

T1: Erasure Codes for Storage Applications

James S. Plank

Associate Professor

Department of Computer Science University of Tennessee

plank@cs.utk.edu

http://www.cs.utk.edu/~plank "Research Papers"

James S. Plank

Associate Professor

Department of Computer Science University of Tennessee

plank@cs.utk.edu

What is an Erasure Code?

A technique that lets you take *n* storage devices:

Encode them onto *m* additional storage devices:

And have the entire system be resilient to up to *m* device failures:

When are they useful?

Anytime you need to tolerate failures.

For example:

Disk Array Systems

 $MTTF_{first} = MTTF_{one}/n$

Terms & Definitions

- Number of data disks: *n*
- Number of coding disks: *m*
- Rate of a code: R = n/(n+m)
- Identifiable Failure: "Erasure"

Issues with Erasure Coding

- Performance
 - Encoding
 - Typically O(mn), but not always.

- <u>Update</u>
 - Typically O(m), but not always.

- Decoding
 - Typically O(mn), but not always.

Issues with Erasure Coding

- Space Usage
 - Quantified by two of four:
 - Data Devices: n
 - Coding Devices: m
 - Sum of Devices: (n+m)
 - Rate: R = n/(n+m)
 - Higher rates are more space efficient,
 but less fault-tolerant.

Issues with Erasure Coding

- Failure Coverage Four ways to specify
 - Specified by a threshold:
 - (e.g. 3 erasures always tolerated).
 - Specified by an average:
 - (e.g. can recover from an average of 11.84 erasures).
 - Specified as MDS (Maximum Distance Separable):
 - MDS: Threshold = average = m.
 - · Space optimal.
 - Specified by Overhead Factor f:
 - f = factor from MDS = m/average.
 - f is always >= 1
 - f = 1 is MDS.

Issues with Erasure Coding

- Flexibility
 - Can you arbitrarily add data / coding nodes?
 - (Can you change the rate)?
 - How does this impact failure coverage?

Trivial Example: Replication

Can tolerate any *m* erasures.

- MDS
- Extremely fast encoding/decoding/update.
- Rate: R = 1/(m+1) Very space inefficient
- There are many replication/based systems (P2P especially).

Evaluating Parity

- MDS
- Rate: R = n/(n+1) Very space efficient
- Optimal encoding/decoding/update:
 - *n-1* XORs to encode & decode
 - 2 XORs to update
- Extremely popular (RAID Level 5).
- Downside: m = 1 is limited.

Unfortunately

- Those are the last easy things you'll see.
- For (n > 1, m > 1), there is no consensus on the best coding technique.
- They *all* have tradeoffs.

The Point of This Tutorial

- To introduce you to the various erasure coding techniques.
 - Reed Solomon codes.
 - Parity-array codes.
 - LDPC codes.
- To help you understand their tradeoffs.
- To help you evaluate your coding needs.
 - This too is not straightforward.

Why is this such a pain?

- Coding theory historically has been the purview of coding theorists.
- Their goals have had their roots elsewhere (noisy communication lines, byzantine memory systems, etc).
- They are not systems programmers.
- (They don't care...)

Part 1: Reed-Solomon Codes

- The only MDS coding technique for arbitrary n & m.
- This means that *m* erasures are always tolerated.
- Have been around for decades.
- Expensive.
- I will teach you standard & Cauchy variants.

Reed-Solomon Codes

• Operate on binary words of data, composed of w bits, where $2^w \ge n+m$.

• Operate on binary words of data, composed of w bits, where $2^w \ge n+m$.

Reed-Solomon Codes

• This means we only have to focus on words, rather than whole devices.

- Word size is an issue:
 - If $n+m \le 256$, we can use bytes as words.
 - If n+m ≤ 65,536, we can use shorts as words.

- Codes are based on linear algebra.
 - First, consider the data words as a column vector *D*:

- Codes are based on linear algebra.
 - Next, define an (n+m)*n "Distribution Matrix" B, whose first n rows are the identity matrix:

- Codes are based on linear algebra.
 - -B*D equals an (n+m)*I column vector composed of D and C (the coding words):

Reed-Solomon Codes

• This means that each data and coding word has a corresponding row in the distribution matrix.

- Suppose *m* nodes fail.
- To decode, we create *B* ' by deleting the rows of *B* that correspond to the failed nodes.

U

- Suppose *m* nodes fail.
- To decode, we create *B* ' by deleting the rows of *B* that correspond to the failed nodes.
- You'll note that *B* '**D* equals the survivors.

- Now, invert *B* ':
- And multiply both sides of the equation by B^{-1}

- Now, invert B':
- And multiply both sides of the equation by B^{-1}
- Since $B'^{-1}*B' = I$, You have just decoded D!

- Now, invert *B* ':
- And multiply both sides of the equation by B^{-1}
- Since B'-1*B' = I, You have just decoded D!

- To Summarize: Encoding
 - Create distribution matrix B.
 - Multiply B by the data to create coding words.
- To Summarize: Decoding
 - Create B' by deleting rows of B.
 - − Invert B'.
 - Multiply B'-1 by the surviving words to reconstruct the data.

Reed-Solomon Codes

Two Final Issues:

- #1: How to create *B*?
 - All square submatrices must be invertible.
 - Derive from a Vandermonde Matrix [Plank,Ding:2005].
- #2: Will modular arithmetic work?
 - NO!!!!! (no multiplicative inverses)
 - Instead, you must use *Galois Field* arithmetic.

Galois Field Arithmetic:

- $GF(2^w)$ has elements 0, 1, 2, ..., 2^{w-1} .
- Addition = XOR
 - Easy to implement
 - Nice and Fast
- Multiplication hard to explain
 - If w small (≤ 8), use multiplication table.
 - If w bigger (≤ 16), use log/anti-log tables.
 - Otherwise, use an iterative process.

Reed-Solomon Codes

Galois Field Example: $GF(2^3)$:

- Elements: 0, 1, 2, 3, 4, 5, 6, 7.
- Addition = XOR:
 - (3+2)=1
 - -(5+5)=0
 - -(7+3)=4
- Multiplication/Division:
 - Use tables.
 - (3*4)=7
 - $(7 \div 3) = 4$

Multiplication

Division

	0	1	2	3	4	5	6	7
0	-	-	-	-	-	-	-	-
1	0	1		3	4	5	6	7
2	0		1	4	2	7	3	6
3	0	6	7	1	5	3		4
4	0		5	2	1	6	4	3
5	0	2	4	6	3	1	7	5
6	0	3	6	5	7	4	1	2
7	0	4	3	7	6	2	5	1

Reed-Solomon Performance

- Encoding: O(mn)
 - More specifically: $mS[(n-1)/B_{XOR} + n/B_{GFMult}]$
 - -S =Size of a device
 - $-B_{XOR}$ = Bandwith of XOR (3 GB/s)
 - $-B_{GFMult}$ = Bandwidth of Multiplication over $GF(2^w)$
 - GF(28): 800 MB/s
 - GF(216): 150 MB/s

$$\begin{array}{c} D_1 \\ D_2 \\ D_3 \\ D_4 \\ D_5 \end{array}$$

Reed-Solomon Performance

- <u>Update</u>: *O*(*m*)
 - More specifically: m+1 XORs and m multiplications.

Reed-Solomon Performance

- Decoding: O(mn) or $O(n^3)$
 - Large devices: $dS[(n-1)/B_{XOR} + n/B_{GFMult}]$
 - Where d = number of data devices to reconstruct.
 - Yes, there's a matrix to invert, but usually that's in the noise because $dSn >> n^3$.

Reed-Solomon Bottom Line

- Space Efficient: MDS
- Flexible:
 - Works for any value of n and m.
 - Easy to add/subtract coding devices.
 - Public-domain implementations.
- <u>Slow</u>:
 - *n*-way dot product for each coding device.
 - GF multiplication slows things down.

Cauchy Reed-Solomon Codes

[Blomer et al:1995] gave two improvements:

- #1: Use a *Cauchy* matrix instead of a Vandermonde matrix: Invert in $O(n^2)$.
- #2: Use neat projection to convert Galois Field multiplications into XORs.
 - Kind of subtle, so we'll go over it.

Cauchy Reed-Solomon Codes

• Convert distribution matrix from (n+m)*n over $GF(2^w)$ to w(n+m)*wn matrix of 0's and 1's:

Cauchy Reed-Solomon Codes

• Now split each data device into w "packets" of size S/w.

$$\begin{array}{c}
D_1 = \\
D_2 = \\
D_3 = \\
D_4 = \\
D_5 = \\
\end{array}$$

Cauchy Reed-Solomon Performance

- Encoding: O(wmn)
 - Specifically: $O(w)*mSn/B_{XOR}$ [Blomer et al:1995]
 - Actually: $mS(o-1)/B_{XOR}$
 - Where o = average number of 1's per row of the distribution matrix.
- <u>Decoding</u>: Similar: $dS(o-1)/B_{XOR}$

Part 2: Parity Array Codes

- Codes based solely on parity (XOR).
- MDS variants for m = 2, m = 3.
- Optimal/near optimal performance.
- What I'll show:
 - EVENODD Coding
 - X-Code
 - Extensions for larger m
 - STAR
 - WEAVER
 - HoVer
 - (Blaum-Roth)

EVENODD Coding

- The "grandfather" of parity array codes.
- [Blaum et al:1995]
- m = 2. n = p, where p is a prime > 2.
- Partition data, coding devices into blocks of *p-1* rows of words:

EVENODD Coding

- Logically, a word is a bit.
- In practice, a word is larger.
- Example shown with n = p = 5:
 - Each column represents a device.

EVENODD Coding

- Column C_0 is straightforward
 - Each word is the parity of the data words in its row:

EVENODD Performance

- Encoding: $O(n^2)$ XORs per big block.
 - More specifically: (2n-1)(p-1) per block.
 - This means (n-1/2) XORs per coding word.
 - Optimal is (n-1) XORs per coding word.
 - Or: $mS [n-1/2]/B_{XOR}$, where
 - S =size of a device
 - B_{XOR} = Bandwith of XOR

EVENODD Performance

- <u>Update</u>: Depends.
 - If not part of the calculation of S, then3 XORs (optimal).
 - If part of the calculation of S, then (p+1) XORS (clearly not optimal).

EVENODD Performance

• <u>Decoding</u>:

- Again, it depends on whether you need to use C_1 to decode. If so, it's more expensive and not optimal.
- Also, when two data devices fail, decoding is serialized.

EVENODD Bottom Line

- Flexible: works for all values of n.
- Excellent encoding performance.
- Poor update performance in 1/(n-1) of the cases.
- Mediocre decoding performance.
- Much better than Reed Solomon coding for everything except the pathelogical updates (average case is fine).

Horizontal vs Vertical Codes

- Horizontal: Devices are all data or all coding.
- Vertical: All devices hold both data and coding.

Horizontal vs Vertical Codes

"Parity Striping"

A simple and effective vertical code for m=1:

- Good: Optimal coding/decoding.
- Good: Distributes device access on update.
- Bad (?): All device failures result in recovery.

Horizontal vs Vertical Codes

- We can lay out parity striping so that all code words are in the same row:
- (This will help you visualize the X-Code...)

The X-Code

- MDS parity-array code with optimal performance.
- [Xu,Bruck:1999]
- m = 2. n = p-2, where p is a prime.
 - *n* rows of data words
 - 2 rows of coding words
 - n+2 columns
- For example: n = 5:

The X-Code

• Each coding row is calculated by parity-striping with opposite-sloped diagonals:

The X-Code

- Each coding word is the parity of *n* data words.
 - Therefore, each coding word is independent of one data device.
 - And each data word is independent of two data devices:

The X-Code

- Suppose we have two failures.
- There will be four words to decode.

The X-Code

- Suppose we have two failures.
- There will be four words to decode.

The X-Code

• We can now iterate, decoding two words at every iteration:

The X-Code

• We can now iterate, decoding two words at every iteration:

X-Code Performance

- Encoding: $O(n^2)$ XORs per big block.
 - More specifically: 2(n-1)(n+2) per big block.
 - This means (n-1) XORs per coding word.
 - Optimal.
 - Or: $mS[n-1]/B_{XOR}$, where
 - S = size of a device
 - B_{XOR} = Bandwith of XOR

X-Code Performance

- <u>Update</u>: 3 XORs Optimal.
- Decoding: $S[n-1]/B_{XOR}$ per failed device.

So this is an excellent code.

Drawbacks:

- n+2 must be prime.
- (All erasures result in decoding.)

Other Parity-Array Codes

- **STAR** [Huang,Xu:2005]:
 - Extends EVENODD to m = 3.
- WEAVER [Hafner: 2005W]:
 - Vertical codes for higher failures.
- HoVer [Hafner:2005H]:
 - Combination of Horizontal/Vertical codes.
- Blaum-Roth [Blaum,Roth:1999]:
 - Theoretical results/codes.

Two WEAVER Codes

m = 2, n = 2:

m = 3, n = 3:

- Both codes are MDS.
- Both codes are optimal.
- No X-Code for n = 2.
- Other WEAVER codes- up to 12 erasures, but not MDS.

HoVer Codes

- Generalized framework for a blend of horizontal and vertical codes.
- HoVer $_{v,h}[r,c]$:

Blaum-Roth Codes

- Codes are Minimum Density.
- Optimal encoding and decoding?
- Writing is **Maximum** Density.
- · Will be distilled for the systems programmer someday...

Abstract — Let \mathbb{F}_q denote the finite field $\mathrm{GF}(q)$ and let b be a positive integer. MDS codes over the symbol alphabet \mathbb{F}_q^c are considered that are linear over \mathbb{F}_q and have sparse ("low-density") parity-check and generator matrices over \mathbb{F}_q that are systematic over \mathbb{F}_q^c . Lower bounds are presented on the number of nonzero elements in any systematic parity-check or generator matrix of an \mathbb{F}_q -linear MDS code over \mathbb{F}_q^c , along with upper bounds on the length of any MDS code that attains those lower bounds. A construction is presented that achieves those bounds for certain redundancy values. The building block of the construction is a set of sparse nonsingular matrices over \mathbb{F}_q , whose pairwise differences are also nonsingular. Bounds and constructions are presented also for the case where the systematic condition on the parity-check and generator matrices is relaxed to be over \mathbb{F}_q , rather than over \mathbb{F}_q^c .

Index Terms — Disk arrays, group codes, low-density codes, MDS codes, sparse matrices.

I. INTRODUCTION

code over ${\rm GF}(q^b)$ is an \mathbb{F}_q -linear code over \mathbb{F}_q^b . The converse, however, is not true.

Let C be a code of length n over F_q^b and minimum Hamming distance d, where the distance is measured with respect to symbols of \mathbb{F}_q^b . By the Singleton bound for (not necessarily linear) codes over \mathbb{F}_q^b we have

 $d \leq n + 1 - \log_{\sigma^b} |\mathcal{C}|$

Part 3: LDPC -Low-Density Parity-Check Codes

- Codes based solely on parity.
- Distinctly non-MDS.
- Performance far better than optimal MDS.
- Long on theory / short on practice.
- What I'll show:
 - Standard LDPC Framework & Theory
 - Optimal codes for small m
 - Codes for fixed rates
 - LT codes

Ur.

• One-row, horizontal codes:

• Codes are defined by *bipartite graphs* - Data words on the left, coding on the right:

$$C_1 = D_1 + D_3 + D_4$$

$$C_2 = D_1 + D_2 + D_3$$

$$C_3 = D_2 + D_3 + D_4$$

LDPC Codes

- Typical representation is by a <u>Tanner Graph</u>
 - Also bipartite.
 - -(n+m) left-hand nodes: Data + coding
 - m right-hand nodes: Equation constraints

$$D_1 + D_3 + D_4 + C_1 = 0$$

$$D_1 + D_2 + D_3 + C_2 = 0$$

$$D_2 + D_3 + D_4 + C_3 = 0$$

• Example coding

LDPC Codes

• Example coding

• Example coding

LDPC Codes

- Tanner Graphs:
 - More flexible
 - Allow for straightforward, graph-based decoding.
- Decoding Algorithm:
 - Put 0 in each constraint.
 - − For each non-failed node *i*:
 - XOR i's value into each adjacent constraint.
 - Remove that edge from the graph.
 - If a constraint has only one edge, it holds the value of the one node adjacent to it. Decode that node.

UI.

• <u>Decoding example</u>:

Suppose D_2 , D_3 and C_2 fail:

LDPC Codes

• Decoding example:

First, put zero into the constraints.

UI

• <u>Decoding example</u>:

Next, XOR D_I into its constraints:

LDPC Codes

• <u>Decoding example</u>:

And remove its edges from the graph

• <u>Decoding example</u>:

Do the same for D_4 :

LDPC Codes

• <u>Decoding example</u>:

And with C_1

Ur.

• Decoding example:

Now, we can decode D_3 , and process its edges.

LDPC Codes

• <u>Decoding example</u>:

Finally, we process C_3 and finish decoding.

UI

• <u>Decoding example</u>:

Finally, we process C_3 and finish decoding.

LDPC Codes

• <u>Decoding example</u>:

Finally, we process C_3 and finish decoding.

U

• <u>Decoding example</u>:

We're done!

LDPC Codes

- Encoding:
 - Just decode starting with the data nodes.
- <u>Not MDS</u>:
 - For example: Suppose D_1 , $D_2 \& D_3$ fail:

- <u>History</u>:
 - Gallager's PhD Thesis (MIT): 1963
 - Landmark paper: Luby et al: 1997
 - <u>Result #1</u>: Irregular codes perform better than regular codes (in terms of space, not time).

LDPC Codes

- <u>History</u>:
 - Gallager's PhD Thesis (MIT): 1963
 - Landmark paper: Luby et al: 1997
 - <u>Result #2</u>: Defined LDPC codes that are:

Asymptotically MDS!

LDPC Codes: Asymptotically MDS

- Recall:
 - The rate of a code: R = n/(n+m).
 - The *overhead factor* of a code: f = factor from MDS:
 - f = m/(average nodes required to decode).
 - *f* ≥ 1.
 - If f = 1, the code is MDS.
- You are given R.

LDPC Codes: Asymptotically MDS

- Define:
 - *Probability distributions* λ and ρ for cardinality of left-hand and right-hand nodes.

Selected from λ

Selected from p

- Prove that:
 - As n → ∞, and m defined by R,
 - If you construct random graphs where node cardinalities adhere to λ and ρ ,
 - Then f → 1.

LDPC Codes: Asymptotically MDS

- Let's reflect on the significance of this:
 - Encoding and decoding performance is O(1) per coding node ("Low Density").
 - Update performance is O(1) per updated device.
 - Yet the codes are asymptotically MDS.
 - Wow. Spurred a flurry of similar research.
 - Also spurred a startup company, "Digital Fountain," which applied for and received a flurry of patents.

LDPC Codes: Asymptotically MDS

- However:
 - You can prove that:
 - While f does indeed approach 1 as $n \to \infty$,
 - f is always strictly > 1.
 - Moreover, my life is not asymptotic!
 - Question 1: How do I construct codes for finite *n*?
 - Question 2: How will they perform?
 - Question 3: Will I get sued?
 - As of 2003:

No one had even attempted to answer these questions!!

- [Plank et al:2005]
- #1: Simple problem:
 - Given a Tanner Graph, is it *systematic*?
 - I.e: Can *n* of the left-hand nodes hold the data?

Is this a systematic code for n=3, m=4?

LDPC Codes: Small m

- Simple algorithm:
 - Find up to m nodes N_i with one edge, each to different constraints.
 - Label them coding nodes.
 - Remove them, their edges, and all edges to their constraints.
 - Repeat until you have *m* coding nodes.

Is this a systematic code for n=3, m=4?

Start with N_{I_1} and N_3 :

- Simple algorithm:
 - Find up to m nodes N_i with one edge, each to different constraints.
 - Label them coding nodes.
 - Remove them, their edges, and all edges to their constraints.
 - Repeat until you have *m* coding nodes.

Is this a systematic code for n=3, m=4?

 $N_{2,}$ and N_{4} are the final coding nodes.

LDPC Codes: Small m

- Simple algorithm:
 - Find up to m nodes N_i with one edge, each to different constraints.
 - Label them coding nodes.
 - Remove them, their edges, and all edges to their constraints.
 - Repeat until you have *m* coding nodes.

Is this a systematic code for n=3, m=4?

 $N_{2,}$ and N_{4} are the final coding nodes.

• #2: Define graphs by partitioning nodes into *Edge Classes*:

- Best graphs for $m \in [2:5]$ and $n \in [1:1000]$ in [Plank:2005].
- Features:
 - Not balanced. E.g. m=3, n=50 is <9,9,7,9,7,7,5>.
 - Not loosely left-regular
 - LH nodes' cardinalities differ by more than one.
 - Loosely right-regular
 - RH nodes' (constraints) cardinalities differ at most by one.
 - Loose Edge Class Equivalence
 - Counts of classes with same cardinality differ at most by one.

LDPC Codes: Small m

- f does *not* decrease monotonically with n.
- $f \rightarrow 1 \text{ as } n \rightarrow \infty$
- f is pretty small (under 1.10 for $n \ge 10$).

LDPC Codes: Larger m Plank, Thomason: 2004] A lot of voodoo - Huge Monte Carlo simulations. Use 80 published values of λ and ρ, test R = 1/3, 1/2, 2/3. Three type of code constructions: Simple Systematic IRA: Irregular Repeat-Accumulate Gallager Unsystematic

f at their worst in the useful ranges for storage applications.

(Not in the graph - Theoretical λ and ρ didn't match performance),

LDPC Codes: Larger m

• Improvement over optimal MDS coding is drastic indeed.

LDPC Codes: LT Codes

- Luby-Transform Codes: [Luby:2002]
- Rateless LDPC codes for large *n*,*m*.
- Uses an implicit graph, created on-the-fly:
 - When you want to create a coding word, you randomly select a weight w. This is the cardinality of the coding node.
 - w's probability distribution comes from a "weight table."
 - Then you select w data words at random (uniform distribution), and XOR them to create the coding word.
 - As before, theory shows that the codes are asymptotically MDS.
 - [Uyeda et al:2004] observed $f \approx 1.4$ for n = 1024, m = 5120.
- Raptor Codes [Shokrollahi:2003] improve upon LT-Codes.

LDPC Codes: Bottom Line

- For large *n*, *m* Essential alternatives to MDS codes.
- For smaller *n*, *m* Important alternatives to MDS codes:
 - Improvement is not so drastic.
 - Tradeoffs in space / failure resilience must be assessed.

LDPC Codes: Bottom Line

- "Optimal" codes are only known in limited cases.
 - Finite theory much harder than asymptotics.
 - "Good" codes should still suffice.
- Patent issues cloud the landscape.
 - Tornado codes (specific λ and ρ) patented.
 - Same with LT codes.
 - And Raptor codes.
 - Scope of patents has not been defined well.
 - Few published codes.
- Need more research!

Part 4: Evaluating Codes

- Defining "fault-tolerance"
- Encoding impact of the system
- Decoding impact of the system
- Related work

- Historical metrics:
 - − E.g: "Safe to *x* failures"
 - E.g: "99.44% pure"
 - Makes it hard to evaluate/compare codes.
- Case study:
 - Suppose you have 20 storage devices.
 - 1 GB each.
 - You want to be resilient to 4 failures.

- 20 storage devices (1GB) resilient to 4 failures:
- <u>Solution #1</u>: The only MDS alternative: Reed-Solomon Coding:

6

- 20 storage devices (1GB) resilient to 4 failures:
- <u>Solution #1</u>: The only MDS alternative: Reed-Solomon Coding:
 - 80% of storage contains data.
 - Cauchy Matrix for w=5 has 912 ones.
 - 44.6 XORs per coding word.
 - Encoding: 59.5 seconds.
 - Decoding: roughly 14.9 seconds per failed device.
 - Updates: 12.4 XORs per updated node.

- 20 storage devices (1GB) resilient to 4 failures :
- <u>Solution #2</u>: HoVer⁴3,1[12,19]:

- 20 storage devices (1GB) resilient to 4 failures :
- <u>Solution #2</u>: HoVer⁴3,1[12,19]:
 - 228 data words, 69 coding words (3 wasted).
 - 76% of storage contains data.
 - Encoding: (12*18 + 3*19*11)/69 = 12.22 XORs per coding word: 18.73 seconds.
 - Decoding: Roughly 5 seconds per device.
 - Update: 5 XORs

- 20 storage devices (1GB) resilient to 4 failures:
- Solution #3: 50% Efficiency WEAVER code

- 50% of storage contains data.
- Encoding: 3 XORs per coding word: 10 seconds.
- Decoding: Roughly 1 second per device.
- Update: 5 XORs

- 20 storage devices (1GB) resilient to 4 failures:
- <u>Solution #4</u>: LDPC <2,2,2,1,1,1,2,1,1,1,1,1,1,1

- 20 storage devices (1GB) resilient to 4 failures:
- <u>Solution #4</u>: LDPC <2,2,2,1,1,1,2,1,1,1,1,1,1,1
 - 80% of storage for data
 - f = 1.0496 (Resilient to 3.81 failures...)
 - Graph has 38 edges: 30 XORs per 4 coding words.
 - Encoding: 10 seconds.
 - Decoding: Roughly 3 seconds per device.
 - Update: 3.53 XORs

Encoding Considerations

- Decentralized Encoding:
 - Not reasonable to have one node do all encoding.
 - E.g. Network Coding [Ahlswede et al:2000].
 - Reed-Solomon codes work well, albeit with standard performance.
 - Randomized constructions [Gkantsidis,Rodriguez:2005].

Decoding Considerations

- Scheduling Content Distribution Systems:
 - All blocks are not equal data vs. coding vs. proximity: [Collins,Plank:2005].
 - LDPC: All blocks are not equal #2 don't download a block that you've already decoded [Uyeda et al:2004].
 - Simultaneous downloads & aggressive failover [Collins,Plank:2004].

Reed Solomon Codes:

- [Plank:1997] J. S. Plank, "A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems," *Software -- Practice & Experience*, 27(9), September, 1997, pp. 995-1012. http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Rizzo:1997] L. Rizzo, "Effective erasure codes for reliable computer communication protocols," *ACM SIGCOMM Computer Communication Review*, 27(2), 1997, pp. 24-36.
 http://doi.acm.org/10.1145/263876.263881.
- [Plank,Ding:2005] J. S. Plank, Y. Ding, "Note: Correction to the 1997 Tutorial on Reed-Solomon Coding," Software -- Practice & Experience, 35(2), February, 2005, pp. 189-194. http://www.cs.utk.edu/~plank/plank/papers/papers.html. (Includes software)

Resources (Citations)

Reed Solomon Codes:

[Blomer et al:1995] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby and D. Zuckerman, "An XOR-Based Erasure-Resilient Coding Scheme," Technical Report TR-95-048, International Computer Science Institute, August, 1995.

http://www.icsi.berkeley.edu/~luby/. (*Includes software*)

 [Plank:2005] J. Plank "Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Storage Applications," Submitted for publication, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
 (Includes good Cauchy Matrices)

• Parity Array Codes:

- [Blaum et al:1995] M. Blaum, J. Brady, J. Bruck and J. Menon, EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures, *IEEE Transactions on Computing*, 44(2), February, 1995, pp. 192-202.
- [Blaum,Roth:1999] M. Blaum and R. M. Roth "On Lowest Density MDS Codes," *IEEE Transactions on Information Theory*, 45(1), January, 1999, pp. 46-59.
- [Xu,Bruck:1999] L. Xu and J. Bruck, X-Code: MDS Array Codes with Optimal Encoding, *IEEE Transactions on Information Theory*, 45(1), January, 1999, pp. 272-276.

Resources (Citations)

• Parity Array Codes:

- [Huang,Xu:2005] C. Huang and L. Xu, "STAR: An Efficient Coding Scheme for Correcting Triple Storage Node Failures," FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005, http://www.usenix.org/events/fast05.
- [Hafner:2005H] J. L. Hafner, "HoVer Erasure Codes for Disk Arrays,"
 Research Report RJ10352 (A0507-015), IBM Research Division, July, 2005, http://domino.research.ibm.com/library.
- [Hafner:2005W] J. L. Hafner, "WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems," FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005, http://www.usenix.org/events/fast05.

· LDPC Codes:

- [Gallager: 1963] R. G. Gallager, <u>Low-Density Parity-Check Codes</u>, MIT Press, Cambridge, MA, 1963.
- [Wicker,Kim:2005] S. B. Wicker and S. Kim, <u>Fundamentals of Codes, Graphs, and Iterative Decoding</u>, Kluwer Academic Publishers, Norwell, MA, 2003.
- [Luby et al:1997] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V. Stemann, "Practical Loss-Resilient Codes," 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pages 150-159, http://www.icsi.berkeley.edu/~luby/.
- [Plank et al:2005] J. S. Plank, A. L. Buchsbaum, R. L. Collins and M. G. Thomason, "Small Parity-Check Erasure Codes Exploration and Observations," DSN-2005: International Conference on Dependable Systems and Networks, Yokohama, Japan, IEEE, 2005, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
 (Includes enumeration of best codes for m = 2-5, n = 2-1000)

Resources (Citations)

• LDPC Codes:

- [Plank,Thomason:2004] J. S. Plank and M. G. Thomason, "A Practical Analysis of Low-Density Parity-Check Erasure Codes for Wide-Area Storage Applications," *DSN-2004: The International Conference on Dependable Systems and Networks*, IEEE, Florence, Italy, June, 2004, pp. 115-124, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Collins,Plank:2005] R. L. Collins and J. S. Plank, "Assessing the Performance of Erasure Codes in the Wide-Area," DSN-2005: International Conference on Dependable Systems and Networks, Yokohama, Japan, June, 2005, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Luby:2002] M. Luby, LT Codes, IEEE Symposium on Foundations of Computer Science, 2002, http://www.digitalfountain.com.

• LDPC Codes:

- [Mitzenmacher:2004] M. Mitzenmacher, Digital Fountains: A Survey and Look Forward, *IEEE Information Theory Workshop*, San Antonio, October, 2004, http://wcl3.tamu.edu/itw2004/program.html.
- [Shokrollahi:2003] A. Shokrollahi, "Raptor Codes," Digital Fountain Technical Report DR2003-06-001, 2003, http://www.digitalfountain.com/technology/researchLibrary/.
- [Uyeda et al:2004] F. Uyeda, H. Xia and A. Chien, "Evaluation of a High Performance Erasure Code Implementation," University of California, San Diego Technical Report CS2004-0798, 2004, http://www.cse.ucsd.edu.