
All About Erasure Codes:
- Reed-Solomon Coding

- LDPC Coding

James S. Plank

Logistical Computing and
Internetworking Laboratory

Department of Computer Science
University of Tennessee

ICL - August 20, 2004

Motivation
Behold a wide-area file system (grid, P2P, you name it):

Wide Area Network

Motivation
Large files are typically partitioned into n blocks that are

replicated among the servers:

File

Motivation
Clients download the closest of each of the n blocks.

Client 1

Client 2

Motivation
Clients download the closest of each of the n blocks.
Replication tolerates failures.

Client 1

Client 2

Motivation
Unfortunately, replication is wasteful in terms of both
space and performance.

Client 1

Client 2

Can’t get , even though 9/12 blocks available.

Motivation
Enter erasure codes -- calculate m coding blocks, and distribute

the n + m blocks on the network.

File

Coding
Blocks

Motivation
Clients download the n+a closest blocks, regardless of
identity, and from these, re-calculate the file.

Client 1

Client 2

This is a good thing

• Excellent space used / fault-tolerance.
• Relief from block identity -- any n+a blocks will do.
• However:

– Historical codes (Reed-Solomon) have performance
issues.

– More recent codes have patent issues.
– More recent codes are open research questions.

• Bottom Line: Realizing the promise of erasure
coding is not a straightforward task.

The Outline of This Talk

• Primer on Reed-Solomon Codes
• History of LDPC Codes
• Practical Evaluation of LDPC Codes
• Optimal, Small LDPC Codes
• Reed-Solomon Codes in LoRS

Primer on Reed-Solomon Codes
Reed-Solomon Coding is the canonical erasure code:

• Suppose we have n data devices & m coding devices
• Break up each data block into words of size w | 2w < n+m
• There are n data words d1, …, dn

• And m coding words c1, …, cm

• Encoding & decoding revolve around an (n+m) X n
coding matrix B.

Primer on Reed-Solomon Codes
• Define an (n+m) X n coding matrix B such that:

B <d1, …, dn> = <d1, …, dn, c1, …, cm>

* =

B

Data words

Coding words

• B must have an additional property that all n X n matrices
created by deleting m rows from B are invertible.

Primer on Reed-Solomon Codes

B

Data words

Coding words

B derived from “Vandermonde” matrix; Guaranteed to exist.

To decode, first note that every row of B corresponds to a
data or coding word.

Primer on Reed-Solomon Codes
Decoding:

Suppose you download n words. Create B’ from the n
rows of B corresponding to those n words.

Now, invert B’:

B’-1 * existing words
= data words

B’-1

* =

B’

RS-Coding Details
• Must use Galois Field arithmetic GF(2w)

– Addition = exclusive or: cheap
– Multiplication/Division requires log & anti-log lookup tables:

more expensive

• Encoding is O(mn).
• Decoding requires:

– n X n matrix inversion: O(n3),
– Then O(n2) to recalculate data words.

• However, with x words per block:
– Encoding is O(mnx).
– Decoding is O(n3) + O(n2x).

• Bottom line: When n & m grow, it is brutally expensive.

A Watershed in Coding Theory
 In 1997, Luby et al introduced the world to:

Tornado Codes:

• Good Properties:
– Calculations involve parity (XOR) only.
– Each block requires a fraction of the other blocks to

calculate -- Encoding & Decoding: O(x(n+m)).

• Bad Properties:
– a > 0 -- I.e. you need > n blocks to recalculate the file.
– Theory developed for asymptotics & not well

understood in the finite case.

History
• The Luby 1997 paper is a landmark:

– In 1998, Byers et al show how Tornado Codes can
greatly outperform Reed-Solomon codes for large
values of n.

– Luby et al soon form Digital Fountain, and patent their
codes.

– Scores of people publish studies on similar “LDPC”
codes with asymptotically optimal properties.

• However…

History

No one studies the practical implications
of these codes!!!!

Which Means:

• Why?
– Hard-core graph theory scares off systems people.
– Hard-core graph theorists like asymptotics & theory...
– Patent worries scare off potential implementers.

• The Bottom Line
– There is nowhere to find a “Tornado Code” for your

storage system.
– Therefore, we (LoCI, OceanStore, BitTorrent) use

Reed-Solomon codes.

They remain unusable for developers of
wide-area storage systems!!!!!!!

The Mission of Our Research:

• To quantify their performance in wide-area
systems.

• To explore various facets of code generation.
• To compare their performance to Reed-Solomon

coding.
• To raise important research questions for the

theoretical community.

To study the practical properties of
LDPC codes for Wide-Area Storage Systems

LDPC Codes

• Simplest incarnations are codes based on
bipartite graphs -- data bits on the left, coding on
the right.

Low-Density, Parity-Check Codes

D1

D2

D3

D4
C3

C2

C1 C1 = D1+D3+D4

C2 = D1+D2+D3

C3 = D2+D3+D4

LDPC Codes

• Alternative representation -- all data and coding
bits on the left, and constraints on the right:

Tanner Graph representation

D1

D2

D3

D4
C3

C2

C1
1

2
3
4
5
6
7

1 + 2 3 6+ + = 0

2 + 3 4 7+ + = 0

1 + 3 4 5+ + = 0

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes &

XOR downloaded/calculated values into constraints.

1

2
3
4
5
6
7

0

0

0

Start with
0’s in

constraints

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes & XOR

downloaded/calculated values into constraints.

1

2
3
4
5
6
7

0

0

0

Start with
0’s in

constraints

Download
bit as 1:2

1

2
3
4
5
6
7

1

0

1

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes & XOR

downloaded/calculated values into constraints.

1

2
3
4
5
6
7

0

0

0

Start with
0’s in

constraints

Download
bit as 1:2

1

2
3
4
5
6
7

1

0

1

Download
bit as 1:7

1

2
3
4
5
6
7

1

0

0

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes & XOR

downloaded/calculated values into constraints.

1

2
3
4
5
6
7

0

0

0

Start with
0’s in

constraints

Download
bit as 1:2

1

2
3
4
5
6
7

1

0

1

Download
bit as 1:7

1

2
3
4
5
6
7

1

0

0

Download
bit as 0:4

1

2
3
4
5
6
7

1

0

0

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes.

Determine
bit as 0,

from constraint 3:
3

1

2
3
4
5
6
7

1

0

0

If a constraint only has one edge,
the constraint holds the connected node’s value:

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes.

Determine
bit as 0,

from constraint 3:
3

1

2
3
4
5
6
7

1

0

0

If a constraint only has one edge,
the constraint holds the connected node’s value:

Download
bit as 1:5

1

2
3
4
5
6
7

1

1

0

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes.

Determine
bit as 0,

from constraint 3:
3

1

2
3
4
5
6
7

1

0

0

If a constraint only has one edge,
the constraint holds the connected node’s value:

Download
bit as 1:5

1

2
3
4
5
6
7

1

1

0

Determine
bit as 1,

from constraint 1:
1

1

2
3
4
5
6
7

0

1

0

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes.

Determine
bit as 0,

from constraint 3:
3

1

2
3
4
5
6
7

1

0

0

If a constraint only has one edge,
the constraint holds the connected node’s value:

Download
bit as 1:5

1

2
3
4
5
6
7

1

1

0

Determine
bit as 1,

from constraint 1:
1

1

2
3
4
5
6
7

0

1

0

And finally
bit is 0.6

Two good things about Tanner Graphs
• #1: Decoding easy to define: Just remove nodes.

Note -- it may take > n downloaded bits to decode:

1

2
3
4
5
6
7

Suppose we download bits 5 6 71 &

-- We still cannot determine
the undownloaded bits.

:

Two good things about Tanner Graphs
• #2: Can represent more complex codes.

1

2
3
4
5
6
7

1

2
3
4
5
6
7

1

2
3
4
5
6
7

Simple
Systematic

More Complex
Systematic Non-Systematic

“Systematic” = data bits are part of the left-hand nodes.

Classes of LDPC Codes
• Gallager codes -- first developed in the 1960’s, but

received further attention since Luby’s 1997 paper.
Encompasses all codes represented with Tanner graphs --
non-systematic codes require matrix operations for
encoding/decoding.

• Simple Systematic Codes -- Systematic codes where each
coding node has just one edge to a unique constraint.

• Tornado codes -- Simple systematic codes that cascade.

• IRA codes -- Systematic codes, where coding each coding
node i has edges to constraints i and (i+1).

Similarities of these codes

• All based on bipartite graphs.

• Graphs define parity operations for encoding/decoding.

• Decoding overhead based on # of edges in graph
(low density).

• All have been proven to be asymptotically optimal.

History: Nature of Theory

• Choose a rate R = n/(n+m) for the code.
• Define probability distributions l and r for

cardinality of left-hand and right-hand nodes.
• Define f to be the overhead factor of a graph:

– On average, fn nodes of the (n+m) total nodes must be
downloaded to reconstitute the data.

– f = 1 is optimal (like Reed-Solomon coding).
• Prove that for infinite graphs where node

cardinalities adhere to l and r, f is equal to one.
• QED.

Questions We Strive To Answer

1. What kind of overhead factors (f) can we expect
for LDPC codes for large and small n?

2. Are the three types of codes equivalent or do
they perform differently?

3. How do the published distributions fare in
producing good codes for finite values of n?

4. Is there a great deal of random variation in code
generation for given probability distributions?

5. How do the codes compare to Reed-Solomon
coding?

Experimental Methodology
• Choose R.
• Choose n.
• Calculate m from R = n/(n+m).
• Generate a graph in one of three ways:

– Use a published probability distribution.
– Use a probability distribution derived from a

previously generated graph.
– Use a randomly generated probability distribution.

• Perform a Monte-Carlo simulation of 1000’s
of random downloads, and experimentally
determine the average f.

Data Points
• R Œ {1/2, 1/3, 2/3}.
• Small n Œ {Even numbers between 2 and 150}.
• Large n Œ {250, 500, 1250, 2500, 5000,

12500, 25000, 50000, 125000}.
• 80 published probability distributions for all

graphs and rates.
• Derive from “nearby” best graphs.

Total: Over 200,000 data points, each repeated
over 100 times with different seeds.

Q1: Best Overhead Factors

• All rise to a maximum with
10 < n < 50, then descend
toward 1 as n approaches •.

• Larger rates perform better.

• Open Questions:
– Upper bounds for given n?
– Lower bounds for given n?
– Can the shape of the curves

be defined precisely ?

Q2: Three Codes Same or Different?

• They’re different.
• Systematic best for small n.
• IRA best for large n.
• Other rates similar.

• Open questions:
– What gives? Why are we

seeing what we’re seeing?
– How can Systematic or

IRA outperform Gallager?

R = 1/2

Q3: How Do Published Codes Fare?

• W.R.T. small n: very poorly.

• W.R.T. large n: very poorly, except in certain cases.

• Open Questions:

– Although the codes converge to f=1 as n goes to •,
parameterizing l and r to minimize f for small n is clearly
an open question.

– What about other rates?

Q4: Variation in Performance?
Gallager IRA Syst.

Min

• It Depends:
– Some bad
– Some Good

• Open Questions:
– Do research on

convergence!

Q5: Compare with Reed-Solomon?

• Using IBP, measured wide-area download speeds to
three clients:
– Fast: UT wired: 45.8 MB/s (Megabytes per second)
– Medium: UT wireless: 1.08 MB/s
– Slow: Home wireless: 0.256 MB/s

• Measured computation costs on Linux Workstation
– Sxor = 637 MB/s
– SGF8 = 218 MB/s
– SGF16 = 20.2 MB/s

• Projected performance of LDPC & R-S coding.

Q5: Compare with Reed-Solomon?

Fast

Q5: Compare with Reed-Solomon?

Medium

Q5: Compare with Reed-Solomon?

Slow

Q5: Compare with Reed-Solomon?

• Sometimes LDPC vastly better:
– Big n, Fast network, Slow computation.

• Sometimes Reed-Solomon vastly better:
– Small n, Slow network, Fast computation.

• Difference in GF8 and GF16 significant.

• Open Questions:
– Do a better job with all of this.
– Explore multi-threading, greedy algorithms

• e.g. [Plank et al 2003], [Allen/Wolski 2003],
[Collins/Plank 2004].

Conclusions of Study

• For small n, the best codes arose as a result of the Monte-
Carlo simulation. I.e: l and r are very poor metrics
/constructors for finite codes. Theorists need to get to work
on better ones.

• Clearly, even sub-optimal LDPC codes are important
alternatives to Reed-Solomon codes. We need more
analysis & parameter studies.

• For serving the needs of wide-area storage system
developers, this area is a mess! Coding & graph theorists
need to get to work on it!

Recent Work: #1. Small, Optimal Codes

• Use simple enumeration to find the best small codes.
• Calculate overhead recursively:

1

2
3
4
5
6
7

O =
O + O + O + O

+ O + O + O + 1

Recent Work: #1. Small, Optimal Codes

…

m = 2

m = 3

Two trends: Balanced node types, incremental graphs.

…

Recent Work: #1. Small, Optimal Codes

Open Questions:

• Does this pattern continue for larger m?
• Can we use optimal graphs for small m to construct graphs

for large m (more natural)?
• Can we generate good graphs for large m & n in an

incremental manner?
• Can we prove anything?

Recent Work: #2. R-S Downloads

Bandwidth of downloads with 30 threads and Reed-Solomon coding.

Parity

ReplicationReplication

Blocks splattered
across 50 servers

Blocks stored in
distinct network regions.

Parity

All About Erasure Codes:
- Reed-Solomon Coding

- LDPC Coding

James S. Plank

Logistical Computing and
Internetworking Laboratory

Department of Computer Science
University of Tennessee

ICL - August 20, 2004

