T1: Erasure Codes for Storage Applications

James S. Plank
Associate Professor
Department of Computer Science
University of Tennessee
plank@cs.utk.edu

http://www.cs.utk.edu/~plank
“Research Papers”

James S. Plank
Associate Professor
Department of Computer Science
University of Tennessee
plank@cs.utk.edu
What is an Erasure Code?

A technique that lets you take \(n \) storage devices:

And have the entire system be resilient to up to \(m \) device failures:

Encode them onto \(m \) additional storage devices:

When are they useful?

Anytime you need to tolerate failures.

\(\text{MTTF}_\text{first} = \frac{\text{MTTF}_\text{one}}{n} \)

For example:

Disk Array Systems
When are they useful?

Anytime you need to tolerate failures.

Data Grids

Network

When are they useful?

Anytime you need to tolerate failures.

Collaborative/
Distributed
Storage
Applications

Network
When are they useful?

Anytime you need to tolerate failures.

Peer-to-peer applications.

When are they useful?

Anytime you need to tolerate failures.

Distributed Data or Object Stores:
(Logistical Apps.)
When are they useful?

Anytime you need to tolerate failures.

Digital Fountains

When are they useful?

Anytime you need to tolerate failures.

Archival Storage.
Terms & Definitions

- Number of data disks: \(n \)
- Number of coding disks: \(m \)
- Rate of a code: \(R = \frac{n}{n+m} \)
- Identifiable Failure: “Erasure”

The problem, once again

\(n \) data devices

<table>
<thead>
<tr>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n+m) data/coding devices, plus erasures</td>
</tr>
</tbody>
</table>

\(m \) coding devices

\(n \) data devices

| Decoding |
Issues with Erasure Coding

• Performance
 – Encoding
 • Typically $O(mn)$, but not always.
 – Update
 • Typically $O(m)$, but not always.
 – Decoding
 • Typically $O(mn)$, but not always.

Issues with Erasure Coding

• Space Usage
 – Quantified by two of four:
 • Data Devices: n
 • Coding Devices: m
 • Sum of Devices: $(n+m)$
 • Rate: $R = n/(n+m)$
 – Higher rates are more space efficient, but less fault-tolerant.
Issues with Erasure Coding

• Failure Coverage - Four ways to specify
 – Specified by a threshold:
 • (e.g. 3 erasures always tolerated).
 – Specified by an average:
 • (e.g. can recover from an average of 11.84 erasures).
 – Specified as MDS (Maximum Distance Separable):
 • MDS: Threshold = average = m.
 • Space optimal.
 – Specified by Overhead Factor f:
 • f = factor from MDS = m/average.
 • f is always ≥ 1
 • $f = 1$ is MDS.

Issues with Erasure Coding

• Flexibility
 – Can you arbitrarily add data / coding nodes?
 – (Can you change the rate)?
 – How does this impact failure coverage?
Trivial Example: Replication

- MDS
- Extremely fast encoding/decoding/update.
- Rate: $R = 1/(m+1)$ - Very space inefficient
- There are many replication/based systems (P2P especially).

One piece of data: $n = 1$

m replicas

Can tolerate any m erasures.

Less Trivial Example: Simple Parity

n pieces of data

1 parity device: $m = 1$

Can tolerate any single erasure.

For example:
Evaluating Parity

• MDS
• Rate: $R = \frac{n}{n+1}$ - Very space efficient
• Optimal encoding/decoding/update:
 – $n-1$ XORs to encode & decode
 – 2 XORs to update
• Extremely popular (RAID Level 5).
• Downside: $m = 1$ is limited.

Unfortunately

• Those are the last easy things you’ll see.
• For $(n > 1, m > 1)$, there is no consensus on the best coding technique.
• They all have tradeoffs.
The Point of This Tutorial

- To introduce you to the various erasure coding techniques.
 - Reed Solomon codes.
 - Parity-array codes.
 - LDPC codes.
- To help you understand their tradeoffs.
- To help you evaluate your coding needs.
 - This too is not straightforward.

Why is this such a pain?

- Coding theory historically has been the purview of coding theorists.
- Their goals have had their roots elsewhere (noisy communication lines, byzantine memory systems, etc).
- They are not systems programmers.
- (They don’t care…)
Part 1: Reed-Solomon Codes

- The only MDS coding technique for arbitrary $n \& m$.
- This means that m erasures are always tolerated.
- Have been around for decades.
- Expensive.
- I will teach you standard & Cauchy variants.

Reed-Solomon Codes

- Operate on binary words of data, composed of w bits, where $2^w \geq n+m$.

\[
\begin{align*}
D_i & = \{D_{i0}, D_{i1}, D_{i2}, \ldots, D_{iw}\} \\
& \text{Words of size } w
\end{align*}
\]
Reed-Solomon Codes

• Operate on binary words of data, composed of w bits, where $2^w \geq n+m$.

• This means we only have to focus on words, rather than whole devices.

• Word size is an issue:
 – If $n+m \leq 256$, we can use bytes as words.
 – If $n+m \leq 65,536$, we can use shorts as words.
Reed-Solomon Codes

- Codes are based on linear algebra.
 - First, consider the data words as a column vector D:

$$D = \begin{pmatrix} D_1 \\ D_2 \\ \vdots \\ D_n \end{pmatrix}$$

- Next, define an $(n+m) \times n$ “Distribution Matrix” B, whose first n rows are the identity matrix:

$$B = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ B_1 & B_2 & B_3 & \cdots & B_{n+m} \end{pmatrix}$$
Reed-Solomon Codes

- Codes are based on linear algebra.
 - \(B \times D \) equals an \((n+m)\times 1\) column vector composed of \(D\) and \(C\) (the coding words):

\[
\begin{bmatrix}
D & C
\end{bmatrix}
\]

- This means that each data and coding word has a corresponding row in the distribution matrix.

Reed-Solomon Codes

- Suppose m nodes fail.
- To decode, we create B' by deleting the rows of B that correspond to the failed nodes.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
B_1, B_2, B_3, B_4, B_5 \\
B_1, B_2, B_3, B_4, B_5 \\
B_1, B_2, B_3, B_4, B_5
\end{bmatrix}
\]

B

\[
\begin{bmatrix}
\end{bmatrix}
\]

You’ll note that $B'*D$ equals the survivors.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
B_1, B_2, B_3, B_4, B_5 \\
B_1, B_2, B_3, B_4, B_5
\end{bmatrix}
\]

B'

\[
\begin{bmatrix}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
D_5
\end{bmatrix}
\]

D

Survivors
Reed-Solomon Codes

• Now, invert B^r:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
D_1 & D_2 & D_3 & D_4 \\
D_5 & D_6 & D_7 & D_8
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
D_1 \\
D_2 \\
D_3 \\
D_4
\end{bmatrix}
\]

Now, invert B^r:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
D_1 & D_2 & D_3 & D_4 & D_5 & D_6 & D_7 & D_8
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
D_1 \\
D_2 \\
D_3 \\
D_4
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]

And multiply both sides of the equation by B^{-1}

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
D_1 & D_2 & D_3 & D_4 & D_5 & D_6 & D_7 & D_8
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
D_1 \\
D_2 \\
D_3 \\
D_4
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]

Survivors
Reed-Solomon Codes

- Now, invert B':
- And multiply both sides of the equation by B'^{-1}
- Since $B'^{-1}B' = I$, You have just decoded D!

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\begin{array}{cccc}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
\end{array}
\begin{array}{cccc}
\times \\
= \\
equalsto \\
\times \\
\end{array}
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\begin{array}{cccc}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
\end{array}
\begin{array}{cccc}
I \\
D \\
B'^{-1} \\
Survivors \\
\end{array}
\]

Reed-Solomon Codes

- Now, invert B':
- And multiply both sides of the equation by B'^{-1}
- Since $B'^{-1}B' = I$, You have just decoded D!

\[
\begin{array}{cccc}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
\end{array}
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\begin{array}{cccc}
\times \\
= \\
equalsto \\
\times \\
\end{array}
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\begin{array}{cccc}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
\end{array}
\begin{array}{cccc}
D \\
B'^{-1} \\
Survivors \\
\end{array}
\]
Reed-Solomon Codes

- **To Summarize: Encoding**
 - Create distribution matrix B.
 - Multiply B by the data to create coding words.

- **To Summarize: Decoding**
 - Create B' by deleting rows of B.
 - Invert B'.
 - Multiply B'^{-1} by the surviving words to reconstruct the data.

Two Final Issues:

- #1: **How to create B?**
 - All square submatrices must be invertible.
 - Derive from a Vandermonde Matrix [Plank,Ding:2005].

- #2: **Will modular arithmetic work?**
 - NO!!!!! (no multiplicative inverses)
 - Instead, you must use *Galois Field* arithmetic.
Reed-Solomon Codes

Galois Field Arithmetic:

- \(GF(2^w) \) has elements 0, 1, 2, ..., \(2^w-1 \).
- Addition = XOR
 - Easy to implement
 - Nice and Fast
- Multiplication hard to explain
 - If \(w \) small (\(\leq 8 \)), use multiplication table.
 - If \(w \) bigger (\(\leq 16 \)), use log/anti-log tables.
 - Otherwise, use an iterative process.

Reed-Solomon Codes

Galois Field Example: \(GF(2^3) \):

- Elements: 0, 1, 2, 3, 4, 5, 6, 7.
- Addition = XOR:
 - \((3 + 2) = 1\)
 - \((5 + 5) = 0\)
 - \((7 + 3) = 4\)
- Multiplication/Division:
 - Use tables.
 - \((3 * 4) = 7\)
 - \((7 ÷ 3) = 4\)

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Reed-Solomon Performance

Encoding: $O(mn)$
- More specifically: $mS \left[\frac{(n-1)}{B_{\text{XOR}}} + \frac{n}{B_{\text{GFMult}}} \right]$
- S = Size of a device
- B_{XOR} = Bandwidth of XOR (3 GB/s)
- B_{GFMult} = Bandwidth of Multiplication over $GF(2^w)$
 - $GF(2^8)$: 800 MB/s
 - $GF(2^{16})$: 150 MB/s

```
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
B B B B B
B B B B B
B B B B B
```


Reed-Solomon Performance

Update: $O(m)$
- More specifically: $m+1$ XORs and m multiplications.
Reed-Solomon Performance

- **Decoding**: $O(mn)$ or $O(n^3)$
 - Large devices: $dS \left[\frac{(n-1)}{B_{XOR}} + \frac{n}{B_{GFMult}} \right]$
 - Where d = number of data devices to reconstruct.
 - Yes, there’s a matrix to invert, but usually that’s in the noise because $dSn >> n^3$.

Reed-Solomon Bottom Line

- **Space Efficient**: MDS
- **Flexible**:
 - Works for any value of n and m.
 - Easy to add/subtract coding devices.
 - Public-domain implementations.
- **Slow**:
 - n-way dot product for each coding device.
 - GF multiplication slows things down.
Cauchy Reed-Solomon Codes

[Blomer et al:1995] gave two improvements:

- #1: Use a Cauchy matrix instead of a Vandermonde matrix: Invert in $O(n^2)$.

- #2: Use neat projection to convert Galois Field multiplications into XORs.

 – Kind of subtle, so we’ll go over it.

Cauchy Reed-Solomon Codes

- Convert distribution matrix from $(n+m)^n$ over $GF(2^w)$ to $w(n+m)^{wn}$ matrix of 0’s and 1’s:
Cauchy Reed-Solomon Codes

• Now split each data device into \(w \) “packets” of size \(S/w \).

\[D_1 = \{ \text{w} \} \]
\[D_2 = \text{Y} \]
\[D_3 = \text{R} \]
\[D_4 = \text{Red} \]
\[D_5 = \text{Green} \]

• Now the matrix encoding can be performed with XORs of whole packets:
Cauchy Reed-Solomon Codes

• More Detail: Focus solely on C_1.

Create a coding packet by XORing data packets with 1’s in the proper row & column:
Cauchy Reed-Solomon Performance

- **Encoding**: $O(wmn)$
 - Specifically: $O(w)*mSn/B_{XOR}$ [Blomer et al:1995]
 - Actually: $mS(o-1)/B_{XOR}$
 - Where $o =$ average number of 1’s per row of the distribution matrix.
- **Decoding**: Similar: $dS(o-1)/B_{XOR}$

![Diagram](image)

Does it matter?

Encoding time:
- $m = 4$
- $S = 1$ MB
- $B_{XOR} = 3$ GB/s
- $B_{GFmult} = 800$ MB/s
- Cauchy Matrices from [Plank:2005]

We’ll discuss more performance later
Part 2: Parity Array Codes

- Codes based solely on parity (XOR).
- MDS variants for $m = 2, m = 3$.
- Optimal/near optimal performance.
- What I’ll show:
 - EVENODD Coding
 - X-Code
 - Extensions for larger m
 - STAR
 - WEAVER
 - HoVer
 - (Blaum-Roth)

EVENODD Coding

- The “grandfather” of parity array codes.
- [Blaum et al:1995]
- $m = 2$. $n = p$, where p is a prime > 2.
- Partition data, coding devices into blocks of $p-1$ rows of words:

```
\[
D \quad D \quad D \quad \ldots \quad D \\
\vdots \quad \vdots \quad \vdots \quad \ldots \quad \vdots \\
\quad p-1 \\
\]
```

```
\[
\begin{array}{ll}
C_0 & \\
C_1 & \\
\end{array}
\]
```

```
\[
\begin{array}{l}
p \\
\end{array}
\]
```
EVENODD Coding

- Logically, a word is a bit.
- In practice, a word is larger.
- Example shown with $n = p = 5$:
 - Each column represents a device.

```
\begin{array}{cccccc}
D_{0,0} & D_{0,1} & D_{0,2} & D_{0,3} & D_{0,4} \\
D_{1,0} & D_{1,1} & D_{1,2} & D_{1,3} & D_{1,4} \\
D_{2,0} & D_{2,1} & D_{2,2} & D_{2,3} & D_{2,4} \\
D_{3,0} & D_{3,1} & D_{3,2} & D_{3,3} & D_{3,4} \\
\end{array}
\quad \Rightarrow \quad \begin{array}{cccc}
C_{0,0} & C_{0,1} \\
C_{1,0} & C_{1,1} \\
C_{2,0} & C_{2,1} \\
C_{3,0} & C_{3,1} \\
\end{array}
```

EVENODD Coding

- Column C_0 is straightforward
 - Each word is the parity of the data words in its row:

```
\begin{array}{cccc}
D_{0,0} & D_{0,1} & D_{0,2} & D_{0,3} & D_{0,4} \\
D_{1,0} & D_{1,1} & D_{1,2} & D_{1,3} & D_{1,4} \\
D_{2,0} & D_{2,1} & D_{2,2} & D_{2,3} & D_{2,4} \\
D_{3,0} & D_{3,1} & D_{3,2} & D_{3,3} & D_{3,4} \\
\end{array}
\quad \Rightarrow \quad \begin{array}{c}
\text{Parity} \rightarrow C_{0,0} \\
\text{Parity} \rightarrow C_{1,0} \\
\text{Parity} \rightarrow C_{2,0} \\
\text{Parity} \rightarrow C_{3,0} \\
\end{array}
```
To calculate column C_i, first calculate S (the “Syndrome”), which is the parity of one of the diagonals:

$$
\begin{array}{cccc}
D_{0,0} & D_{0,1} & D_{0,2} & D_{0,3} & D_{0,4} \\
D_{1,0} & D_{1,1} & D_{1,2} & D_{1,3} & D_{1,4} \\
D_{2,0} & D_{2,1} & D_{2,2} & D_{2,3} & D_{2,4} \\
D_{3,0} & D_{3,1} & D_{3,2} & D_{3,3} & D_{3,4} \\
\end{array}
$$

Then, $C_{i,1}$ is the parity of S and all data words on the diagonal containing $D_{i,0}$:

$$
\begin{array}{cccc}
\end{array}
$$
EVENODD Coding

Here’s the whole system:

Now, suppose two data devices fail (This is the hard case).
EVENODD Coding

- First, note that S is equal to the parity of all $C_{i,j}$.
- Next, there will be at least one diagonal that is missing just one data word.
- Decode it/them.

EVENODD Coding

- Next, there will be at least one row missing just one data word:
- Decode it/then.
- Continue this process until all the data words are decoded:

If \(n \) is not a prime, then find the next prime \(p \), and add \(p-n \) “virtual” data devices: - E.g. \(n=8, p=11 \).
EVENODD Performance

- **Encoding**: \(O(n^2)\) XORs per big block.
 - More specifically: \((2n-1)(p-1)\) per block.
 - This means \((n-1/2)\) XORs per coding word.
 - Optimal is \((n-1)\) XORs per coding word.
 - Or: \(mS [n-1/2]/B_{XOR}\) where
 - \(S = \) size of a device
 - \(B_{XOR} = \) Bandwith of XOR

EVENODD Performance

- **Update**: Depends.
 - If not part of the calculation of \(S\), then 3 XORs (optimal).
 - If part of the calculation of \(S\), then \((p+1)\) XORs (clearly not optimal).
EVENODD Performance

• **Decoding:**
 – Again, it depends on whether you need to use C_I to decode. If so, it’s more expensive and not optimal.
 – Also, when two data devices fail, decoding is serialized.

EVENODD Bottom Line

• **Flexible:** works for all values of n.
• **Excellent encoding** performance.
• **Poor update** performance in $1/(n-1)$ of the cases.
• **Mediocre decoding** performance.
• **Much better than Reed Solomon coding** for everything except the pathological updates (average case is fine).
Horizontal vs Vertical Codes

• **Horizontal**: Devices are all data or all coding.
• **Vertical**: All devices hold both data and coding.

Horizontal vs Vertical Codes

“Parity Striping”

A simple and effective vertical code for $m=1$:

- **Good**: Optimal coding/decoding.
- **Good**: Distributes device access on update.
- **Bad** (?) : All device failures result in recovery.
Horizontal vs Vertical Codes

• We can lay out parity striping so that all code words are in the same row:
• (This will help you visualize the X-Code…)

The X-Code

• MDS parity-array code with optimal performance.
• [Xu,Bruck:1999]
• \(m = 2, \ n = p-2 \), where \(p \) is a prime.
 - \(n \) rows of data words
 - 2 rows of coding words
 - \(n+2 \) columns
• For example: \(n = 5 \):
Each coding row is calculated by parity-striping with opposite-sloped diagonals:

- Each coding word is the parity of n data words.
 - Therefore, each coding word is independent of one data device.
 - And each data word is independent of two data devices:
The X-Code

- Suppose we have two failures.
- There will be four words to decode.
• We can now iterate, decoding two words at every iteration:

The X-Code

• We can now iterate, decoding two words at every iteration:
X-Code Performance

- **Encoding**: $O(n^2)$ XORs per big block.
 - More specifically: $2(n-1)(n+2)$ per big block.
 - This means $(n-1)$ XORs per coding word.
 - Optimal.
 - Or: $mS \frac{[n-1]}{B_{XOR}}$, where
 - S = size of a device
 - B_{XOR} = Bandwith of XOR

- **Update**: 3 XORs - Optimal.
- **Decoding**: $S \frac{[n-1]}{B_{XOR}}$ per failed device.

So this is an excellent code.

Drawbacks:
- $n+2$ must be prime.
- (All erasures result in decoding.)
Other Parity-Array Codes

- **STAR** [Huang, Xu: 2005]:
 - Extends EVENODD to $m = 3$.

- **WEAVER** [Hafner: 2005W]:
 - Vertical codes for higher failures.

- **HoVer** [Hafner: 2005H]:
 - Combination of Horizontal/Vertical codes.

- **Blaum-Roth** [Blaum, Roth: 1999]:
 - Theoretical results/codes.

Two WEAVER Codes

- $m = 2, n = 2$:
- $m = 3, n = 3$:

- Both codes are MDS.
- Both codes are optimal.
- No X-Code for $n = 2$.
- Other WEAVER codes- up to 12 erasures, but not MDS.
HoVer Codes

- Generalized framework for a blend of horizontal and vertical codes.

- HoVer$^{t,v,h}[r,c]:$

$$t = \text{fault-tolerance}$$

Not MDS, but interesting nonetheless.

For example, there exists: HoVer$^{3,2,1}[26,29]:$

- From [Hafner:2005H, Theorem 5, Bullet 6]

HoVer$^{3,2,1}[26,29]$: Rate .897

MDS Code with same # of devices: Rate .900
Blaum-Roth Codes

- Codes are **Minimum Density**.
- **Optimal** encoding and decoding?
- Writing is **Maximum Density**.
- Will be distilled for the systems programmer someday…

Part 3: LDPC - Low-Density Parity-Check Codes

- Codes based **solely on parity**.
- Distinctly **non-MDS**.
- Performance **far better** than optimal MDS.
- Long on theory / short on practice.
- What I’ll show:
 - Standard LDPC Framework & Theory
 - Optimal codes for small m
 - Codes for fixed rates
 - LT codes
LDPC Codes

- One-row, horizontal codes:

 ![Diagram of LDPC Codes]

 - Codes are defined by *bipartite graphs* - Data words on the left, coding on the right:

 \[
 \begin{align*}
 C_1 &= D_1 + D_3 + D_4 \\
 C_2 &= D_1 + D_2 + D_3 \\
 C_3 &= D_2 + D_3 + D_4
 \end{align*}
 \]

LDPC Codes

- Typical representation is by a *Tanner Graph*
 - Also bipartite.
 - \((n+m)\) left-hand nodes: Data + coding
 - \(m\) right-hand nodes: Equation constraints

 ![Diagram of LDPC Codes]

 \[
 \begin{align*}
 D_1 + D_3 + D_4 + C_1 &= 0 \\
 D_1 + D_2 + D_3 + C_2 &= 0 \\
 D_2 + D_3 + D_4 + C_3 &= 0
 \end{align*}
 \]
LDPC Codes

• Example coding

$D_1 + D_2 + D_3 + C_1 = 0$

$D_2 + D_3 + D_4 + C_3 = 0$

LDPC Codes

• Example coding

$I + 0 + 0 + C_1 = 0$

$I + 1 + 0 + C_2 = 0$

$D_2 + D_3 + D_4 + C_3 = 0$
LDPC Codes

• Example coding

• Tanner Graphs:
 – More flexible
 – Allow for straightforward, graph-based decoding.

• Decoding Algorithm:
 – Put 0 in each constraint.
 – For each non-failed node i:
 • XOR i’s value into each adjacent constraint.
 • Remove that edge from the graph.
 • If a constraint has only one edge, it holds the value of the one node adjacent to it. Decode that node.
• **Decoding example:**

Suppose D_2, D_3 and C_2 fail:

First, put zero into the constraints.
First, put zero into the constraints.
Next, XOR D_1 into its constraints:

- Decoding example:

And remove its edges from the graph.
And remove its edges from the graph

Do the same for D_4:

And with C_1
LDPC Codes

- **Decoding example:**

 Now, we can decode D_3, and process its edges.

![Decoding Diagram 1]

Finally, we process C_3 and finish decoding.

![Decoding Diagram 2]
Now, we can decode D_3, and process its edges.

Finally, we process C_3 and finish decoding.

- **Decoding example:**

Finally, we process C_3 and finish decoding.

- **Decoding example:**
Finally, we process C_3 and finish decoding. We’re done!

- **Decoding example:**

 ![Decoding example diagram]

- **Encoding:**
 - Just decode starting with the data nodes.

- **Not MDS:**
 - For example: Suppose D_1, D_2, and D_3 fail:

 ![Not MDS example diagram]

 You cannot decode further.
LDPC Codes

- **History:**
 - Landmark paper: Luby *et al*: 1997
 - *Result #1:* Irregular codes perform better than regular codes (in terms of space, not time).

- **Result #2:** Defined LDPC codes that are:

 Asymptotically MDS!
• Recall:
 – The rate of a code: $R = n/(n+m)$.
 – The overhead factor of a code: $f = \text{factor from MDS}$:
 • $f = m/(\text{average nodes required to decode})$.
 • $f \geq 1$.
 • If $f = 1$, the code is MDS.

• You are given R.

• Define:
 – Probability distributions λ and ρ for cardinality of
 left-hand and right-hand nodes.

• Prove that:
 – As $n \to \infty$, and m defined by R,
 – If you construct random graphs where node cardinalities
 adhere to λ and ρ,
 – Then $f \to 1$.

LDPC Codes: Asymptotically MDS
• **Let’s reflect on the significance of this:**

 – Encoding and decoding performance is $O(1)$ per coding node (“Low Density”).

 – Update performance is $O(1)$ per updated device.

 – Yet the codes are **asymptotically MDS**.

 – Wow. Spurred a flurry of similar research.

 – Also spurred a startup company, “Digital Fountain,” which applied for and received a flurry of patents.

• **However:**

 – You can prove that:

 • While f does indeed approach 1 as $n \to \infty$,

 • f is always strictly > 1.

 – Moreover, my life is not asymptotic!

 • **Question 1:** How do I construct codes for finite n?

 • **Question 2:** How will they perform?

 • **Question 3:** Will I get sued?

 – As of 2003:

 No one had even attempted to answer these questions!!
• [Plank et al:2005]
• #1: **Simple problem:**
 – Given a Tanner Graph, is it *systematic*?
 – I.e: Can \(n \) of the left-hand nodes hold the data?

LDPC Codes: Small \(m \)

- Simple algorithm:
 – **Find** up to \(m \) nodes \(N_i \) with one edge, each to different constraints.
 – **Label** them coding nodes.
 – **Remove** them, their edges, and all edges to their constraints.
 – **Repeat** until you have \(m \) coding nodes.

LDPC Codes: Small \(m \)

- Is this a systematic code for \(n=3, m=4 \)?

Start with \(N_i \) and \(N_j \):
• Simple algorithm:
 – Find up to m nodes N_i with one edge, each to different constraints.
 – Label them coding nodes.
 – Remove them, their edges, and all edges to their constraints.
 – Repeat until you have m coding nodes.

Is this a systematic code for $n=3$, $m=4$?

LDPC Codes: Small m

Is this a systematic code for $n=3$, $m=4$?

Yes!

N_2 and N_4 are the final coding nodes.
• #2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

E.g. $m = 3$

Label each class by the constraints to which its nodes are connected
• #2: Define graphs by partitioning nodes into Edge Classes:

Graph is now defined by counts of nodes in each class.

Graph = <3,2,3,3,2,3,3>
LDPC Codes: Small m

- Best graphs for $m \in [2:5]$ and $n \in [1:1000]$ in [Plank:2005].
- Features:
 - Not balanced. E.g. $m=3$, $n=50$ is <9,9,7,9,7,7,5>.
 - Not loosely left-regular
 - LH nodes’ cardinalities differ by more than one.
 - Loosely right-regular
 - RH nodes’ (constraints) cardinalities differ at most by one.
 - Loose Edge Class Equivalence
 - Counts of classes with same cardinality differ at most by one.

LDPC Codes: Small m

- f does not decrease monotonically with n.
- $f \to 1$ as $n \to \infty$
- f is pretty small (under 1.10 for $n \geq 10$).
LDPC Codes: Small m

- [Plank, Thomason: 2004]
- A lot of voodoo - Huge Monte Carlo simulations.
- Use 80 published values of λ and ρ, test $R = 1/3, 1/2, 2/3$.
- Three type of code constructions:

- Simple Systematic
- IRA: Irregular Repeat-Accumulate
- Gallager Unsystematic

LDPC Codes: Larger m

Encoding Performance: 40 - 60 % Better than optimal.
LDPC Codes: Larger m

- Lower rates have higher f.
- $f \to 1$ as $n \to \infty$
- f at their worst in the useful ranges for storage applications.

LDPC Codes: Larger m

- Simple systematic perform better for smaller n.
- IRA perform better for larger n.
- (Not in the graph - Theoretical λ and ρ didn’t match performance),
LDPC Codes: Larger m

- Improvement over optimal MDS coding is drastic indeed.

LDPC Codes: LT Codes

- Luby-Transform Codes: [Luby:2002]
- **Rateless** LDPC codes for large n,m.
- Uses an implicit graph, created on-the-fly:
 - When you want to create a coding word, you randomly select a weight w. This is the cardinality of the coding node.
 - w’s probability distribution comes from a “weight table.”
 - Then you select w data words at random (uniform distribution), and XOR them to create the coding word.
 - As before, theory shows that the codes are asymptotically MDS.
 - [Uyeda et al:2004] observed $f = 1.4$ for $n = 1024, m = 5120$.

- Raptor Codes [Shokrollahi:2003] improve upon LT-Codes.
LDPC Codes: Bottom Line

- For large n, m - **Essential** alternatives to MDS codes.
- For smaller n, m - **Important** alternatives to MDS codes:
 - Improvement is not so drastic.
 - Tradeoffs in space / failure resilience must be assessed.

LDPC Codes: Bottom Line

- **“Optimal”** codes are **only known in limited cases**.
 - Finite theory much harder than asymptotics.
 - “Good” codes should still suffice.
- **Patent issues** cloud the landscape.
 - Tornado codes (specific λ and ρ) patented.
 - Same with LT codes.
 - And Raptor codes.
 - Scope of patents has not been defined well.
 - Few published codes.
- **Need more research!**
Part 4: Evaluating Codes

- Defining “fault-tolerance”
- Encoding - impact of the system
- Decoding - impact of the system
- Related work

Defining “fault-tolerance”

- Historical metrics:
 - E.g: “Safe to x failures”
 - E.g: “99.44% pure”
 - Makes it hard to evaluate/compare codes.

- Case study:
 - Suppose you have 20 storage devices.
 - 1 GB each.
 - You want to be resilient to 4 failures.
Defining “fault-tolerance”

- 20 storage devices (1GB) resilient to 4 failures:
 - Solution #1: The only MDS alternative:
 Reed-Solomon Coding:

 - 80% of storage contains data.
 - Cauchy Matrix for $w=5$ has 912 ones.
 - 44.6 XORs per coding word.
 - Encoding: 59.5 seconds.
 - Decoding: roughly 14.9 seconds per failed device.
 - Updates: 12.4 XORs per updated node.
Defining “fault-tolerance”

- 20 storage devices (1GB) resilient to 4 failures:

- Solution #2: HoVer\(^4\)\(_{3,1}\)[12,19]:

 - 228 data words, 69 coding words (3 wasted).
 - 76% of storage contains data.
 - Encoding: \((12*18 + 3*19*11)/69 = 12.22\) XORs per coding word: 18.73 seconds.
 - Decoding: Roughly 5 seconds per device.
 - Update: 5 XORs
Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:
 • Solution #3: 50% Efficiency WEAVER code
 – 50% of storage contains data.
 – Encoding: 3 XORs per coding word: 10 seconds.
 – Decoding: Roughly 1 second per device.
 – Update: 5 XORs

Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:
 • Solution #4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1,1>
Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #4: LDPC <2,2,2,1,1,1,2,1,1,1,1,1,1,1,1,1>
 – 80% of storage for data
 – $f = 1.0496$ (Resilient to 3.81 failures…)
 – Graph has 38 edges: 30 XORs per 4 coding words.
 – Encoding: 10 seconds.
 – Decoding: Roughly 3 seconds per device.
 – Update: 3.53 XORs
Encoding Considerations

- Decentralized Encoding:
 - Not reasonable to have one node do all encoding.
 - Reed-Solomon codes work well, albeit with standard performance.
 - Randomized constructions [Gkantsidis, Rodriguez:2005].

Decoding Considerations

- Scheduling - Content Distribution Systems:
 - All blocks are not equal - data vs. coding vs. proximity: [Collins, Plank:2005].
 - LDPC: All blocks are not equal #2 - don’t download a block that you’ve already decoded [Uyeda et al:2004].
 - Simultaneous downloads & aggressive failover [Collins, Plank:2004].
Resources (Citations)

• Reed Solomon Codes:
 http://doi.acm.org/10.1145/263876.263881.
 (Includes software)

• Reed Solomon Codes:
 http://www.icsi.berkeley.edu/~luby/.
 (Includes software)
 (Includes good Cauchy Matrices)
Resources (Citations)

• Parity Array Codes:

Resources (Citations)

• LDPC Codes:

Resources (Citations)

• LDPC Codes:

Resources (Citations)

- LDPC Codes: