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What is an Erasure Code?

A technique that lets you
take n storage devices: And have the entire

system be resilient to up
to m device failures:

Encode them onto m
additional storage devices:

When are they useful?

Anytime you need to tolerate failures.

For example:

Disk Array Systems

MTTFfirst = MTTFone/n



3

When are they useful?

Anytime you need to tolerate failures.

Network

Data Grids

When are they useful?

Anytime you need to tolerate failures.

Network

Collaborative/
Distributed

Storage
Applications
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When are they useful?

Anytime you need to tolerate failures.

Peer-to-peer
applications. Network

When are they useful?

Anytime you need to tolerate failures.

Distributed Data
or

Object Stores:

(Logistical Apps.)
Client

Client
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When are they useful?

Anytime you need to tolerate failures.

Digital
Fountains

Client

Client

Client

Information Source

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage.
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Terms & Definitions

• Number of data disks: n
• Number of coding disks: m
• Rate of a code: R = n/(n+m)
• Identifiable Failure: “Erasure”

The problem, once again

n data devices
m coding devices

Encoding

n+m data/coding
devices, plus erasures

Decoding

n data devices
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Issues with Erasure Coding

• Performance
– Encoding

• Typically O(mn), but not always.

– Update
• Typically O(m), but not always.

– Decoding
• Typically O(mn), but not always.

Issues with Erasure Coding

• Space Usage
– Quantified by two of four:

• Data Devices: n
• Coding Devices: m
• Sum of Devices: (n+m)
• Rate: R = n/(n+m)

– Higher rates are more space efficient,
but less fault-tolerant.
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Issues with Erasure Coding

• Failure Coverage - Four ways to specify

– Specified by a threshold:
• (e.g. 3 erasures always tolerated).

– Specified by an average:
• (e.g. can recover from an average of 11.84 erasures).

– Specified as MDS (Maximum Distance Separable):
• MDS: Threshold = average = m.
• Space optimal.

– Specified by Overhead Factor f:
• f = factor from MDS = m/average.
• f  is always >= 1
• f = 1 is MDS.

Issues with Erasure Coding

• Flexibility
– Can you arbitrarily add data / coding nodes?
– (Can you change the rate)?
– How does this impact failure coverage?
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Trivial Example: Replication

• MDS
• Extremely fast encoding/decoding/update.
• Rate: R = 1/(m+1) - Very space inefficient
• There are many replication/based systems

(P2P especially).

One piece of data:
n = 1

m replicas

Can tolerate any
m erasures.

Decoding

Less Trivial Example: Simple Parity

Can tolerate any
single erasure.

n pieces of data

For example:

1 parity device:
m = 1

(XOR)
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Evaluating Parity

• MDS
• Rate: R = n/(n+1) - Very space efficient
• Optimal encoding/decoding/update:

– n-1 XORs to encode & decode
– 2 XORs to update

• Extremely popular (RAID Level 5).
• Downside: m = 1 is limited.

Unfortunately

• Those are the last easy things you’ll see.
• For (n > 1, m > 1), there is no consensus

on the best coding technique.
• They all have tradeoffs.
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The Point of This Tutorial

• To introduce you to the various erasure
coding techniques.
– Reed Solomon codes.
– Parity-array codes.
– LDPC codes.

• To help you understand their tradeoffs.
• To help you evaluate your coding needs.

– This too is not straightforward.

Why is this such a pain?

• Coding theory historically has been the
purview of coding theorists.

• Their goals have had their roots
elsewhere (noisy communication lines,
byzantine memory systems, etc).

• They are not systems programmers.

• (They don’t care…)
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Part 1: Reed-Solomon Codes

• The only MDS coding technique for
arbitrary n & m.

• This means that m erasures are always
tolerated.

• Have been around for decades.
• Expensive.
• I will teach you standard & Cauchy

variants.

Reed-Solomon Codes
• Operate on binary words of data,

composed of w bits, where 2w ≥ n+m.

Di

Di0

Di1

Di2

Di3

Di4

Di5

Di6

Di..

…

Words of size w
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Encoding

Reed-Solomon Codes
• Operate on binary words of data,

composed of w bits, where 2w ≥ n+m.

D

D0

D1

D2

D3

D4

D5

D6

D..

…

D

D0

D1

D2

D3

D4

D5

D6

D..

…

D

D0

D1

D2

D3

D4

D5

D6

D..

…

D

D0

D1

D2

D3

D4

D5

D6

D..

…

D

D0

D1

D2

D3

D4

D5

D6

D..

…

C

C0

C1

C2

C3

C4

C5

C6

C..

…

C

C0

C1

C2

C3

C4

C5

C6

C..

…

C

C0

C1

C2

C3

C4

C5

C6

C..

…

• This means we only have to focus on words,
rather than whole devices.

• Word size is an issue:
– If n+m ≤ 256, we can use bytes as words.
– If n+m ≤ 65,536, we can use shorts as words.

Encoding

Reed-Solomon Codes

D D D D D C C C

n m
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• Codes are based on linear algebra.
– First, consider the data words as a column vector D:

Reed-Solomon Codes

D5

D4

D3

D1

D2

n

D

• Codes are based on linear algebra.
– Next, define an (n+m)*n “Distribution Matrix” B,

whose first n rows are the identity matrix:

Reed-Solomon Codes

D5

D4

D3

D1

D2

n
B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1

B

n+m

n

D
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• Codes are based on linear algebra.
– B*D equals an (n+m)*1 column vector composed of

D and C (the coding words):

Reed-Solomon Codes

D5

D4

D3

D1

D2

B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1

B
D

* = D5

D4

D3

D1

D2

C3

C1

C2

D

C

n+m

n

• Codes are based on linear algebra.
– B*D equals an (n+m)*1 column vector composed of

D and C (the coding words):

• This means that each data and coding word has
a corresponding row in the distribution matrix.

Reed-Solomon Codes

B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1

B

D5

D4

D3

D1

D2

D

* = D5

D4

D3

D1

D2

C3

C1

C2

D

C
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• This means that each data and coding word has
a corresponding row in the distribution matrix.

• Suppose m nodes fail.
• To decode, we create B’ by deleting the rows of

B that correspond to the failed nodes.

Reed-Solomon Codes

0

B21

1

0

B22

0

0

B23

0 0

B24

1

0

0

B25

B11

0

B31

0
0

B12

0

B32

0
1

B13

0

B33

0
1

B14

0

B34

0
0

B15

B35

0
0

1

B

D5

D4

D3

D1

D2

C3

C1

C2

• Suppose m nodes fail.
• To decode, we create B’ by deleting the rows of

B that correspond to the failed nodes.
• You’ll note that B’*D equals the survivors.

Reed-Solomon Codes

B11

0

B31

0
0

B12

0

B32

0
1

B13

0

B33

0
1

B14

0

B34

0
0

B15

B35

0
0

1

B’

D5

D3

D2

C3

C1

Survivors
D5

D4

D3

D1

D2

D

* =
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D5

D3

D2

C3

C1

Survivors
D5

D4

D3

D1

D2

D

* =

• Now, invert B’:

Reed-Solomon Codes

B11

0

B31

0
0

B12

0

B32

0
1

B13

0

B33

0
1

B14

0

B34

0
0

B15

B35

0
0

1

B’

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1
Inverte

d

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1
Inverte

d

D5

D3

D2

C3

C1

Survivors
D5

D4

D3

D1

D2

D

* =

• Now, invert B’:
• And multiply both sides

of the equation by B’-1

Reed-Solomon Codes

B11

0

B31

0
0

B12

0

B32

0
1

B13

0

B33

0
1

B14

0

B34

0
0

B15

B35

0
0

1

B’

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

D5

D3

D2

C3

C1

Survivors

*0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

*
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0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

D5

D3

D2

C3

C1

Survivors

*

D5

D4

D3

D1

D2

D

* =

• Now, invert B’:
• And multiply both sides

of the equation by B’-1

• Since B’-1*B’ = I, You
have just decoded D!

Reed-Solomon Codes

B11

0

B31

0
0

B12

0

B32

0
1

B13

0

B33

0
1

B14

0

B34

0
0

B15

B35

0
0

1

B’

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

*
0
0
0

0
0
1

0

0
1

0
0
0

0
0

1

I
0 0 0 0 1

01 0 0 0

0
0
0

0
0
1

0

0
1

0
0
0

0
0

1

I
0 0 0 0 1

01 0 0 0

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

D5

D3

D2

C3

C1

Survivors

*

D5

D4

D3

D1

D2

D

* =

• Now, invert B’:
• And multiply both sides

of the equation by B’-1

• Since B’-1*B’ = I, You
have just decoded D!

Reed-Solomon Codes
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• To Summarize: Encoding
– Create distribution matrix B.
– Multiply B by the data to create coding words.

• To Summarize: Decoding
– Create B’ by deleting rows of B.
– Invert B’.
– Multiply B’-1 by the surviving words to reconstruct

the data.

Reed-Solomon Codes

Two Final Issues:

• #1: How to create B?
– All square submatrices must be invertible.
– Derive from a Vandermonde Matrix

[Plank,Ding:2005].

• #2: Will modular arithmetic work?
– NO!!!!! (no multiplicative inverses)
– Instead, you must use Galois Field arithmetic.

Reed-Solomon Codes
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Galois Field Arithmetic:

• GF(2w) has elements 0, 1, 2, …, 2w-1.

• Addition = XOR
– Easy to implement
– Nice and Fast

• Multiplication hard to explain
– If w small (≤ 8), use multiplication table.
– If w bigger (≤ 16), use log/anti-log tables.
– Otherwise, use an iterative process.

Reed-Solomon Codes

Galois Field Example: GF(23):

• Elements: 0, 1, 2, 3, 4, 5, 6, 7.

• Addition = XOR:
 (3 + 2) = 1
 (5 + 5) = 0
 (7 + 3) = 4

• Multiplication/Division:
 Use tables.
 (3 * 4) = 7
 (7 ÷ 3) = 4

Reed-Solomon Codes
Multiplication

Division
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• Encoding: O(mn)
– More specifically: mS [ (n-1)/BXOR + n/BGFMult ]
– S = Size of a device
– BXOR = Bandwith of XOR (3 GB/s)
– BGFMult = Bandwidth of Multiplication over GF(2w)

• GF(28): 800 MB/s
• GF(216): 150 MB/s

Reed-Solomon Performance

D5

D4

D3

D1

D2

B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1 * = D5

D4

D3

D1

D2

C3

C1

C2

• Update: O(m)
– More specifically: m+1 XORs and m multiplications.

Reed-Solomon Performance

D5

D4

D3

D1

D2

B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1 * = D5

D4

D3

D1

C3

C1

C2

D2
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• Decoding: O(mn) or O(n3)
– Large devices: dS [ (n-1)/BXOR + n/BGFMult ]
– Where d = number of data devices to reconstruct.
– Yes, there’s a matrix to invert, but usually that’s in

the noise because dSn >> n3.

Reed-Solomon Performance

0

0

0
0

0

1
0
0

1

0

0

0

0

0
1

B’-1

D5

D3

D2

C3

C1

Survivors

*

D5

D4

D3

D1

D2

D

=

• Space Efficient: MDS

• Flexible:
– Works for any value of n and m.
– Easy to add/subtract coding devices.
– Public-domain implementations.

• Slow:
– n-way dot product for each coding device.
– GF multiplication slows things down.

Reed-Solomon Bottom Line
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[Blomer et al:1995] gave two improvements:

• #1: Use a Cauchy matrix instead of a
Vandermonde matrix: Invert in O(n2).

• #2: Use neat projection to convert Galois Field
multiplications into XORs.

– Kind of subtle, so we’ll go over it.

Cauchy Reed-Solomon Codes

• Convert distribution matrix from (n+m)*n over
GF(2w) to w(n+m)*wn matrix of 0’s and 1’s:

Cauchy Reed-Solomon Codes

B11

0
0

B21

B31

0
0
1

B12

0
0

B22

B32

0

0
1

B13

0
0

B23

B33

0
0
1

B14

0

0

B24

B34

0
0

1

B15

0

0

B25

B35

0
0

1
n+m

n
wn

w(n+m)
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• Now split each data device into w “packets”
of size S/w.

Cauchy Reed-Solomon Codes

=

=

=

=

=

D1

D2

D3

D4

D5

w

• Now the matrix encoding can be performed
with XORs of whole packets:

Cauchy Reed-Solomon Codes

=*

C1

C2

C3
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• More Detail: Focus solely on C1.

Cauchy Reed-Solomon Codes

=*

C2

C3

C1=*

• Create a coding packet by XORing data packets
with 1’s in the proper row & column:

Cauchy Reed-Solomon Codes

C1=*

= + + + + + + +
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• Encoding: O(wmn)
– Specifically: O(w)*mSn/BXOR [Blomer et al:1995]
– Actually: mS(o-1)/BXOR
– Where o = average number of 1’s per row of the

distribution matrix.
• Decoding: Similar: dS(o-1)/BXOR

Cauchy Reed-Solomon Performance

=* C2

C3

C1

Encoding time:
• m = 4
• S = 1 MB
• BXOR = 3 GB/s
• BGFMult = 800 MB/s
• Cauchy Matrices

from [Plank:2005]

Does it matter?

We’ll discuss more 
performance later
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Part 2: Parity Array Codes

• Codes based solely on parity (XOR).
• MDS variants for m = 2, m = 3.
• Optimal/near optimal performance.
• What I’ll show:

– EVENODD Coding
– X-Code
– Extensions for larger m

• STAR
• WEAVER
• HoVer
• (Blaum-Roth)

EVENODD Coding
• The “grandfather” of parity array codes.
• [Blaum et al:1995]
• m = 2.  n = p, where p is a prime > 2.
• Partition data, coding devices into blocks of p-1 rows of

words:

D

…

D D D C0

…

C1
…

… … … …
p-1

p 2
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EVENODD Coding
• Logically, a word is a bit.
• In practice, a word is larger.
• Example shown with n = p = 5:

– Each column represents a device.

D0,0 D0,1 D0,2 D0,3 D0,4

D1,0 D1,1 D1,2 D1,3 D1,4

D2,0 D2,1 D2,2 D2,3 D2,4

D3,0 D3,1 D3,2 D3,3 D3,4

C0,0 C0,1

C1,0 C1,1

C2,0 C2,1

C3,0 C3,1

EVENODD Coding

• Column C0 is straightforward
– Each word is the parity of the data words in its row:

D0,0 D0,1 D0,2 D0,3 D0,4

D1,0 D1,1 D1,2 D1,3 D1,4

D2,0 D2,1 D2,2 D2,3 D2,4

D3,0 D3,1 D3,2 D3,3 D3,4

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity
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D0,4

EVENODD Coding
To calculate column C1, first calculate S (the

“Syndrome”), which is the parity of one of the
diagonals:

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3 D1,4

D2,0 D2,1 D2,2 D2,3 D2,4

D3,0 D3,1 D3,2 D3,3 D3,4

C0,1

C1,1

C2,1

C3,1

S

C0,1

C1,1

C2,1

C3,1

D0,4D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3 D1,4

D2,0 D2,1 D2,2 D2,3 D2,4

D3,0 D3,1 D3,2 D3,3 D3,4

EVENODD Coding
Then, Ci,1 is the parity of S and all data words on

the diagonal containing Di,0:

D0,0

D1,4

D2,3

D3,2

C0,1D0,1

D1,0

D2,4

D3,3

C1,1

D0,2

D1,1

D2,0

D3,4

C2,1

D0,3

D1,2

D2,1

D3,0 C3,1

S
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D0,4

D1,3

D2,2

D3,1

EVENODD Coding
Here’s the whole system:

D0,0

D1,4

D2,3

D3,2

C0,1D0,1

D1,0

D2,4

D3,3

C1,1

D0,2

D1,1

D2,0

D3,4

C2,1

D0,3

D1,2

D2,1

D3,0 C3,1

S

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity

D0,4

D2,2

EVENODD Coding
Now, suppose two data devices fail

(This is the hard case).

D0,0

D1,4

D3,2

C0,1

D1,0

D2,4

C1,1

D0,2

D2,0

D3,4

C2,1

D1,2

D3,0 C3,1

S

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity

D1,3

D3,1

D2,3

D0,1

D3,3

D1,1

D0,3

D2,1
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D0,4

D2,2

EVENODD Coding
• First, note that S is equal to the parity of all Ci,j.
• Next, there will be at least one diagonal that is missing just one

data word.
• Decode it/them.

D0,0

D1,4

D3,2

C0,1

D1,0

D2,4

C1,1

D0,2

D2,0

D3,4

C2,1

D1,2

D3,0 C3,1

S

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity

Parity

D1,1

D2,3

D0,4

D2,2

EVENODD Coding
• Next, there will be at least one row missing just one data word:
• Decode it/them.

D0,0

D1,4

D3,2

C0,1

D1,0

D2,4

C1,1

D0,2

D2,0

D3,4

C2,1

D1,2

D3,0 C3,1

S

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity

Parity

D1,1

D2,3D2,1

D1,3
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EVENODD Coding
• Continue this process until all the data words are decoded:

D0,4

D2,2

D0,0

D1,4

D3,2

C0,1

D1,0

D2,4

C1,1

D0,2

D2,0

D3,4

C2,1

D1,2

D3,0 C3,1

S

C0,0

C1,0

C2,0

C3,0

Parity

Parity

Parity

Parity

Parity

D1,1

D2,3D2,1

D1,3

D0,3D0,1

D3,3D3,1

EVENODD Coding
If n is not a prime, then find the next prime p, and add p-n

“virtual” data devices: - E.g. n=8, p=11.

n=8 (p-n)=3

0
0
0

0
0
0
0
0

0
0

0
0
0
0
0
0 0

0
0

0
0

0
0
0
0
0
0

(p-1)=10 0
0

0
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EVENODD Performance

• Encoding: O(n2) XORs per big block.

– More specifically: (2n-1)(p-1) per block.

– This means (n-1/2) XORs per coding word.
• Optimal is (n-1) XORs per coding word.

– Or: mS [n-1/2]/BXOR, where
• S = size of a device
• BXOR = Bandwith of XOR

EVENODD Performance

• Update: Depends.

– If not part of the calculation of S, then
3 XORs (optimal).

– If part of the calculation of S, then
(p+1) XORS (clearly not optimal).
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EVENODD Performance

• Decoding:

– Again, it depends on whether you need to
use C1 to decode.  If so, it’s more expensive
and not optimal.

– Also, when two data devices fail, decoding
is serialized.

EVENODD Bottom Line

• Flexible: works for all values of n.
• Excellent encoding performance.
• Poor update performance in 1/(n-1) of the

cases.
• Mediocre decoding performance.
• Much better than Reed Solomon coding

for everything except the pathelogical
updates (average case is fine).
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Horizontal vs Vertical Codes
• Horizontal: Devices are all data or all coding.
• Vertical: All devices hold both data and coding.

Horizontal Vertical

Horizontal vs Vertical Codes

• Good: Optimal coding/decoding.
• Good: Distributes device access on update.
• Bad (?): All device failures result in recovery.

= parity of all in a row

“Parity Striping”
A simple and effective vertical code for m=1:
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Horizontal vs Vertical Codes
• We can lay out parity striping so that all code words are

in the same row:
• (This will help you visualize the X-Code…)

The X-Code
• MDS parity-array code with optimal performance.
• [Xu,Bruck:1999]
• m = 2.  n = p-2, where p is a prime.

– n rows of data words
– 2 rows of coding words
– n+2 columns

• For example: n =5:

n = 5

m = 2

n + 2 = 7
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• Each coding row is calculated by parity-striping with
opposite-sloped diagonals:

The X-Code

• Each coding word is the parity of n data words.
– Therefore, each coding word is independent of one data device.
– And each data word is independent of two data devices:

The X-Code

Independent
of this device

Independent
of this device
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• Suppose we have two failures.
• There will be four words to decode.

The X-Code

• Suppose we have two failures.
• There will be four words to decode.

The X-Code
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• We can now iterate, decoding two words at
every iteration:

The X-Code

• We can now iterate, decoding two words at
every iteration:

The X-Code
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X-Code Performance

• Encoding: O(n2) XORs per big block.

– More specifically: 2(n-1)(n+2) per big block.

– This means (n-1) XORs per coding word.
• Optimal.

– Or: mS [n-1]/BXOR, where
• S = size of a device
• BXOR = Bandwith of XOR

X-Code Performance

• Update: 3 XORs - Optimal.

• Decoding: S [n-1]/BXOR per failed device.

So this is an excellent code.

Drawbacks:
• n+2 must be prime.
• (All erasures result in decoding.)
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Other Parity-Array Codes

• STAR [Huang,Xu:2005]:
– Extends EVENODD to m = 3.

• WEAVER [Hafner:2005W]:
– Vertical codes for higher failures.

• HoVer [Hafner:2005H]:
– Combination of Horizontal/Vertical codes.

• Blaum-Roth [Blaum,Roth:1999]:
– Theoretical results/codes.

Two WEAVER Codes
m = 2, n = 2: m = 3, n = 3:

• Both codes are MDS.
• Both codes are optimal.
• No X-Code for n = 2.
• Other WEAVER codes- up to 12 erasures,

but not MDS.
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HoVer Codes
• Generalized framework for a blend of horizontal and

vertical codes.

• HoVert
v,h[r,c]:

r

v

c h

t = fault-tolerance

Not MDS, but interesting
nonetheless.

(unused)

HoVer Codes
• For example, there exists: HoVer3

2,1[26,29]:
– From [Hafner:2005H,Theorem 5, Bullet 6]

HoVer3
2,1[26,29]: Rate .897 MDS Code with same 

# of devices: Rate .900
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Blaum-Roth Codes
• Codes are Minimum

Density.

• Optimal encoding and
decoding?

• Writing is Maximum
Density.

• Will be distilled for
the systems
programmer
someday…

Part 3: LDPC -
Low-Density Parity-Check Codes

• Codes based solely on parity.
• Distinctly non-MDS.
• Performance far better than optimal MDS.
• Long on theory / short on practice.
• What I’ll show:

– Standard LDPC Framework & Theory
– Optimal codes for small m
– Codes for fixed rates
– LT codes
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LDPC Codes
• One-row, horizontal codes:

• Codes are defined by bipartite graphs -
Data words on the left, coding on the right:

n m

C1 = D1 + D3 + D4

C2 = D1 + D2 + D3

C3 = D2 + D3 + D4

D1

D2

D3

D4

C1

C2

C3

• Typical representation is by a Tanner Graph
– Also bipartite.
– (n+m) left-hand nodes: Data + coding
– m right-hand nodes: Equation constraints

LDPC Codes

D1 + D3 + D4 + C1 = 0

D1 + D2 + D3 + C2 = 0

D2 + D3 + D4 + C3 = 0

D1

D2

D3

D4

C1

C2

C3

D1

D2

D3

D4

C1

C2

C3
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• Example coding

LDPC Codes

D1 + D3 + D4 + C1 = 0

D1 + D2 + D3 + C2 = 0

D2 + D3 + D4 + C3 = 0

1 + 0 + 0 + C1 = 0
1

1

0

0

C1

C2

C3

1

1

0

0

C1

C2

C3

1

1

1

1

1 + 0 + 0 + C1 = 0

1

1

1 + 0 + 0 + C1 = 0

• Example coding

LDPC Codes

D1 + D2 + D3 + C2 = 0

D2 + D3 + D4 + C3 = 0

1

1

0

0

1

C2

C3

1

1

0

0

1

C2

C3

1 + 1 + 0 + C2 = 00

0

1 + 1 + 0 + C2 = 00

0
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1

1

1 + 0 + 0 + C1 = 0

• Example coding

LDPC Codes

1 + 1 + 0 + C2 = 0

D2 + D3 + D4 + C3 = 0

1

1

0

0

1

0

C3

1

1

0

0

1

0

C3

1 + 0 + 0 + C3 = 01

1

1 + 0 + 0 + C3 = 01

1

• Tanner Graphs:
– More flexible
– Allow for straightforward, graph-based decoding.

• Decoding Algorithm:
– Put 0 in each constraint.
– For each non-failed node i:

• XOR i’s value into each adjacent constraint.
• Remove that edge from the graph.
• If a constraint has only one edge, it holds the value of

the one node adjacent to it.  Decode that node.

LDPC Codes
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• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

Suppose D2, D3 and C2 fail:

D1

D2

D3

D4

C1

C2

C3

Suppose D2, D3 and C2 fail:First, put zero into the constraints.

1

?

?

0

1

?

1

• Decoding example:

LDPC Codes

0

0

0

D1

D2

D3

D4

C1

C2

C3
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First, put zero into the constraints.Next, XOR D1 into its constraints:

• Decoding example:

LDPC Codes

0

0

0

1

1

1

?

?

0

1

?

1

D1

D2

D3

D4

C1

C2

C3

Next, XOR D1 into its constraints:And remove its edges from the graph

• Decoding example:

LDPC Codes

1

0

1

1

1

1

?

?

0

1

?

1

D1

D2

D3

D4

C1

C2

C3
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And remove its edges from the graphDo the same for D4:

• Decoding example:

LDPC Codes

1

0

1

1

?

?

0

1

?

1

1

0

D1

D2

D3

D4

C1

C2

C3

Do the same for D4:And with C1

• Decoding example:

LDPC Codes

1

0

10

1

?

?

0

1

?

1

0

D1

D2

D3

D4

C1

C2

C3
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And with C1Now, we can decode D3, and process its edges.

• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

0

1

0

0
0

1

0

D1

D2

D3

D4

C1

C2

C3

Now, we can decode D3, and process its edges.Finally, we process C3 and finish decoding.

• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

1

0

0
0

11

D1

D2

D3

D4

C1

C2

C3
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Now, we can decode D3, and process its edges.Finally, we process C3 and finish decoding.

• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

1

1

0
0

11

D1

D2

D3

D4

C1

C2

C3

Now, we can decode D3, and process its edges.Finally, we process C3 and finish decoding.

• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

1

1

0
0

11

00

D1

D2

D3

D4

C1

C2

C3
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Finally, we process C3 and finish decoding.We’re done!

• Decoding example:

LDPC Codes

1

?

?

0

1

?

1

1

1

0
0

11

00

00

D1

D2

D3

D4

C1

C2

C3

• Encoding:
– Just decode starting with the data nodes.

• Not MDS:
– For example:  Suppose D1, D2 & D3 fail:

LDPC Codes

?

?

?

D4

C1

C2

C3

0

1

0

1

1

0

0

00

You cannot
decode
further.

?

?

?

D4

C1

C2

C3

0

1

0

1

1

1

1

00

D1

D2

D3

D4

C1

C2

C3
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• History:
– Gallager’s PhD Thesis (MIT): 1963
– Landmark paper: Luby et al: 1997

• Result #1: Irregular codes perform better than regular
codes (in terms of space, not time).

LDPC Codes

C1

D0 C0

C2

… …

D1

D2

C1

D0 C0

C2

… …

D1

D2

Worse than

• History:
– Gallager’s PhD Thesis (MIT): 1963
– Landmark paper: Luby et al: 1997

• Result #2: Defined LDPC codes that are:

Asymptotically MDS!

LDPC Codes
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• Recall:

– The rate of a code: R = n/(n+m).

– The overhead factor of a code: f = factor from MDS:

• f = m/(average nodes required to decode).
• f ≥ 1.
• If f = 1, the code is MDS.

• You are given R.

LDPC Codes: Asymptotically MDS

• Define:
– Probability distributions λ and ρ for cardinality of

left-hand and right-hand nodes.

• Prove that:

– As n → ∞, and m defined by R,
– If you construct random graphs where node cardinalities

adhere to λ and ρ,
– Then f → 1.

LDPC Codes: Asymptotically MDS

Di

Selected from λ
Cj

Selected from ρ
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• Let’s reflect on the significance of this:

– Encoding and decoding performance is O(1) per coding
node (“Low Density”).

– Update performance is O(1) per updated device.

– Yet the codes are asymptotically MDS.

– Wow.  Spurred a flurry of similar research.

– Also spurred a startup company, “Digital Fountain,”
which applied for and received a flurry of patents.

LDPC Codes: Asymptotically MDS

• However:

– You can prove that:

• While f does indeed approach 1 as n → ∞,
• f is always strictly > 1.

– Moreover, my life is not asymptotic!

• Question 1: How do I construct codes for finite n?
• Question 2: How will they perform?
• Question 3: Will I get sued?

– As of 2003:

No one had even attempted to answer these questions!!

LDPC Codes: Asymptotically MDS
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• [Plank et al:2005]
• #1: Simple problem:

– Given a Tanner Graph, is it systematic?
– I.e: Can n of the left-hand nodes hold the data?

LDPC Codes: Small m

N1

N2

N3

N4

N5

N6

N7

 

 

 

 

Is this a 
systematic
code for

n=3, m=4?

• Simple algorithm:
– Find up to m nodes Ni with one edge, each to different constraints.
– Label them coding nodes.
– Remove them, their edges, and all edges to their constraints.
– Repeat until you have m coding nodes.

LDPC Codes: Small m

N1

N2

N3

N4

N5

N6

N7

 

 

 

 Start with N1, and N3:
Is this a 

systematic
code for

n=3, m=4?

 

 
C1

C2
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• Simple algorithm:
– Find up to m nodes Ni with one edge, each to different constraints.
– Label them coding nodes.
– Remove them, their edges, and all edges to their constraints.
– Repeat until you have m coding nodes.

LDPC Codes: Small m

N1

N2

N3

N4

N5

N6

N7

 

 

 

 N2, and N4 are
the final 

coding nodes.
Is this a 

systematic
code for

n=3, m=4?

C1

C2

C3

C4

• Simple algorithm:
– Find up to m nodes Ni with one edge, each to different constraints.
– Label them coding nodes.
– Remove them, their edges, and all edges to their constraints.
– Repeat until you have m coding nodes.

LDPC Codes: Small m

N1

N2

N3

N4

D1

D2

D3

 

 

 

 N2, and N4 are
the final 

coding nodes.
Is this a 

systematic
code for

n=3, m=4?

C1

C2

C3

C4

Yes!
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• #2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

C2

C1C0

E.g. m = 3 

• #2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

C2

C1C0

001

111

110

011

101

Label each class by the 
constraints to which its 

nodes are connected

010

100
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• #2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

C2

C1C0Turn each label into
an integer.

1
001

111

110

010

011

101

100

7

6

2

3

5

4

7

• #2: Define graphs by partitioning nodes into Edge Classes:

LDPC Codes: Small m

C2

C1C0

Graph is may now be
defined by counts of
nodes in each class.

1

6

2

3

5

4

7

1 2 3 4 5 6 7
2 3 3 2 3 33

Class
Count

Graph = <3,2,3,3,2,3,3>
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• Best graphs for m ∈ [2:5] and n ∈ [1:1000] in [Plank:2005].
• Features:

– Not balanced.  E.g. m=3, n=50 is <9,9,7,9,7,7,5>.
– Not loosely left-regular

• LH nodes’ cardinalities differ by more than one.
– Loosely right-regular

• RH nodes’ (constraints) cardinalities differ at most by one.
– Loose Edge Class Equivalence

• Counts of classes with same cardinality differ at most by one.

LDPC Codes: Small m

C2

C1C0

C2

C1C0

C2

C1C0

• f does not decrease monotonically with n.
• f → 1 as n → ∞
• f is pretty small (under 1.10 for n ≥ 10).

LDPC Codes: Small m
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Encoding Performance: 40 - 60 % Better than optimal.

LDPC Codes: Small m

• [Plank,Thomason:2004]
• A lot of voodoo - Huge Monte Carlo simulations.
• Use 80 published values of λ and ρ, test R = 1/3, 1/2, 2/3.
• Three type of code constructions:

LDPC Codes: Larger m

Simple Systematic IRA:
Irregular

Repeat-Accumulate

Gallager
Unsystematic
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LDPC Codes: Larger m

• Lower rates have higher f.
• f → 1 as n → ∞
• f at their worst in the useful ranges for storage applications.

LDPC Codes: Larger m

• Simple systematic perform better for smaller n.
• IRA perform better for larger n.
• (Not in the graph - Theoretical λ and ρ didn’t match performance),

R = 1/2
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LDPC Codes: Larger m

• Improvement over optimal MDS coding is drastic indeed.

LDPC Codes: LT Codes
• Luby-Transform Codes: [Luby:2002]
• Rateless LDPC codes for large n,m.
• Uses an implicit graph, created on-the-fly:

– When you want to create a coding word, you randomly select a
weight w.  This is the cardinality of the coding node.

– w’s probability distribution comes from a “weight table.”

– Then you select w data words at random (uniform distribution),
and XOR them to create the coding word.

– As before, theory shows that the codes are asymptotically MDS.

– [Uyeda et al:2004] observed f ≈ 1.4 for n = 1024, m = 5120.

• Raptor Codes [Shokrollahi:2003] improve upon
LT-Codes.
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LDPC Codes: Bottom Line

• For large n, m - Essential alternatives to MDS
codes.

• For smaller n, m - Important alternatives to MDS
codes:
– Improvement is not so drastic.
– Tradeoffs in space / failure resilience must be assessed.

LDPC Codes: Bottom Line
• “Optimal” codes are only known in limited cases.

– Finite theory much harder than asymptotics.
– “Good” codes should still suffice.

• Patent issues cloud the landscape.
– Tornado codes (specific λ and ρ) patented.
– Same with LT codes.
– And Raptor codes.
– Scope of patents has not been defined well.
– Few published codes.

• Need more research!
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Part 4: Evaluating Codes

• Defining “fault-tolerance”
• Encoding - impact of the system
• Decoding - impact of the system
• Related work

Defining “fault-tolerance”

• Historical metrics:

– E.g: “Safe to x failures”
– E.g: “99.44% pure”
– Makes it hard to evaluate/compare codes.

• Case study:

– Suppose you have 20 storage devices.
– 1 GB each.
– You want to be resilient to 4 failures.
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Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #1: The only MDS alternative:
Reed-Solomon Coding:

Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #1: The only MDS alternative:
Reed-Solomon Coding:

– 80% of storage contains data.
– Cauchy Matrix for w=5 has 912 ones.
– 44.6 XORs per coding word.
– Encoding:  59.5 seconds.
– Decoding: roughly 14.9 seconds per failed device.
– Updates: 12.4 XORs per updated node.
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Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures :

• Solution #2: HoVer4
3,1[12,19]:

Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures :

• Solution #2: HoVer4
3,1[12,19]:

– 228 data words, 69 coding words (3 wasted).
– 76% of storage contains data.
– Encoding: (12*18 + 3*19*11)/69 = 12.22 XORs per

coding word: 18.73 seconds.
– Decoding: Roughly 5 seconds per device.
– Update: 5 XORs
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Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #3: 50% Efficiency WEAVER code

– 50% of storage contains data.
– Encoding: 3 XORs per coding word: 10 seconds.
– Decoding: Roughly 1 second per device.
– Update: 5 XORs

Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>
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Defining “fault-tolerance”

• 20 storage devices (1GB) resilient to 4 failures:

• Solution #4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>

– 80% of storage for data
– f = 1.0496 (Resilient to 3.81 failures…)
– Graph has 38 edges: 30 XORs per 4 coding words.
– Encoding: 10 seconds.
– Decoding: Roughly 3 seconds per device.
– Update: 3.53 XORs

• 20 storage devices (1GB) resilient to 4 failures:

Defining “fault-tolerance”
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Encoding Considerations

• Decentralized Encoding:

– Not reasonable to have one node do all encoding.

– E.g. Network Coding [Ahlswede et al:2000].

– Reed-Solomon codes work well, albeit with standard
performance.

– Randomized constructions [Gkantsidis,Rodriguez:2005].

Decoding Considerations

• Scheduling - Content Distribution Systems:

– All blocks are not equal - data vs. coding vs. proximity:
[Collins,Plank:2005].

– LDPC: All blocks are not equal #2 - don’t download a
block that you’ve already decoded [Uyeda et al:2004].

– Simultaneous downloads & aggressive failover
[Collins,Plank:2004].
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Resources (Citations)

• Reed Solomon Codes:
– [Plank:1997] J. S. Plank, “A Tutorial on Reed-Solomon Coding for

Fault-Tolerance in RAID-like Systems,” Software -- Practice &
Experience, 27(9), September, 1997, pp. 995-1012.
http://www.cs.utk.edu/~plank/plank/papers/papers.html.

– [Rizzo:1997] L. Rizzo, “Effective erasure codes for reliable computer
communication protocols,” ACM SIGCOMM Computer
Communication Review, 27(2), 1997, pp. 24-36.
http://doi.acm.org/10.1145/263876.263881.

– [Plank,Ding:2005] J. S. Plank, Y. Ding, “Note: Correction to the 1997
Tutorial on Reed-Solomon Coding,” Software -- Practice &
Experience, 35(2), February, 2005, pp. 189-194.
http://www.cs.utk.edu/~plank/plank/papers/papers.html.
(Includes software)

Resources (Citations)

• Reed Solomon Codes:
– [Blomer et al:1995] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M.

Luby and D. Zuckerman, “An XOR-Based Erasure-Resilient Coding
Scheme,” Technical Report TR-95-048, International Computer
Science Institute, August, 1995.
http://www.icsi.berkeley.edu/~luby/.
(Includes software)

– [Plank:2005] J. Plank “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Storage Applications,” Submitted for publication,
http://www.cs.utk.edu/~plank/plank/papers/papers.html.
(Includes good Cauchy Matrices)
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Resources (Citations)

• Parity Array Codes:
– [Blaum et al:1995] M. Blaum, J. Brady, J. Bruck and J. Menon,

EVENODD: An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures, IEEE Transactions on Computing, 44(2),
February, 1995, pp. 192-202.

– [Blaum,Roth:1999] M. Blaum and R. M. Roth “On Lowest Density
MDS Codes,” IEEE Transactions on Information Theory, 45(1),
January, 1999, pp. 46-59.

– [Xu,Bruck:1999] L. Xu and J. Bruck, X-Code: MDS Array Codes with
Optimal Encoding, IEEE Transactions on Information Theory, 45(1),
January, 1999, pp. 272-276.

Resources (Citations)

• Parity Array Codes:
– [Huang,Xu:2005] C. Huang and L. Xu, “STAR: An Efficient Coding Scheme

for Correcting Triple Storage Node Failures,” FAST-2005: 4th Usenix
Conference on File and Storage Technologies, December, 2005,
http://www.usenix.org/events/fast05.

– [Hafner:2005H] J. L. Hafner, “HoVer Erasure Codes for Disk Arrays,”
Research Report RJ10352 (A0507-015), IBM Research Division, July, 2005,
http://domino.research.ibm.com/library.

– [Hafner:2005W] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems,” FAST-2005: 4th Usenix Conference on
File and Storage Technologies, December, 2005,
http://www.usenix.org/events/fast05.
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Resources (Citations)
• LDPC Codes:

– [Gallager:1963] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press,
Cambridge, MA, 1963.

– [Wicker,Kim:2005] S. B. Wicker and S. Kim, Fundamentals of Codes, Graphs, and
Iterative Decoding, Kluwer Academic Publishers, Norwell, MA, 2003.

– [Luby et al:1997] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V.
Stemann, “Practical Loss-Resilient Codes,” 29th Annual ACM Symposium on Theory of
Computing, El Paso, TX, 1997, pages 150-159, http://www.icsi.berkeley.edu/~luby/.
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