessee

CS494 Class
September 3, 2020

## The problem

- You are given the $(x, y)$ values of points on a twodimensional grid:

Example 1:
$(-1,-1)$
$(-1,1)$
$(1,2)$
(2, -1)


## The problem

- Of all the triangles with these points as endpoints, how many have the origin inside?


- Example 1: There are 4 triangles, two of which include the origin.




## Prototype and Constraints

- Class name: TrianglesContainOrigin
- Method: count ()
- Parameters:

| $x$ | vector <int> | X coordinates |
| :---: | :---: | :---: |
| $y$ | vector <int> | Y coordinates |

- Return Value: long long
- Constraints:
- x.size() == y.size() $\leq 2500$.
- x and y values between $-10,000$ and 10,000 .
- No three values co-linear
- No two values co-linear with the origin.


## Brain-dead enumeration of triangles

- Let $n=x . \operatorname{size}()$.
- Then the number of triangles is:

$$
\binom{n}{3}=O\left(n^{3}\right)
$$

- When $n=2500$, this is $2,590,630,000$. Too slow.
- Our solution can be $O\left(n^{2}\right)$, but not much slower.


## The Key Insight

- Draw a line from the origin to each point, and then calculate the angles of adjacent lines:



## The Key Insight

- Consider a triangle - it will include the origin if and only if each of the angles of lines from the origin is less than 180 :



## The Strategy

- Enumerate all pairs of points whose angle to the origin is less than 180 degrees:
- For a given pair, there is a minimum and maximum angle that the third point can have.

Any point between
here and here is $>180$ degrees to point 1.


## An Algorithm

- For each point, calculate the point's angle $a$ from the origin.
- Insert the points into a map keyed by angle.
- Also insert the points keyed by angle+360.
- Number the points in the map by ascending angle.


## Let's look at example 3



## An Algorithm, Continued

- For each point $x<360$ and each point $y$ whose angle to $x$ is less than 180 degrees, use upper_bound() to find:
- The smallest point whose angle is $>180$ to $x$.
- The smallest point whose angle is $>180$ to $y$.
- The difference in vals is the number of points that can complete the triangle!
- Sum the triangles and divide by 3 for the answer!


## Let's look at example 3



Consider points 0 and 4.

Upper-bound will find points 9 and 13.

Therefore, there are four points that can complete the triangle with points 0 and 4 .

## Improvements

- Insert a giant sentinel, and:
- You only have to insert each point once.
- You don't have to divide by three.
- (0 triangles when $\mathrm{b}-\mathrm{a}>180$ )


Time for some clicker questions

## We can make it faster.

Label the points: P1, P2, P3, P4


## We can make it faster.

Label the points: P1, P2, P3, P4.

- The number of triangles for ( $\mathrm{P} 1, \mathrm{P} 2$ ) is ( $\mathrm{P} 4->\mathrm{val}-\mathrm{P} 3->\mathrm{val}$ )
- Set P 3 , and set $\mathrm{P} 4=\mathrm{P} 3$ when you set P 1 .
- For each P2, increment P4 until it's right.
- A total of $O(n)$ increments for all P 2 makes it $O\left(n^{2}\right)$ overall.



## Experiment

- MacBook Pro 2.2 Ghz, optimized with -O2
- Increments of 100 , each point the average of ten runs.



## How did the Topcoders Do?

- 580 competitors
- 285 (48\%) submitted a solution.
- $216(76 \%)$ of the submissions were correct.
- That's $38 \%$ - I suspected this one would be hard!


## (For class)

- Go over the program that makes the jgraph (in the lecture notes directory).
- But delete the part that does the calculation, so you can do the calculation live (maybe even give the students a chance to do it).
- Remember txt/points-500.txt and txt/points2500.txt.


## Topcoder SRM 641, D1, 250-Pointer "TrianglesContainOrigin"

James S. Plank<br>EECS Department<br>University of Tennessee

CS494 Class
September 3, 2020

