

When are they useful?

Anytime you need to tolerate failures.

For example:
Disk Array Systems
$\mathrm{MTTF}_{\text {firt }}=\mathrm{MTTF}_{\text {one }} / n$

Terms \& Definitions

- Number of data disks: n
- Number of coding disks: m
- Rate of a code:
$R=n /(n+m)$
- Identifiable Failure: "Erasure"

Issues with Erasure Coding

- Performance

- Encoding
- Typically $O(m n)$, but not always.

- Update
- Typically $O(m)$, but not always.

- Decoding
- Typically $O(m n)$, but not always.

Issues with Erasure Coding

- Space Usage
- Quantified by two of four:
- Data Devices: n
- Coding Devices: m
- Sum of Devices: $(n+m)$
- Rate: $R=n /(n+m)$
- Higher rates are more space efficient, but less fault-tolerant.

Issues with Erasure Coding

- Failure Coverage - Four ways to specify
- Specified by a threshold:
- (e.g. 3 erasures always tolerated).
- Specified by an average:
- (e.g. can recover from an average of 11.84 erasures).
- Specified as MDS (Maximum Distance Separable):
- MDS: Threshold $=$ average $=m$.
- Space optimal.
- Specified by Overhead Factor f :
- $f=$ factor from MDS $=m /$ average .
- f is always $>=1$
- $f=1$ is MDS.

Issues with Erasure Coding

- Flexibility

- Can you arbitrarily add data / coding nodes?
- (Can you change the rate)?
- How does this impact failure coverage?

Trivial Example: Replication

Can tolerate any
m erasures.

- MDS
- Extremely fast encoding/decoding/update.
- Rate: $R=1 /(m+1)$ - Very space inefficient
- There are many replication/based systems (P2P especially).

Evaluating Parity

- MDS
- Rate: $R=n /(n+1)$ - Very space efficient
- Optimal encoding/decoding/update:
- n - l XORs to encode $\&$ decode
- 2 XORs to update
- Extremely popular (RAID Level 5).
- Downside: $m=1$ is limited.

Unfortunately

- Those are the last easy things you'll see.
- For ($n>1, m>1$), there is no consensus on the best coding technique.
- They all have tradeoffs.

The Point of This Tutorial

- To introduce you to the various erasure coding techniques.
- Reed Solomon codes.
- Parity-array codes.
- LDPC codes.
- To help you understand their tradeoffs.
- To help you evaluate your coding needs.
- This too is not straightforward.

Why is this such a pain?

- Coding theory historically has been the purview of coding theorists.
- Their goals have had their roots elsewhere (noisy communication lines, byzantine memory systems, etc).
- They are not systems programmers.
- (They don't care...)

Part 1: Reed-Solomon Codes

- The only MDS coding technique for arbitrary $n \& m$.
- This means that m erasures are always tolerated.
- Have been around for decades.
- Expensive.
- I will teach you standard \& Cauchy variants.

Reed-Solomon Codes

- Operate on binary words of data, composed of w bits, where $2^{w} \geq n+m$.

Reed-Solomon Codes

- This means we only have to focus on words, rather than whole devices.

- Word size is an issue:
- If $n+m \leq 256$, we can use bytes as words.
- If $n+m \leq 65,536$, we can use shorts as words.

Reed-Solomon Codes

- Codes are based on linear algebra.
- First, consider the data words as a column vector D :

Reed-Solomon Codes

- Codes are based on linear algebra.
- Next, define an $(n+m)^{*} n$ "Distribution Matrix" B, whose first n rows are the identity matrix:

Reed-Solomon Codes

- Codes are based on linear algebra.
$-B^{*} D$ equals an $(n+m)^{*} l$ column vector composed of D and C (the coding words):

Reed-Solomon Codes

- This means that each data and coding word has a corresponding row in the distribution matrix.

Reed-Solomon Codes

- Suppose m nodes fail.
- To decode, we create B^{\prime} by deleting the rows of B that correspond to the failed nodes.

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
$\mathrm{~B}_{11}$	$\mathrm{~B}_{12}$	$\mathrm{~B}_{13}$	$\mathrm{~B}_{14}$	$\mathrm{~B}_{15}$
$\mathrm{~B}_{21}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{23}$	$\mathrm{~B}_{24}$	$\mathrm{~B}_{25}$
$\mathrm{~B}_{31}$	$\mathrm{~B}_{32}$	$\mathrm{~B}_{33}$	$\mathrm{~B}_{34}$	$\mathrm{~B}_{35}$

B

Reed-Solomon Codes

- Suppose m nodes fail.
- To decode, we create B^{\prime} by deleting the rows of B that correspond to the failed nodes.
- You'll note that $B^{\prime *} D$ equals the survivors.

Reed-Solomon Codes

- Now, invert B^{\prime} :

Reed-Solomon Codes

- Now, invert B^{\prime} :
- And multiply both sides of the equation by B^{3-1}

Reed-Solomon Codes

- Now, invert B^{\prime} :
- And multiply both sides of the equation by $B^{\prime-1}$
- Since $B^{\prime}-1 * B^{\prime}=I$, You have just decoded D !

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
I				

*

Reed-Solomon Codes

- Now, invert B^{\prime} :
- And multiply both sides of the equation by B^{3-1}
- Since $B^{\text {' } 1 *} B^{\prime}=I$, You have just decoded D !

Reed-Solomon Codes

- To Summarize: Encoding
- Create distribution matrix B.
- Multiply B by the data to create coding words.
- To Summarize: Decoding
- Create B ' by deleting rows of B.
- Invert B^{\prime}.
- Multiply B^{-1} by the surviving words to reconstruct the data.

Reed-Solomon Codes

Two Final Issues:

- \#1: How to create B?
- All square submatrices must be invertible.
- Derive from a Vandermonde Matrix [Plank,Ding:2005].
- \#2: Will modular arithmetic work?
- NO!!!!! (no multiplicative inverses)
- Instead, you must use Galois Field arithmetic.

Reed-Solomon Codes

Galois Field Arithmetic:

- $G F\left(2^{w}\right)$ has elements $0,1,2, \ldots, 2^{w-1}$.
- Addition = XOR
- Easy to implement
- Nice and Fast
- Multiplication hard to explain
- If w small (≤ 8), use multiplication table.
- If w bigger (≤ 16), use log/anti-log tables.
- Otherwise, use an iterative process.

Reed-Solomon Codes

Galois Field Example: $G F\left(2^{3}\right)$:

- Elements: 0, 1, 2, 3, 4, 5, 6, 7.
- Addition = XOR:
- $(3+2)=1$
- $(5+5)=0$

Multiplication								
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7
$\mathbf{2}$	0	2	4	6	3	1	7	5
$\mathbf{3}$	0	3	6	5	7	4	1	2
$\mathbf{4}$	0	4	3	7	6	2	5	1
$\mathbf{5}$	0	5	1	4	2	7	3	6
$\mathbf{6}$	0	6	7	1	5	3	2	4
$\mathbf{7}$	0	7	5	2	1	6	4	3

- $(7+3)=4$
- Multiplication/Division:
- Use tables.
- $(3 * 4)=7$
- $(7 \div 3)=4$

Division

		1	2	3	4	5	6	7
$0 \text { 「 }$	-	-	-	-	-	-	-	-
1	0	1	2	3	4	5	6	7
2	0	5	1	4	2	7	3	6
3	0	6	7	1	5	3	2	4
	0	7	5	2	1	6	4	3
5	0	2	4	6	3	1	7	5
6	0	3	6	5	7	4	1	2
	0	4	3			2		

Reed-Solomon Performance

- Encoding: $O(m n)$
- More specifically: $m S\left[(n-1) / B_{X O R}+n / B_{G F M u l t}\right]$
- $S=$ Size of a device
$-B_{X O R}=$ Bandwith of XOR (3 GB/s)
$-B_{G F M u l t}=$ Bandwidth of Multiplication over $G F\left(2^{w}\right)$
- $G F\left(2^{8}\right): 800 \mathrm{MB} / \mathrm{s}$
- $G F\left(2^{16}\right): 150 \mathrm{MB} / \mathrm{s}$

1	0	0	0	0		
0	1	0	0	0		
0	0	1	0	0		
0	0	0	1	0		
0	0	0	0	1		
$\mathrm{~B}_{11}$	$\mathrm{~B}_{12}$	$\mathrm{~B}_{13}$	$\mathrm{~B}_{l 4}$	$\mathrm{~B}_{l 5}$		
$\mathrm{~B}_{21}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{23}$	$\mathrm{~B}_{24}$	$\mathrm{~B}_{25}$		
$\mathrm{~B}_{31}$	$\mathrm{~B}_{32}$	$\mathrm{~B}_{33}$	$\mathrm{~B}_{34}$	$\mathrm{~B}_{35}$	$*$	D_{1}
:---						
D_{2}						
D_{3}						
D_{4}						
D_{5}	$=$	D_{1}				
:---						
D_{2}						
D_{3}						
D_{4}						
D_{5}						
C_{1}						
C_{2}						
C_{3}						

Reed-Solomon Performance

- Update: $O(m)$
- More specifically: $m+1$ XORs and m multiplications.

1	0	0	0	0		
0	1	0	0	0		
0	0	1	0	0		
0	0	0	1	0		
0	0	0	0	1		
$\mathrm{~B}_{11}$	$\mathrm{~B}_{12}$	$\mathrm{~B}_{13}$	$\mathrm{~B}_{14}$	$\mathrm{~B}_{15}$		
$\mathrm{~B}_{21}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{23}$	$\mathrm{~B}_{24}$	$\mathrm{~B}_{25}$		
$\mathrm{~B}_{31}$	$\mathrm{~B}_{32}$	$\mathrm{~B}_{33}$	$\mathrm{~B}_{34}$	$\mathrm{~B}_{35}$	$*$	D_{1}
:---						
D_{2}						
D_{3}						
D_{4}						
D_{5}	$=$	D_{1}				
:---						
D_{2}						
D_{3}						
D_{4}						
D_{5}						
C_{1}						
C_{2}						
C_{3}						

Reed-Solomon Performance

- Decoding: $O(m n)$ or $O\left(n^{3}\right)$
- Large devices: $d S\left[(n-1) / B_{X O R}+n / B_{G F M u l t}\right]$
- Where $d=$ number of data devices to reconstruct.
- Yes, there's a matrix to invert, but usually that's in the noise because $d S n \gg n^{3}$.

Reed-Solomon Bottom Line

- Space Efficient: MDS
- Flexible:
- Works for any value of n and m.
- Easy to add/subtract coding devices.
- Public-domain implementations.
- Slow:
- n-way dot product for each coding device.
- GF multiplication slows things down.

Cauchy Reed-Solomon Codes

[Blomer et al:1995] gave two improvements:

- \#1: Use a Cauchy matrix instead of a Vandermonde matrix: Invert in $O\left(n^{2}\right)$.
- \#2: Use neat projection to convert Galois Field multiplications into XORs.
- Kind of subtle, so we'll go over it.

Cauchy Reed-Solomon Codes

- Convert distribution matrix from $(n+m)^{*} n$ over $G F\left(2^{w}\right)$ to $w(n+m)^{*} w n$ matrix of 0 's and 1 's:

Cauchy Reed-Solomon Codes

- Now split each data device into w "packets" of size S / w.

$$
\begin{aligned}
& \text { DI } \left._{1}=\square\right\} w \\
& \text { D }_{2} \\
& D_{2} \\
& D_{3}=\square \\
& D_{4}=\square \\
& D_{5}=\square
\end{aligned}
$$

Cauchy Reed-Solomon Codes

- Now the matrix encoding can be performed with XORs of whole packets:

Cauchy Reed-Solomon Codes

- More Detail: Focus solely on C_{1}.

Cauchy Reed-Solomon Codes

- Create a coding packet by XORing data packets with 1's in the proper row \& column:

Cauchy Reed-Solomon Performance

- Encoding: $O(w m n)$
- Specifically: $O(w) * m S n / B_{X O R}$ [Blomer et al:1995]
- Actually: $m S(o-1) / B_{X O R}$
- Where $o=$ average number of 1's per row of the distribution matrix.
- Decoding: Similar: $d S(o-1) / B_{X O R}$

Part 2: Parity Array Codes

- Codes based solely on parity (XOR).
- MDS variants for $m=2, m=3$.
- Optimal/near optimal performance.
- What I'll show:
- EVENODD Coding
- X-Code
- Extensions for larger m
- STAR
- WEAVER
- HoVer
- (Blaum-Roth)

EVENODD Coding

- The "grandfather" of parity array codes.
- [Blaum et al:1995]
- $m=2$. $n=p$, where p is a prime >2.
- Partition data, coding devices into blocks of $p-1$ rows of words:

EVENODD Coding

- Logically, a word is a bit.
- In practice, a word is larger.
- Example shown with $n=p=5$:
- Each column represents a device.

EVENODD Coding

- Column C_{0} is straightforward
- Each word is the parity of the data words in its row:

EVENODD Coding

To calculate column C_{1}, first calculate S (the "Syndrome"), which is the parity of one of the diagonals:

EVENODD Coding

Then, $C_{i, 1}$ is the parity of S and all data words on the diagonal containing $D_{i, 0}$:

EVENODD Coding

Here's the whole system:

EVENODD Coding

Now, suppose two data devices fail (This is the hard case).

EVENODD Coding

- First, note that S is equal to the parity of all $C_{i, j}$.
- Next, there will be at least one diagonal that is missing just one data word.
- Decode it/them.

EVENODD Coding

- Next, there will be at least one row missing just one data word:
- Decode it/them.

EVENODD Coding

- Continue this process until all the data words are decoded:

EVENODD Coding
If n is not a prime, then find the next prime p, and add $p-n$ "virtual" data devices: - E.g. $n=8, p=11$.

EVENODD Performance

- Encoding: $O\left(n^{2}\right)$ XORs per big block.
- More specifically: $(2 n-1)(p-1)$ per block.
- This means ($n-1 / 2$) XORs per coding word.
- Optimal is (n-1) XORs per coding word.
- Or: $m S[n-1 / 2] / B_{X O R}$, where
- $S=$ size of a device
- $B_{X O R}=$ Bandwith of XOR

EVENODD Performance

- Update: Depends.
- If not part of the calculation of S, then 3 XORs (optimal).
- If part of the calculation of S, then $(p+1)$ XORS (clearly not optimal).

EVENODD Performance

- Decoding:
- Again, it depends on whether you need to use C_{1} to decode. If so, it's more expensive and not optimal.
- Also, when two data devices fail, decoding is serialized.

EVENODD Bottom Line

- Flexible: works for all values of n.
- Excellent encoding performance.
- Poor update performance in $1 /(n-1)$ of the cases.
- Mediocre decoding performance.
- Much better than Reed Solomon coding for everything except the pathelogical updates (average case is fine).

Horizontal vs Vertical Codes

- Horizontal: Devices are all data or all coding.
- Vertical: All devices hold both data and coding.

Horizontal

Vertical

Horizontal vs Vertical Codes

"Parity Striping"
A simple and effective vertical code for $m=1$:

$D=$ parity of allin a row

- Good: Optimal coding/decoding.
- Good: Distributes device access on update.
- Bad (?): All device failures result in recovery.

Horizontal vs Vertical Codes

- We can lay out parity striping so that all code words are in the same row:
- (This will help you visualize the X-Code...)

The X-Code

- MDS parity-array code with optimal performance.
- [Xu,Bruck:1999]
- $m=2$. $n=p-2$, where p is a prime.
- n rows of data words
- 2 rows of coding words
- $n+2$ columns
- For example: $n=5$:

The X-Code

- Each coding row is calculated by parity-striping with opposite-sloped diagonals:

The X-Code

- Each coding word is the parity of n data words.
- Therefore, each coding word is independent of one data device.
- And each data word is independent of two data devices:

The X-Code

- Suppose we have two failures.
- There will be four words to decode.

The X-Code

- Suppose we have two failures.
- There will be four words to decode.

The X-Code

- We can now iterate, decoding two words at every iteration:

The X-Code

- We can now iterate, decoding two words at every iteration:

X-Code Performance

- Encoding: $O\left(n^{2}\right)$ XORs per big block.
- More specifically: $2(n-1)(n+2)$ per big block.
- This means ($n-1$) XORs per coding word.
- Optimal.
- Or: $m S[n-1] / B_{X O R}$, where
- $S=$ size of a device
- $B_{X O R}=$ Bandwith of XOR

X-Code Performance

- Update: 3 XORs - Optimal.
- Decoding: $S[n-1] / B_{X O R}$ per failed device.

So this is an excellent code.
Drawbacks:

- $n+2$ must be prime.
- (All erasures result in decoding.)

Other Parity-Array Codes

- Extends EVENODD to $m=3$.

- Vertical codes for higher failures.
- HoVer [Hafner:2005H]:
- Combination of Horizontal/Vertical codes.
- Blaum-Roth [Blaum,Roth:1999]:
- Theoretical results/codes.

$m=2, n=2:$
$m=3, n=3:$

- Both codes are MDS.
- Both codes are optimal.
- No X-Code for $n=2$.
- Other WEAVER codes- up to 12 erasures, but not MDS.

HoVer Codes

- Generalized framework for a blend of horizontal and vertical codes.
- $\operatorname{HoVer}_{v, h}^{t}[r, c]:$

$t=$ fault-tolerance

Not MDS, but interesting nonetheless.

HoVer Codes

- For example, there exists: $\mathrm{HoVer}^{3}{ }_{2,1}[26,29]$:
- From [Hafner:2005H,Theorem 5, Bullet 6]

HoVer $_{2,1}$ [26,29]: Rate .897

MDS Code with same
\# of devices: Rate .900

Blaum-Roth Codes

- Codes are Minimum Density.
- Optimal encoding and decoding?
- Writing is Maximum Density.
- Will be distilled for the systems programmer someday...

Part 3: LDPC -Low-Density Parity-Check Codes

- Codes based solely on parity.
- Distinctly non-MDS.
- Performance far better than optimal MDS.
- Long on theory / short on practice.
- What I'll show:
- Standard LDPC Framework \& Theory
- Optimal codes for small m
- Codes for fixed rates
- LT codes

LDPC Codes

- One-row, horizontal codes:

- Codes are defined by bipartite graphs Data words on the left, coding on the right:

$C_{1}=D_{1}+D_{3}+D_{4}$
$C_{2}=D_{1}+D_{2}+D_{3}$
$C_{3}=D_{2}+D_{3}+D_{4}$
- Typical representation is by a Tanner Graph
- Also bipartite.
- $(n+m)$ left-hand nodes: Data + coding
- m right-hand nodes: Equation constraints

LDPC Codes

- Example coding

$1+0+0+C_{1}=0$
$D_{1}+D_{2}+D_{3}+C_{2}=0$
$D_{2}+D_{3}+D_{4}+C_{3}=0$

LDPC Codes

- Example coding

LDPC Codes

- Example coding

- Tanner Graphs:
- More flexible
- Allow for straightforward, graph-based decoding.
- Decoding Algorithm:
- Put 0 in each constraint.
- For each non-failed node i :
- XOR i 's value into each adjacent constraint.
- Remove that edge from the graph.
- If a constraint has only one edge, it holds the value of the one node adjacent to it. Decode that node.

LDPC Codes

- Decoding example:

Suppose D_{2}, D_{3} and C_{2} fail:

LDPC Codes

- Decoding example:

First, put zero into the constraints.

LDPC Codes

- Decoding example:

Next, XOR D_{l} into its constraints:

- Decoding example:

And remove its edges from the graph

LDPC Codes

- Decoding example:

Do the same for D_{4} :

LDPC Codes

- Decoding example:

And with C_{1}

LDPC Codes

- Decoding example:

Now, we can decode D_{3}, and process its edges.

LDPC Codes

- Decoding example:

Finally, we process C_{3} and finish decoding.

LDPC Codes

- Decoding example:

Finally, we process C_{3} and finish decoding.

LDPC Codes

- Decoding example:

Finally, we process C_{3} and finish decoding.

LDPC Codes

- Decoding example:

We're done!

LDPC Codes

- Encoding:
- Just decode starting with the data nodes.
- Not MDS:
- For example: Suppose $D_{1}, D_{2} \& D_{3}$ fail:

LDPC Codes

- History:
- Gallager's PhD Thesis (MIT): 1963
- Landmark paper: Luby et al: 1997
- Result \#1: Irregular codes perform better than regular codes (in terms of space, not time).

LDPC Codes

- History:
- Gallager's PhD Thesis (MIT): 1963
- Landmark paper: Luby et al: 1997
- Result \#2: Defined LDPC codes that are:

Asymptotically MDS!

LDPC Codes: Asymptotically MDS

- Recall:
- The rate of a code: $R=n /(n+m)$.
- The overhead factor of a code: $f=$ factor from MDS:
- $f=m /$ (average nodes required to decode).
- $f \geq 1$.
- If $f=1$, the code is MDS.
- You are given R.

LDPC Codes: Asymptotically MDS

- Define:
- Probability distributions λ and ρ for cardinality of left-hand and right-hand nodes.

- Prove that:
- As $n \rightarrow \infty$, and m defined by R,
- If you construct random graphs where node cardinalities adhere to λ and ρ,
$-\operatorname{Then} f \rightarrow 1$.

LDPC Codes: Asymptotically MDS

- Let's reflect on the significance of this:
- Encoding and decoding performance is $O(1)$ per coding node ("Low Density").
- Update performance is $O(1)$ per updated device.
- Yet the codes are asymptotically MDS.
- Wow. Spurred a flurry of similar research.
- Also spurred a startup company, "Digital Fountain," which applied for and received a flurry of patents.

LDPC Codes: Asymptotically MDS

- However:
- You can prove that:
- While f does indeed approach 1 as $n \rightarrow \infty$,
- f is always strictly >1.
- Moreover, my life is not asymptotic!
- Question 1: How do I construct codes for finite n ?
- Question 2: How will they perform?
- Question 3: Will I get sued?
- As of 2003:

No one had even attempted to answer these questions!!

LDPC Codes: Small m

- [Plank et al:2005]
- \#1: Simple problem:
- Given a Tanner Graph, is it systematic?
- I.e: Can n of the left-hand nodes hold the data?

Is this a systematic code for
$n=3, m=4$?

LDPC Codes: Small m

- Simple algorithm:
- Find up to m nodes N_{i} with one edge, each to different constraints.
- Label them coding nodes.
- Remove them, their edges, and all edges to their constraints.
- Repeat until you have m coding nodes.

Is this a systematic code for $n=3, m=4$?

Start with $N_{1,}$ and N_{3} :

LDPC Codes: Small m

- Simple algorithm:
- Find up to m nodes N_{i} with one edge, each to different constraints.
- Label them coding nodes.
- Remove them, their edges, and all edges to their constraints.
- Repeat until you have m coding nodes.

Is this a systematic code for
$n=3, m=4$?
N_{2}, and N_{4} are the final coding nodes.

LDPC Codes: Small m

- Simple algorithm:
- Find up to m nodes N_{i} with one edge, each to different constraints.
- Label them coding nodes.
- Remove them, their edges, and all edges to their constraints.
- Repeat until you have m coding nodes.

LDPC Codes: Small m

- \#2: Define graphs by partitioning nodes into Edge Classes:
E.g. $m=3$

LDPC Codes: Small m

- \#2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

- \#2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

- Best graphs for $m \in[2: 5]$ and $n \in[1: 1000]$ in [Plank:2005].
- Features:
- Not balanced. E.g. $m=3, n=50$ is $<9,9,7,9,7,7,5>$.
- Not loosely left-regular
- LH nodes' cardinalities differ by more than one.
- Loosely right-regular
- RH nodes' (constraints) cardinalities differ at most by one.
- Loose Edge Class Equivalence
- Counts of classes with same cardinality differ at most by one.

LDPC Codes: Small m

- f does not decrease monotonically with n.
- $f \rightarrow 1$ as $n \rightarrow \infty$
- f is pretty small (under 1.10 for $n \geq 10$).

LDPC Codes: Small m

Encoding Performance: 40-60\% Better than optimal.

LDPC Codes: Larger m

- [Plank,Thomason:2004]
- A lot of voodoo - Huge Monte Carlo simulations.
- Use 80 published values of λ and ρ, test $R=1 / 3,1 / 2,2 / 3$.
- Three type of code constructions:

Simple Systematic

IRA:
Irregular
Repeat-Accumulate

Gallager Unsystematic

LDPC Codes: Larger m

- Lower rates have higher f.
- $f \rightarrow 1$ as $n \rightarrow \infty$
- f at their worst in the useful ranges for storage applications.

LDPC Codes: Larger m

- Simple systematic perform better for smaller n.
- IRA perform better for larger n.
- (Not in the graph - Theoretical λ and ρ didn't match performance),

LDPC Codes: Larger m

- Improvement over optimal MDS coding is drastic indeed.

LDPC Codes: LT Codes

- Luby-Transform Codes: [Luby:2002]
- Rateless LDPC codes for large n, m.
- Uses an implicit graph, created on-the-fly:
- When you want to create a coding word, you randomly select a weight w. This is the cardinality of the coding node.
- w's probability distribution comes from a "weight table."
- Then you select w data words at random (uniform distribution), and XOR them to create the coding word.
- As before, theory shows that the codes are asymptotically MDS.
- [Uyeda et al:2004] observed $f \approx 1.4$ for $n=1024, m=5120$.
- Raptor Codes [Shokrollahi:2003] improve upon LT-Codes.

LDPC Codes: Bottom Line

- For large n, m - Essential alternatives to MDS codes.
- For smaller n, m - Important alternatives to MDS codes:
- Improvement is not so drastic.
- Tradeoffs in space / failure resilience must be assessed.

LDPC Codes: Bottom Line

- "Optimal" codes are only known in limited cases.
- Finite theory much harder than asymptotics.
- "Good" codes should still suffice.
- Patent issues cloud the landscape.
- Tornado codes (specific λ and ρ) patented.
- Same with LT codes.
- And Raptor codes.
- Scope of patents has not been defined well.
- Few published codes.
- Need more research!

Part 4: Evaluating Codes

- Defining "fault-tolerance"
- Encoding - impact of the system
- Decoding - impact of the system
- Related work

Defining "fault-tolerance"

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures:
- Solution \#1: The only MDS alternative: Reed-Solomon Coding:

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures:
- Solution \#1: The only MDS alternative:

Reed-Solomon Coding:

- 80\% of storage contains data.
- Cauchy Matrix for $w=5$ has 912 ones.
- 44.6 XORs per coding word.
- Encoding: 59.5 seconds.
- Decoding: roughly 14.9 seconds per failed device.
- Updates: 12.4 XORs per updated node.

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures :
- Solution \#2: $\operatorname{HoVer}^{4}{ }_{3,1}[12,19]:$

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures :
- Solution \#2: $\operatorname{HoVer}^{4}{ }_{3,1}[12,19]:$
- 228 data words, 69 coding words (3 wasted).
-76% of storage contains data.
- Encoding: $(12 * 18+3 * 19 * 11) / 69=12.22$ XORs per coding word: 18.73 seconds.
- Decoding: Roughly 5 seconds per device.
- Update: 5 XORs

Defining "fault-tolerance"

- 20 storage devices $(1 \mathrm{~GB})$ resilient to 4 failures:
- Solution \#3: 50\% Efficiency WEAVER code

- 50% of storage contains data.
- Encoding: 3 XORs per coding word: 10 seconds.
- Decoding: Roughly 1 second per device.
- Update: 5 XORs

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures:
- Solution \#4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures:
- Solution \#4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>
- 80% of storage for data
$-f=1.0496$ (Resilient to 3.81 failures...)
- Graph has 38 edges: 30 XORs per 4 coding words.
- Encoding: 10 seconds.
- Decoding: Roughly 3 seconds per device.
- Update: 3.53 XORs

Defining "fault-tolerance"

- 20 storage devices (1 GB) resilient to 4 failures:

Encoding Considerations

- Decentralized Encoding:
- Not reasonable to have one node do all encoding.
- E.g. Network Coding [Ahlswede et al:2000].
- Reed-Solomon codes work well, albeit with standard performance.
- Randomized constructions [Gkantsidis,Rodriguez:2005].

Decoding Considerations

- Scheduling - Content Distribution Systems:
- All blocks are not equal - data vs. coding vs. proximity: [Collins,Plank:2005].
- LDPC: All blocks are not equal \#2 - don't download a block that you've already decoded [Uyeda et al:2004].
- Simultaneous downloads \& aggressive failover [Collins,Plank:2004].

Resources (Citations)

- Reed Solomon Codes:

- [Plank:1997] J. S. Plank, "A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems," Software -- Practice \& Experience, 27(9), September, 1997, pp. 995-1012.
http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Rizzo:1997] L. Rizzo, "Effective erasure codes for reliable computer communication protocols," ACM SIGCOMM Computer Communication Review, 27(2), 1997, pp. 24-36.
http://doi.acm.org/10.1145/263876.263881.
- [Plank,Ding:2005] J. S. Plank, Y. Ding, "Note: Correction to the 1997 Tutorial on Reed-Solomon Coding," Software -- Practice \& Experience, 35(2), February, 2005, pp. 189-194. http://www.cs.utk.edu/~plank/plank/papers/papers.html. (Includes software)

Resources (Citations)

- Reed Solomon Codes:

- [Blomer et al:1995] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby and D. Zuckerman, "An XOR-Based Erasure-Resilient Coding Scheme," Technical Report TR-95-048, International Computer
Science Institute, August, 1995.
http://www.icsi.berkeley.edu/~luby/.
(Includes software)
- [Plank:2005] J. Plank "Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Storage Applications," Submitted for publication, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
(Includes good Cauchy Matrices)

Resources (Citations)

- Parity Array Codes:

- [Blaum et al:1995] M. Blaum, J. Brady, J. Bruck and J. Menon, EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures, IEEE Transactions on Computing, 44(2), February, 1995, pp. 192-202.
- [Blaum,Roth:1999] M. Blaum and R. M. Roth "On Lowest Density MDS Codes," IEEE Transactions on Information Theory, 45(1), January, 1999, pp. 46-59.
- [Xu,Bruck:1999] L. Xu and J. Bruck, X-Code: MDS Array Codes with Optimal Encoding, IEEE Transactions on Information Theory, 45(1), January, 1999, pp. 272-276.

Resources (Citations)

- Parity Array Codes:
- [Huang,Xu:2005] C. Huang and L. Xu, "STAR: An Efficient Coding Scheme for Correcting Triple Storage Node Failures," FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005, http://www.usenix.org/events/fast05.
- [Hafner:2005H] J. L. Hafner, "HoVer Erasure Codes for Disk Arrays," Research Report RJ10352 (A0507-015), IBM Research Division, July, 2005, http://domino.research.ibm.com/library.
- [Hafner:2005W] J. L. Hafner, "WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems," FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005, http://www.usenix.org/events/fast05.

Resources (Citations)

- LDPC Codes:

- [Gallager:1963] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.
- [Wicker,Kim:2005] S. B. Wicker and S. Kim, Fundamentals of Codes, Graphs, and Iterative Decoding, Kluwer Academic Publishers, Norwell, MA, 2003.
- [Luby et al:1997] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V. Stemann, "Practical Loss-Resilient Codes," 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pages 150-159, http://www.icsi.berkeley.edu/~luby/.
- [Plank et al:2005] J. S. Plank, A. L. Buchsbaum, R. L. Collins and M. G. Thomason, "Small Parity-Check Erasure Codes - Exploration and Observations," DSN-2005: International Conference on Dependable Systems and Networks, Yokohama, Japan, IEEE, 2005, http://www.cs.utk.edu/~plank/plank/papers/papers.html. (Includes enumeration of best codes for $m=2-5, n=2-1000$)

Resources (Citations)

- LDPC Codes:

- [Plank,Thomason:2004] J. S. Plank and M. G. Thomason, "A Practical Analysis of Low-Density Parity-Check Erasure Codes for Wide-Area Storage Applications," DSN-2004: The International Conference on Dependable Systems and Networks, IEEE, Florence, Italy, June, 2004, pp. 115-124, http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Collins,Plank:2005] R. L. Collins and J.. S. Plank, "Assessing the Performance of Erasure Codes in the Wide-Area," DSN-2005: International Conference on Dependable Systems and Networks, Yokohama, Japan, June, 2005,
http://www.cs.utk.edu/~plank/plank/papers/papers.html.
- [Luby:2002] M. Luby, LT Codes, IEEE Symposium on Foundations of Computer Science, 2002, http://www.digitalfountain.com.

Resources (Citations)

- LDPC Codes:

- [Mitzenmacher:2004] M. Mitzenmacher, Digital Fountains: A Survey and Look Forward, IEEE Information Theory Workshop, San Antonio, October, 2004, http://wcl3.tamu.edu/itw2004/program.html.
- [Shokrollahi:2003] A. Shokrollahi, "Raptor Codes," Digital Fountain Technical Report DR2003-06-001, 2003, http://www.digitalfountain.com/technology/researchLibrary/.
- [Uyeda et al:2004] F. Uyeda, H. Xia and A. Chien, "Evaluation of a High Performance Erasure Code Implementation," University of California, San Diego Technical Report CS2004-0798, 2004, http://www.cse.ucsd.edu.

