T1: Erasure Codes for
Storage Applications

James S. Plank

Associate Professor

plank@cs.utk.edu

= 20 4th USENIX CONFERENCE ON
é 7| Fa ET[IE FILE AND STORAGE TECHNOLOGIES
=

DEC. 13-16 / 2005 / HOLIDAY INN GOLDEN GATELWAY / SAN FRANCISCO / CA / USA

http://www.cs.utk.edu/~plank
“Research Papers”

James S. Plank

Associate Professor

plank@cs.utk.edu

= g0 4th USENIX CONFERENCE ON
é 7| Fa ET[IE FILE AND STORAGE TECHNOLOGIES
=

DEC. 13-16 / 2005 / HOLIDAY INN GOLDEN GATELWAY / SAN FRANCISCO / CA / USA

What is an Erasure Code?

A technique that lets you
take n storage devices: / And have the entife\
system be resilient to up

... to m device failures:

]

]] L T
oS

Encode them onto m |

additional storage devices: K .'. /

When are they useful?

Anytime you need to tolerate failures.

For example:

Disk Array Systems

MTTF, = MTTF, /n

When are they useful?

Anytime you need to tolerate failures.

Data Grids

When are they useful?

Anytime you need to tolerate failures.

Collaborative/
Distributed
Storage
Applications

When are they useful?

Anytime you need to tolerate failures.

Peer-to-peer
applications.

When are they useful?

Anytime you need to tolerate failures.

Distributed Data
or
Object Stores:

(Logistical Apps.)

When are they useful?

Anytime you need to tolerate failures.

Digital
Fountains

or

When are they useful?

Anytime you need to tolerate failures.

Archival
Storage. >

or

Terms & Definitions

» Number of data disks: »

* Number of coding disks: m

» Rate of a code: R =n/(n+m)
* Identifiable Failure: “Erasure”

The problem, once again

n data devices

EE & m coding devices
Encodin

1 S, ===

&3

n+m data/coding

devices, plus erasures n data devices
283 283
XES : EEE
= = Decoding > =R
283 283
B =

Issues with Erasure Coding

e Performance

— Encoding

sss
s
« Typically O(mn), but not always. | S S S =
— Update =s =
e SSS» ===
* Typically O(m), but not always. =

— Decoding =]

* Typically O(mn), but not always. == ;
ess >

SE—1=

Issues with Erasure Coding

* Space Usage

— Quantified by two of four:
* Data Devices: n
* Coding Devices: m
* Sum of Devices: (n+m)
» Rate: R = n/(n+m)

— Higher rates are more space efficient,
but less fault-tolerant.

Issues with Erasure Coding

* Failure Coverage - Four ways to specify

Specified by a threshold:
* (e.g. 3 erasures always tolerated).

Specified by an average:
* (e.g. can recover from an average of 11.84 erasures).

Specified as MDS (Maximum Distance Separable):
* MDS: Threshold = average = m.
» Space optimal.

Specified by Overhead Factor f:
» f={factor from MDS = m/average.
* fisalways>=1
» f=1is MDS.

Issues with Erasure Coding

. Flexibility
— Can you arbitrarily add data / coding nodes?
— (Can you change the rate)?
— How does this impact failure coverage?

Trivial Example: Replication

m replicas

One piece of data: o il

n=1
m erasures.

—>

« MDS
Extremely fast encoding/decoding/update.
Rate: R = 1/(m+1) - Very space inefficient

There are many replication/based systems
(P2P especially).

Less Trivial Example: Simple Parity

n pieces of data 1 parity device:

m =1 Can tolerate any
. single erasure.
(XOR)
\ Decoding \

For example:

Evaluating Parity

\%@ﬁ.

« Rate: R = n/(n+1) - Very space efficient
* Optimal encoding/decoding/update:

— n-1 XORs to encode & decode
— 2 XORs to update

* Extremely popular (RAID Level 5).

 Downside: m = [is limited.

Unfortunately

» Those are the last easy things you’ll see.

» For (n> 1, m > 1), there is no consensus
on the best coding technique.

* They all have tradeoffs.

10

The Point of This Tutorial

 To introduce you to the various erasure
coding techniques.

— Reed Solomon codes.
— Parity-array codes.
— LDPC codes.
* To help you understand their tradeoffs.
» To help you evaluate your coding needs.
— This too is not straightforward.

Why is this such a pain?

» Coding theory historically has been the
purview of coding theorists.

* Their goals have had their roots
elsewhere (noisy communication lines,
byzantine memory systems, etc).

» They are not systems programmers.

* (They don’t care...)

11

Part 1: Reed-Solomon Codes

* The only MDS coding technique for
arbitrary n & m.

» This means that m erasures are always
tolerated.

» Have been around for decades.
* Expensive.

* [will teach you standard & Cauchy
variants.

Reed-Solomon Codes

 Operate on binary words of data,
composed of w bits, where 2% > n+m.

Words of size w

SR

e

EISISISISISIS
= [~ =

12

Reed-Solomon Codes

 Operate on binary words of data,
composed of w bits, where 2" > n+m.

E .

ncoding

or

Reed-Solomon Codes

* This means we only have to focus on words,
rather than whole devices.

n m

A Encoding A

* Word size is an issue:
— If n+m < 256, we can use bytes as words.
— If n+m < 65,536, we can use shorts as words.

or

13

Reed-Solomon Codes

* Codes are based on linear algebra.
— First, consider the data words as a column vector D:

Reed-Solomon Codes

* Codes are based on linear algebra.

— Next, define an (n+m)*n “Distribution Matrix” B,
whose first n rows are the identity matrix:

n+m

14

Reed-Solomon Codes

* Codes are based on linear algebra.

— B*D equals an (n+m)*[column vector composed of
D and C (the coding words):

n
D
0
n+m %
0
BII BIZ B13 B14 B15
B]l B]Z B23 B24 B25 C
B]l B32 B33 B34 B35

Reed-Solomon Codes

* This means that each data and coding word has
a corresponding row in the distribution matrix.

15

Reed-Solomon Codes

* Suppose m nodes fail.

* To decode, we create B’ by deleting the rows of
B that correspond to the failed nodes.

Reed-Solomon Codes

* Suppose m nodes fail.

* To decode, we create B’ by deleting the rows of
B that correspond to the failed nodes.

* You’ll note that B’*D equals the survivors.

Survivors

16

Reed-Solomon Codes

or

* Now, invert B

0
B, [B..[B,.B,[B,;
B,,[B..[B..B.,[B,

B’ D

Survivors

Reed-Solomon Codes

* Now, invert B

* And multiply both sides
of the equation by B -/

D

-1 Survivors

or

17

Reed-Solomon Codes

* Now, invert B

* And multiply both sides
of the equation by B -/

e Since B'*B’=1, You
have just decoded D!

B! Survivors

Reed-Solomon Codes

* Now, invert B

* And multiply both sides
of the equation by B -/

e Since B'*B’=1, You
have just decoded D!

>
=

Survivors

18

Reed-Solomon Codes

¢ To Summarize: Encoding

— Create distribution matrix B.
— Multiply B by the data to create coding words.

* To Summarize: Decoding
— Create B’ by deleting rows of B.

— Invert B’

— Multiply B! by the surviving words to reconstruct
the data.

Reed-Solomon Codes

Two Final Issues:

* #1: How to create B?
— All square submatrices must be invertible.

— Derive from a Vandermonde Matrix
[Plank,Ding:2005].

o #2: Will modular arithmetic work?

— Instead, you must use Galois Field arithmetic.

19

Reed-Solomon Codes

Galois Field Arithmetic:
e GF(2”) has elements 0, 1, 2, ..., 2"
* Addition = XOR

— Easy to implement
— Nice and Fast

* Multiplication hard to explain
— If w small (= 8), use multiplication table.
— If w bigger (< 16), use log/anti-log tables.
— Otherwise, use an iterative process.

Reed-Solomon Codes

Galois Field Example: GF(23): 0@2@%7
0ojojojo|lo|O|O|O|O
 Elements: 0, 1, 2, 3,4, 5, 6, 7. 1[o]2]23]4]5]6]7
2|0/2|4|6|3|1|7|5
4 3l0/3|6|5|7|4|1]|2
e Addition = XOR: AnnBEnGREE
5|0/5|1|4|2|7|3|6
" (3 + 2) = 1 6|l0|6|7/1|5|3|2|4
-(5+5)=0 7(of7]5]2]1]6]4]3

" (7+3)=4 Division
0123456 7
* Multiplication/Division: o[-T-[-T-T-[-]-1-
1|0/1/2|3|4|5|6|7
= Use tables. 2[ol5[1]4[2]|7]3]6
3|lo|6|7|1/5|3|2|4
'(3*4)=7 4lol7]s5]2]1]6]4a]3
5|0/2|4|6/3/1|7|5
" (7+ 3)=4 6|0/3|6|5|7|4|1|2
710/4|3|7/6|/2|5]|1

20

Reed-Solomon Performance

* Encoding: O(mn)
— More specifically: mS [(n-1)/Byor + /B grapu]
— §=Size of a device
— By = Bandwith of XOR (3 GB/s)
— By = Bandwidth of Multiplication over GF(2*)
« GF(2%): 800 MB/s
« GF(2'%): 150 MB/s

R AR S

o
b

o | (&
S |
IN
[~}
S
B3

Reed-Solomon Performance

» Update: O(m)
— More specifically: m+1 XORs and m multiplications.

21

Reed-Solomon Performance

* Decoding: O(mn) or O(n’)
— Large devices: dS [(n-1)/Byor + 1/Bgry |
— Where d = number of data devices to reconstruct.

— Yes, there’s a matrix to invert, but usually that’s in
the noise because dSn >> n’.

Reed-Solomon Bottom Line

* Space Efficient: MDS

+ Flexible:
— Works for any value of n and m.
— Easy to add/subtract coding devices.
— Public-domain implementations.

* Slow:
— n-way dot product for each coding device.
— GF multiplication slows things down.

22

Cauchy Reed-Solomon Codes

[Blomer et al:1995] gave two improvements:

» #1: Use a Cauchy matrix instead of a
Vandermonde matrix: Invert in O(n?).

» #2: Use neat projection to convert Galois Field
multiplications into XORs.

— Kind of subtle, so we’ll go over it.

Cauchy Reed-Solomon Codes

* Convert distribution matrix from (n+m)*n over
GF(2”) to w(n+m)*wn matrix of 0’s and 1’s:

wn

n+m

w(n+m)

R AR S

S
b

0| (&
S |
IN
o
S
B3

23

Cauchy Reed-Solomon Codes

» Now split each data device into w “packets”
of size S/w.

0

L] IS
1l

Cauchy Reed-Solomon Codes

* Now the matrix encoding can be performed
with XORs of whole packets:

24

Cauchy Reed-Solomon Codes

* More Detail: Focus solely on C;.

Cauchy Reed-Solomon Codes

* Create a coding packet by XORing data packets
with 1’s in the proper row & column:

I = | +1]+ | + I -+ [- (O -+ [-

il -

25

Cauchy Reed-Solomon Performance

* Encoding: O(wmn)
— Specifically: O(w)*mSn/By, [Blomer et al:1995]
— Actually: mS(o-1)/Byor

— Where o = average number of 1’s per row of the
distribution matrix.

° I)CC—Odlng Similar: dS(O-])/BXOR

Does it matter?

| =-- Regular Reed Solomon
0.37 —Cauchy Reed Solomon
| — Theoretical MDS Optimum

Encoding time:

e m=4

« S=1MB

* Byor=3GB/s

* Bepyy = 800 MB/s

» Cauchy Matrices
from [Plank:2005]

0.2

Time to encode (s)

We’ll discuss more

performance later 0

26

Part 2: Parity Array Codes =

» Codes based solely on parity (XOR).
e MDS variants for m =2, m = 3.
» Optimal/near optimal performance.

« What I’ll show:
— EVENODD Coding
— X-Code
— Extensions for larger m
« STAR
« WEAVER

* HoVer
* (Blaum-Roth)

EVENODD Coding or

» The “grandfather” of parity array codes.

* [Blaum et al:1995]

* m=2. n=p,where p is a prime > 2.

« Partition data, coding devices into blocks of p-/ rows of
words:

27

EVENODD Coding or

* Logically, a word is a bit.
* In practice, a word is larger.
* Example shown withn =p = 5:

— Each column represents a device.

s

EVENODD Coding or

* Column C|, is straightforward
— Each word is the parity of the data words in its row:

I.
[Parity]

Pari

Pari

28

EVENODD Coding

or

To calculate column C,, first calculate S (the
“Syndrome”), which is the parity of one of the
diagonals:

EVENODD Coding

or

Then, C;, is the parity of S and all data words on
the diagonal containing D; ,:

29

EVENODD Coding

Here’s the whole system:

or

EVENODD Coding

Now, suppose two data devices fail
(This is the hard case).

or

30

EVENODD Coding

or

First, note that S is equal to the parity of all C; ;.

Next, there will be at least one diagonal that is missing just one
data word.

Decode it/them.

EVENODD Coding

or

Next, there will be at least one row missing just one data word:
Decode it/them.

31

EVENODD Coding or

* Continue this process until all the data words are decoded:

EVENODD Coding or

If n is not a prime, then find the next prime p, and add p-n
“virtual” data devices: - E.g. n=8, p=11.

n=38 (p-n)=3

(p-1)=10

32

EVENODD Performance

 Encoding: O(n?) XORs per big block.
— More specifically: (2n-1)(p-1) per block.

— This means (n-1/2) XORs per coding word.
* Optimal is (n-1) XORs per coding word.

— Or: mS [n-1/2]/B o, Where
» §=size of a device
* Byor = Bandwith of XOR

EVENODD Performance

» Update: Depends.

— If not part of the calculation of S, then
3 XORs (optimal).

— If part of the calculation of S, then
(p+1) XORS (clearly not optimal).

33

EVENODD Performance

* Decoding:

— Again, it depends on whether you need to
use C, to decode. If so, it’s more expensive
and not optimal.

— Also, when two data devices fail, decoding
1s serialized.

EVENODD Bottom Line

* Flexible: works for all values of .
* Excellent encoding performance.

» Poor update performance in //(n-1) of the
cases.

* Mediocre decoding performance.

* Much better than Reed Solomon coding
for everything except the pathelogical
updates (average case is fine).

34

or

Horizontal vs Vertical Codes

» Horizontal: Devices are all data or all coding.
» Vertical: All devices hold both data and coding.

[o v
=
>

Horizontal Vertical

0 o o o A B

Horizontal vs Vertical Codes or

“Parity Striping”

A simple and effective vertical code for m=1:

C)

. = parity of all . in a row

* Good: Optimal coding/decoding.
* Good: Distributes device access on update.

» Bad (?): All device failures result in recovery.

35

Horizontal vs Vertical Codes

* We can lay out parity striping so that all code words are
in the same row:

* (This will help you visualize the X-Code...)

or

The X-Code

* MDS parity-array code with optimal performance.
* [Xu,Bruck:1999]
« m=2. n=p-2,where p is a prime.

— n rows of data words

— 2 rows of coding words
— n+2 columns

nt2=7

» For example: n =5:

or

36

The X-Code or

* Each coding row is calculated by parity-striping with
opposite-sloped diagonals:

The X-Code or

» Each coding word is the parity of n data words.

— Therefore, each coding word is independent of one data device.
— And each data word is independent of two data devices:

Independent
of this device

37

The X-Code

or

* Suppose we have two failures.

e There will be four words to decode.

The X-Code

or

* Suppose we have two failures.
* There will be four words to decode.

38

The X-Code or

* We can now iterate, decoding two words at
every iteration:

The X-Code or

* We can now iterate, decoding two words at
every iteration:

39

X-Code Performance

 Encoding: O(n?) XORs per big block.
— More specifically: 2(n-1)(n+2) per big block.

— This means (n-/) XORs per coding word.
* Optimal.

— Or: mS [n-1]/B yyr Where
» §=size of a device
* Byor = Bandwith of XOR

X-Code Performance

« Update: 3 XORs - Optimal.
* Decoding: S [n-1]/By g per failed device.

So this 1s an excellent code.

Drawbacks:
* n+2 must be prime.

 (All erasures result in decoding.)

40

Other Parity-Array Codes

« WEAVER [Hafner:2005W1:

* STAR [Huang,Xu:ZOOS]: BOSASLE AL

— Extends EVENODD to m = 3.

— Vertical codes for higher failures.

» HoVer [Hafner:2005H]:

— Combination of Horizontal/Vertical codes.

* Blaum-Roth [Blaum,Roth:1999]:

— Theoretical results/codes.

Both codes are MDS.

Both codes are optimal.
No X-Code for n = 2.

Other WEAVER codes- up to 12 erasures,
but not MDS.

41

HoVer Codes or

* Generalized framework for a blend of horizontal and
vertical codes.

* HoVer', ,[r.c]:

C h
e — g ——

t = fault-tolerance

Not MDS, but interesting
nonetheless.

™

(unused)

HoVer Codes or

* For example, there exists: HoVer’, ,/26,29]:
— From [Hafner:2005H, Theorem 5, Bullet 6]

HoVer?, ,/26,29]: Rate .897 MDS Code with same
of devices: Rate .900

42

Blaum-Roth Codes

* COdes are Mlnlmum Absmzc{'— Let [, denote the finite field GFiy) and let &

be a po:

. integer. MDS codes over the symbol alphabet
Den51ty_ F’ are considered that are linear over Fy and have sparse

(“low-density”) parity-check and generator matrices over [that
are systematic over .. Lower bounds are presented on the
number of nonzero elements in any systematic parity-check or

. Optlmal encoding and generator matrix of an F-linear MDS code over F}, along with
upper bounds on the length of any MDS code that attains those
decoding?

lower bounds. A construction is presented that achieves those

4l . . constructions are presented also for the case where atic
b VV rltll’lg IS Maleum condition on the parity-check ant::Feneramr matrices is relaxed

to be over F,, rather than over Fi.

Den51ty. Index Terms— Disk arrays, group codes, low-density codes,
MDS codes, sparse matrices.

® WIH be dlStllled for 1. INTRODUCTION

ET F, denote the finite field GF(g). A code C over IF',}
the systems Lis said to be |F7-[i/u’(u‘ if C is a vector space over IFq.
Such a code is a group code with IF',:, as the underlying group
programmer (see [5]. [12]. and the references therein). Clearly, every linear
code over GF (¢”) is an F-linear code over Ffl. The converse,
however, is not true.
Someday ce Let € be a code of length 7 over Ffj. and minimum Hamming
distance ¢, where the distance is measured with respect to
symbols of Fz. By the Singleton bound for (not necessarily
linear) codes over IFf{ we have

d<n+1=log:C|

Part 3: LDPC -
Low-Density Parity-Check Codes

» Codes based solely on parity.

* Distinctly non-MDS.

» Performance far better than optimal MDS.
* Long on theory / short on practice.

* What I’ll show:

— Standard LDPC Framework & Theory
— Optimal codes for small m

— Codes for fixed rates

LT codes

43

LDPC Codes or

* One-row, horizontal codes:

-— — — '_‘mh.

000000000000000.. 200000

» Codes are defined by bipartite graphs -
Data words on the left, coding on the right:

C,=D,+D;+D,
C,=D,+D,+D;

C;=D,+D;+D,

LDPC Codes or

 Typical representation is by a Tanner Graph
— Also bipartite.
— (n+m) left-hand nodes: Data + coding
— m right-hand nodes: Equation constraints

D, +D;+D,+C,=0

Ea— D, +D,+D;+C,=0

D,+D;+D,+C;=0

44

+ Example coding

Ea— D, +D,+D;+C,=0

LDPC Codes or

1+0+0+C,;=0

D,+D;+D,+C;=0

+ Example coding

LDPC Codes or

1+0+0+C,;=0

1+1+0+C,=0

D,+D;+D,+C;=0

45

LDPC Codes

+ Example coding

1+0+0+C,;=0

I1+1+0+C,=0

I+0+0+C;=0

LDPC Codes

» Tanner Graphs:
— More flexible

— Allow for straightforward, graph-based decoding.

» Decoding Algorithm:

— Put 0 in each constraint.

— For each non-failed node i:
* XOR i’s value into each adjacent constraint.
» Remove that edge from the graph.

« If a constraint has only one edge, it holds the value of
the one node adjacent to it. Decode that node.

46

LDPC Codes

* Decoding example:

Suppose D,, D; and C, fail:

LDPC Codes

* Decoding example:

First, put zero into the constraints.

47

LDPC Codes

» Decoding example:

Next, XOR D, into its constraints:

LDPC Codes

» Decoding example:

And remove its edges from the graph

48

LDPC Codes

» Decoding example:

Do the same for D,:

LDPC Codes

» Decoding example:

And with C,

49

LDPC Codes

» Decoding example:

Now, we can decode D;, and process its edges.

LDPC Codes

» Decoding example:

Finally, we process C; and finish decoding.

50

LDPC Codes or

» Decoding example:

Finally, we process C; and finish decoding.

RIS

~

a 0O

L8}

0

LDPC Codes or

» Decoding example:

Finally, we process C; and finish decoding.

SRS

0]

w!

ISEBS
(e)

~

a0
=

0

51

LDPC Codes

» Decoding example:

We’re done!

D,

D, o —

o, (0) 9]

D, o F

C, -

C, 1

c,

LDPC Codes

» Encoding:
— Just decode starting with the data nodes.

* Not MDS:
— For example: Suppose D;, D, & D; fail:

You cannot
decode
further.

52

LDPC Codes

 History:
— Gallager’s PhD Thesis (MIT): 1963
— Landmark paper: Luby ef al: 1997

* Result #1: Trregular codes perform better than regular
codes (in terms of space, not time).

E~ O
* Worse than %
+ o #

PP

LDPC Codes

» History:
— Gallager’s PhD Thesis (MIT): 1963
— Landmark paper: Luby ef al: 1997
* Result #2: Defined LDPC codes that are:

Asymptotically MDS!

53

LDPC Codes: Asymptotically MDS

* Recall:
— The rate of a code: R = n/(n+m).

— The overhead factor of a code: f= factor from MDS:

* f=m/(average nodes required to decode).

e f=1.
» Iff'=1, the code is MDS.

* You are given R.

LDPC Codes: Asymptotically MDS

* Define:
— Probability distributions A and p for cardinality of
left-hand and right-hand nodes.

A Selected from A Selected from p'\‘\og

* Prove that:

— As n — o, and m defined by R,

— If you construct random graphs where node cardinalities
adhere to A and p,

— Then f— 1.

54

LDPC Codes: Asymptotically MDS

» Let’s reflect on the significance of this:

— Encoding and decoding performance is O(/) per coding
node (“Low Density”).

— Update performance is O(1) per updated device.
— Yet the codes are asymptotically MDS.
— Wow. Spurred a flurry of similar research.

— Also spurred a startup company, “Digital Fountain,”
which applied for and received a flurry of patents.

LDPC Codes: Asymptotically MDS

« However:

— You can prove that:

* While f'does indeed approach 1 as n — oo,
 fis always strictly > 1.

— Moreover, my life is not asymptotic!

* Question 1: How do I construct codes for finite n?
* Question 2: How will they perform?
* Question 3: Will I get sued?

— As 0f 2003:

No one had even attempted to answer these questions!!

55

LDPC Codes: Small m

* [Plank ef al:2005]
» #1: Simple problem:
— Given a Tanner Graph, is it systematic?
— Le: Can n of the left-hand nodes hold the data?

Is this a
systematic
code for
n=3, m=4?

LDPC Codes: Small m

* Simple algorithm:
— Find up to m nodes N, with one edge, each to different constraints.
— Label them coding nodes.
— Remove them, their edges, and all edges to their constraints.
— Repeat until you have m coding nodes.

Is this a
systematic
code for
n=3, m=4?

Start with N, and N;:

56

LDPC Codes: Small m

* Simple algorithm:
— Find up to m nodes N, with one edge, each to different constraints.
Label them coding nodes.
Remove them, their edges, and all edges to their constraints.
— Repeat until you have m coding nodes.

|: N, and N, are
Is this a I: the final
systematic coding nodes.
code for
n=3, m=4?

LDPC Codes: Small m

* Simple algorithm:
— Find up to m nodes N, with one edge, each to different constraints.
Label them coding nodes.
Remove them, their edges, and all edges to their constraints.
— Repeat until you have m coding nodes.

N, and N, are
Is this a the final
systematic coding nodes.
code for
n=3, m=4?
Yes!

57

LDPC Codes: Small m

or

» #2: Define graphs by partitioning nodes into £dge Classes:

Egm=3

LDPC Codes: Small m

or

» #2: Define graphs by partitioning nodes into £dge Classes:

Label each class by the
constraints to which its
nodes are connected

58

LDPC Codes: Small m or

» #2: Define graphs by partitioning nodes into £dge Classes:

Turn each label into
an integer.

LDPC Codes: Small m or

» #2: Define graphs by partitioning nodes into £dge Classes:

Graph is may now be
defined by counts of
nodes in each class.

59

LDPC Codes: Small m

» Best graphs for m € [2:5] and n € [1:1000] in [Plank:2005].
» Features:
— Not balanced. E.g. m=3, n=501s <9,9,7,9,7,7,5>.
— Not loosely left-regular
* LH nodes’ cardinalities differ by more than one.
— Loosely right-regular
* RH nodes’ (constraints) cardinalities differ at most by one.
— Loose Edge Class Equivalence
* Counts of classes with same cardinality differ at most by one.

LDPC Codes: Small m

1.151 —m=95
S Ly
s m=4
3] -———m=
& 1.104 - .
=~ /AN -——m=2
~ 7,5

7 4) e L
g b N i
£ 1054 [- s
AUR By /, -~ e

g i - e
> 7 ~ ey
S o T

1.00 : TrEE

» fdoes not decrease monotonically with 7.
s f=lasn—>»
* fis pretty small (under 1.10 for n = 10).

60

LDPC Codes: Small m

104 —m =2
' - m=3

- ~m=4
E 0.8+ —_—m = 5
;- R [V U U —
S 0641
=]
(=]
&
B
[=]
2
= 0.2

0.0 T T 1

20 40 60 80 100
n

Encoding Performance: 40 - 60 % Better than optimal.

LDPC Codes: Larger m

* [Plank,Thomason:2004]
* A lot of voodoo - Huge Monte Carlo simulations.
» Use 80 published values of A and p, test R = 1/3, 1/2, 2/3.

* Three type of code constructions:

Simple Systematic IRA: Gallager
Irregular Unsystematic

Repeat-Accumulate

61

LDPC Codes: Larger m

— Rate = 1/3
Rate = 1/2
a = 2/3
1.20 Rate /
=
= |
=D 1.15+
=3
<
s —1 |
=
> i
= 1.10-
== i
-
(=]
1.05
1.00 A T v v
1 10 100 1000 10000 100000
71

* Lower rates have higher 1.
e f—lasn—»
* fat their worst in the useful ranges for storage applications.

LDPC Codes: Larger m

g i — Systematic
% 1'15_: —— Gallager
3 1 IRA
- 1 .
"g 1.10 ‘ .
Q 4
- \
g 1.05- —
O 4 —_—

R=1/2 n

1.00 ey : , :
1 10 100 1000 10000 100000

* Simple systematic perform better for smaller .

* IRA perform better for larger n.
* (Not in the graph - Theoretical A and p didn’t match performance),

62

LDPC Codes: Larger m

_ 10 —Rate = 1/3

E 08 - —— Rate = 1/2
= Rate = 2/3
S 0.6

kS

o 04

2

g 02-

_

00 R L I
1 10 100 1000 10000 100000
n

» Improvement over optimal MDS coding is drastic indeed.

LDPC Codes: LT Codes

* Luby-Transform Codes: [Luby:2002]
« Rateless LDPC codes for large n,m.
* Uses an implicit graph, created on-the-fly:

— When you want to create a coding word, you randomly select a
weight w. This is the cardinality of the coding node.

— w’s probability distribution comes from a “weight table.”

— Then you select w data words at random (uniform distribution),
and XOR them to create the coding word.

— As before, theory shows that the codes are asymptotically MDS.
— [Uyeda et al:2004] observed f'= 1.4 for n = 1024, m = 5120.

» Raptor Codes [Shokrollahi:2003] improve upon
LT-Codes.

63

LDPC Codes: Bottom Line

* For large n, m - Essential alternatives to MDS
codes.

* For smaller n, m - Important alternatives to MDS
codes:
— Improvement is not so drastic.
— Tradeoffs in space / failure resilience must be assessed.

LDPC Codes: Bottom Line

* “Optimal” codes are only known in limited cases.

— Finite theory much harder than asymptotics.
— “Good” codes should still suffice.

+ Patent issues cloud the landscape.
— Tornado codes (specific A and p) patented.
— Same with LT codes.
— And Raptor codes.
— Scope of patents has not been defined well.
— Few published codes.

* Need more research!

64

Part 4: Evaluating Codes

 Defining “fault-tolerance”

* Encoding - impact of the system
* Decoding - impact of the system
* Related work

Defining “fault-tolerance”

e Historical metrics:

— E.g: “Safe to x failures”
— E.g: “99.44% pure”
— Makes it hard to evaluate/compare codes.

* Case study:

— Suppose you have 20 storage devices.
— 1 GB each.
— You want to be resilient to 4 failures.

65

Defining “fault-tolerance”

« 20 storage devices (1GB) resilient to 4 failures:

* Solution #1: The only MDS alternative:
Reed-Solomon Coding:

Defining “fault-tolerance”

« 20 storage devices (1GB) resilient to 4 failures:

* Solution #1: The only MDS alternative:
Reed-Solomon Coding:

— 80% of storage contains data.

— Cauchy Matrix for w=>5 has 912 ones.

— 44.6 XORs per coding word.

— Encoding: 59.5 seconds.

— Decoding: roughly 14.9 seconds per failed device.
— Updates: 12.4 XORs per updated node.

66

or

Defining “fault-tolerance”

» 20 storage devices (1GB) resilient to 4 failures :

* Solution #2: HoVer?; ,[12,19]:

or

Defining “fault-tolerance”

» 20 storage devices (1GB) resilient to 4 failures :

* Solution #2: HoVer?; ,[12,19]:

— 228 data words, 69 coding words (3 wasted).
— 76% of storage contains data.

— Encoding: (12*18 +3*19*11)/69 = 12.22 XORs per
coding word: 18.73 seconds.

— Decoding: Roughly 5 seconds per device.
— Update: 5 XORs

67

Defining “fault-tolerance”

« 20 storage devices (1GB) resilient to 4 failures:

* Solution #3: 50% Efficiency WEAVER code

8388223382233388

— 50% of storage contains data.

— Encoding: 3 XORs per coding word: 10 seconds.
— Decoding: Roughly 1 second per device.

— Update: 5 XORs

Defining “fault-tolerance”

« 20 storage devices (1GB) resilient to 4 failures:

« Solution #4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>

68

Defining “fault-tolerance”

« 20 storage devices (1GB) resilient to 4 failures:
» Solution #4: LDPC <2,2,2,2,1,1,1,2,1,1,1,1,1,1,1>

— 80% of storage for data

— f=1.0496 (Resilient to 3.81 failures...)

— Graph has 38 edges: 30 XORs per 4 coding words.
— Encoding: 10 seconds.

— Decoding: Roughly 3 seconds per device.

— Update: 3.53 XORs

or

Defining “fault-tolerance”

or

» 20 storage devices (1GB) resilient to 4 failures:

Data Capacity (GB) # Failures Tolerated Encoding Time (sec)

60

204

69

Encoding Considerations

* Decentralized Encoding:

— Not reasonable to have one node do all encoding.
— E.g. Network Coding [Ahlswede et al:2000].

— Reed-Solomon codes work well, albeit with standard
performance.

— Randomized constructions [Gkantsidis,Rodriguez:2005].

Decoding Considerations

* Scheduling - Content Distribution Systems:

— All blocks are not equal - data vs. coding vs. proximity:
[Collins,Plank:2005].

— LDPC: All blocks are not equal #2 - don’t download a
block that you’ve already decoded [Uyeda et al:2004].

— Simultaneous downloads & aggressive failover
[Collins,Plank:2004].

70

Resources (Citations)

* Reed Solomon Codes:

— [Plank:1997] J. S. Plank, “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems,” Software -- Practice &
Experience, 27(9), September, 1997, pp. 995-1012.
http://www.cs.utk.edu/~plank/plank/papers/papers.html.

— [Rizz0:1997] L. Rizzo, “Effective erasure codes for reliable computer
communication protocols,” ACM SIGCOMM Computer
Communication Review, 27(2), 1997, pp. 24-36.

http://doi.acm.org/10.1145/263876.263881.

— [Plank,Ding:2005] J. S. Plank, Y. Ding, “Note: Correction to the 1997
Tutorial on Reed-Solomon Coding,” Software -- Practice &
Experience, 35(2), February, 2005, pp. 189-194.
http://www.cs.utk.edu/~plank/plank/papers/papers.html.

(Includes software)

Resources (Citations)

* Reed Solomon Codes:

— [Blomer et al:1995] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M.

Luby and D. Zuckerman, “An XOR-Based Erasure-Resilient Coding
Scheme,” Technical Report TR-95-048, International Computer

Science Institute, August, 1995.
http://www.icsi.berkeley.edu/~lubyy/.
(Includes software)

— [Plank:2005] J. Plank “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Storage Applications,” Submitted for publication,
http://www.cs.utk.edu/~plank/plank/papers/papers.html.

(Includes good Cauchy Matrices)

71

Resources (Citations)

 Parity Array Codes:

— [Blaum et al:1995] M. Blaum, J. Brady, J. Bruck and J. Menon,
EVENODD: An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures, IEEE Transactions on Computing, 44(2),
February, 1995, pp. 192-202.

— [Blaum,Roth:1999] M. Blaum and R. M. Roth “On Lowest Density
MDS Codes,” IEEE Transactions on Information Theory, 45(1),
January, 1999, pp. 46-59.

— [Xu,Bruck:1999] L. Xu and J. Bruck, X-Code: MDS Array Codes with
Optimal Encoding, /EEE Transactions on Information Theory, 45(1),
January, 1999, pp. 272-276.

Resources (Citations)

 Parity Array Codes:

— [Huang,Xu:2005] C. Huang and L. Xu, “STAR: An Efficient Coding Scheme
for Correcting Triple Storage Node Failures,” FAST-2005: 4th Usenix
Conference on File and Storage Technologies, December, 2005,
http://www.usenix.org/events/fast05.

— [Hafner:2005H] J. L. Hafner, “HoVer Erasure Codes for Disk Arrays,”
Research Report RJ10352 (A0507-015), IBM Research Division, July, 2005,
http://domino.research.ibm.convlibrary.

— [Hafner:2005W] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems,” FAST-2005: 4th Usenix Conference on
File and Storage Technologies, December, 2005,
http://www.usenix.org/events/fast05.

Resources (Citations)

¢« LDPC Codes:

[Gallager:1963] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press,
Cambridge, MA, 1963.

[Wicker,Kim:2005] S. B. Wicker and S. Kim, Fundamentals of Codes. Graphs, and
Iterative Decoding, Kluwer Academic Publishers, Norwell, MA, 2003.

[Luby et al:1997] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V.
Stemann, “Practical Loss-Resilient Codes,” 29th Annual ACM Symposium on Theory of
Computing, El Paso, TX, 1997, pages 150-159, http://www.icsi.berkeley.edu/~luby/.

[Plank et al:2005] J. S. Plank, A. L. Buchsbaum, R. L. Collins and M. G. Thomason,
“Small Parity-Check Erasure Codes - Exploration and Observations,” DSN-2005:
International Conference on Dependable Systems and Networks, Y okohama, Japan,
IEEE, 2005, http://www.cs.utk.edu/~plank/plank/papers/papers.html.

(Includes enumeration of best codes for m = 2-5, n = 2-1000)

Resources (Citations)

 LDPC Codes:

— [Plank,Thomason:2004] J. S. Plank and M. G. Thomason, “A Practical

Analysis of Low-Density Parity-Check Erasure Codes for Wide-Area
Storage Applications,” DSN-2004: The International Conference on
Dependable Systems and Networks, IEEE, Florence, Italy, June, 2004,
pp. 115-124, http://www.cs.utk.edu/~plank/plank/papers/papers.html.

[Collins,Plank:2005] R. L. Collins and J.. S. Plank, “Assessing the
Performance of Erasure Codes in the Wide-Area,” DSN-2005:
International Conference on Dependable Systems and Networks,
Yokohama, Japan, June, 2005,
http://www.cs.utk.edu/~plank/plank/papers/papers.html.

[Luby:2002] M. Luby, LT Codes, IEEE Symposium on Foundations of
Computer Science, 2002, http://www.digitalfountain.com.

73

Resources (Citations)

 LDPC Codes:

— [Mitzenmacher:2004] M. Mitzenmacher, Digital Fountains: A Survey and
Look Forward, /EEE Information Theory Workshop, San Antonio, October,
2004, http://wcl3.tamu.edu/itw2004/program.html.

— [Shokrollahi:2003] A. Shokrollahi, “Raptor Codes,” Digital Fountain Technical
Report DR2003-06-001, 2003,
http://www.digitalfountain.com/technology/researchLibrary/.

— [Uyeda et al:2004] F. Uyeda, H. Xia and A. Chien, “Evaluation of a High
Performance Erasure Code Implementation,” University of California, San
Diego Technical Report CS2004-0798, 2004, http://www.cse.ucsd.edu.

74

