Faster Checkpointing with N 4+ 1 Parity

James S. Plank

Department of Computer Science
Univeristy of Tennessee
Knoxville, TN 37996
plank@cs.utk.edu

Kai L1

Department of Computer Science
Princeton University
Princeton, NJ 08544

li@cs.princeton.edu

Appearing in:
24th Annual International Symposium on Fault-Tolerant Computing

Austin, Texas

June 15-17, 1994

Faster Checkpointing with N 4+ 1 Parity

James S. Plank

Department of Computer Science
University of Tennessee

Knoxville, TN 37920

Abstract

This paper presents a way to perform fast, in-
cremental checkpointing of multicomputers and dis-
tributed systems by using N + 1 parity. A basic al-
gorithm is described that uses two extra processors for
checkpointing and enables the system to tolerate any
single processor failure. The algorithm’s speed comes
from a combination of N + 1 parity, extra physical
memory, and virtual memory hardware so that check-
points need not be written to disk. This eliminates the
most time-consuming portion of checkpointing.

The algorithm requires each application processor
to allocate a fired amount of extra memory for check-
pointing. This amount may be set statically by the
programmer, and need not be equal to the size of the
processor’s writable address space. This alleviates a
major restriction of previous checkpointing algorithms
using N + 1 parity [28].

Finally, we outline how to extend our algorithm to
tolerate any m processor failures with the addition of
2m extra checkpointing processors.

1 Introduction

Checkpointing is an important topic in computer
science as it 1s the only way to provide fault tolerance
in a general-purpose computing environment [1]. With
the proliferation of large parallel and distributed sys-
tems, checkpointing has been the method of choice for
providing fault-tolerance [3, 5, 10, 14, 15, 27]. Check-
pointing typically requires the saving of one or more
processors’ address spaces to stable storage so that af-
ter a failure, the machine’s state may be restored to
the saved checkpoint. Besides fault-tolerance, check-
pointing has been used for process migration, job
swapping and debugging.

The major overhead of checkpointing is writing
the checkpoint to disk. Results of implementations

Kai Li

Department of Computer Science
Princeton University

Princeton, NJ 08544

have shown that the overriding concern in making
checkpoints fast is either reducing or hiding the over-
head of disk writing. This is especially a concern
in parallel and distributed systems, where the num-
ber of processors is often vastly larger than the num-
ber of disks. Proposed solutions to reducing the
effect of disk writing have been to use incremen-
tal checkpointing [9, 11, 33], compiler support [20],
compression [20, 27], copy-on-write [21], non-volatile
RAM [15], and pre-copying [9]. Although these meth-
ods succeed to varying degrees, they all default to the
speed of the storage medium as the bottleneck in de-
creasing overhead.

In this paper, we present a set of incremental check-
pointing algorithms that perform no writing to disk.
Instead, they assume that no more than m proces-
sors fail in a parallel or distributed system at any one
time, and describe how to recover from such failures.
We will start with a detailed description of the algo-
rithm when m equals one, and then describe how it
can be modified for larger values of m. The bottom
line is that with 2m extra processors, we can protect
the system from any m processors failing.

The algorithm revolves around N + 1 parity, previ-
ously used by Gibson [12] to provide reliability in disk
arrays. N + 1 parity was proposed by Plank [28] as
a way to perform diskless checkpointing, but the pro-
posed algorithm is non-incremental, and needs each
processor to maintain two in-memory copies of local
checkpoints. This forces each processor to allocate
two thirds of its physical memory for the sole use of
checkpointing, which is unreasonable.

The algorithm presented here alleviates this prob-
lem by using incremental checkpointing: Extra space
is required only for the portions of each processor’s
memory that have changed since the previous check-
point. We allow the user to specify an upper limit on
this space and when it is consumed, a new checkpoint
must be taken. This introduces a tradeoff between
the extra memory required for checkpointing and the

number of checkpoints that must be taken. We evalu-
ate this tradeoff in detail.

By omitting disk-writing from the checkpointing
protocol, programmers should be able to checkpoint
far more frequently than when they have to write to
disk. Instead of checkpointing on the order of once an
hour, programmers may checkpoint as frequently as
once every second, or every few seconds. This should
drastically reduce the amount of lost work due to pro-
cessor failures.

Moreover, this algorithm allows one’s computa-
tional model to be one of a continuously running par-
allel system. If a processor, or up to m processors fail,
then they can be replaced instantly with any available
processor or processors. The system does not have to
be halted and restarted when the failing processors are
reset. Moreover, the amount of work lost due to the
failures is small — on the order of seconds. Thus, the
algorithm may be used for process migration and/or
load-balancing in a reconfigurable distributed system
such as PVM [2]. Finally, as there is no reliance on
disk, there are no problems concerning the availability
of stable storage following a failure or migration.

Combined with an all-encompassing checkpointing
method for wholesale system failures [10, 14, 18, 22,
28, 31], this algorithm provides an efficient composite
system for fault-tolerant computing: The faster algo-
rithm 1s used to checkpoint at small intervals, like once
a second, and the all-encompassing method is used to
checkpoint at large intervals, like once an hour. Thus,
the more frequent case of a few processors failing (or
being reclaimed by their owners in a distributed work-
station environment) is dealt with swiftly, involving no
disk interaction, and a minimal loss of computation.
The rarer case of the whole system failing is handled
as well, albeit more slowly, as it has more saved state
from which to recover.

2 The Basic Algorithm

To describe the basic algorithm, we assume to
have a collection of n + 2 processors: pi,...,Pn, Pe
and pp. Processors p. and p; are called the “check-
point processor” and “backup processor” respectively.
Both are dedicated solely to checkpointing. Proces-
SOrIS p1, ..., pn are free to execute applications, and are
thus called “application processors.” The application
processors must reserve a fixed amount of memory for
checkpointing. We denote this amount by M. Finally,
we assume that the checkpointing mechanism is able
to access the memory management unit (MMU) of
each processor, enabling it to protect pages of memory

as read-only or read-write, and to catch the resulting
page faults.

The basic idea of the algorithm is as follows: At all
points in time, there will be a valid consistent check-
point maintained by the system in memory. Con-
sistent checkpointing has been well-documented and
well-studied [6, 8, 17, 18, 22]. A consistent check-
point 1s comprised of a local checkpoint for each ap-
plication processor, and a log of messages. To recover
from a consistent checkpoint, each processor restores
its execution to the state of its local checkpoint, and
then messages are re-sent from the message log. For
the sake of simplicity, we assume that the consistent
checkpoint has no message state. For example, the
processors can use the “Sync-and-Stop” checkpoint-
ing protocol [28] to guarantee no message state.

The consistent checkpoint is maintained coopera-
tively by all processors, p1, ..., pn, Pe, Ps, using N + 1
parity [12]. Specifically, each application processor
will have a copy of its own local checkpoint in physical
memory. The checkpoint processor will have a copy of
the “parity checkpoint,” which 1s defined as follows:

e Let the size of each application processor p;’s
checkpoint be S;.

e The checkpoint processor records each value of
Si, for 1 <i < n.

e The size S, of the parity checkpoint is the maxi-
mum S; for 1 << n.

o Let b; ; be the j-th byte of of p;’s checkpoint if
Jj < 5;, and 0 otherwise.

e Each byte b.; of the parity checkpoint is equal
to the bitwise exclusive or (@) of the other bytes:
bcyj = blyj D bzyj ©® . ..@bnyj, for 1 <5< 8.

The backup processor is used to keep a copy of the
parity checkpoint when the checkpoint processor needs
to update its copy.

Now, if any application processor p; fails, then the
system can be recovered to the state of the consis-
tent checkpoint by having each non-failed processor
restore its state to its local checkpoint, and by hav-
ing the failed processor calculate its checkpoint from
all the other checkpoints, and from the parity check-
point. Specifically, it retrieves its value of S; from the
checkpoint processor (or from the backup processor if
the checkpoint processor is changing its state). Then
it calculates 1ts checkpoint:

biy]’ = b1,j G...P bi_lyj b bz’+1,j b...h bn,j D bc,j,
for 1 <j53<5;

If the checkpoint processor fails, then it restores its
state from the backup processor, or by recalculating
the parity checkpoint from scratch. The backup pro-
cessor may be restored similarly.

The actual algorithm works as follows: At the be-
ginning of each application processor’s execution, it
takes checkpoint 0: It sends the size of its applica-
tion’s writable address space to the checkpoint pro-
cessor, along with the contents of this space. Next, it
protects all of its pages as read-only. The checkpoint
processor records each value of S;, and calculates the
parity checkpoint from the contents of each proces-
sor’s address space. When the checkpoint processor
finishes calculating the parity checkpoint, it sends a
copy to the backup processor, which stores it.

After sending p. its address space, each applica-
tion processor clears its M bytes of extra memory.
This space is split in half, and each half is used as a
checkpointing buffer. We will call them the primary
and secondary checkpointing buffers. After designat-
ing the checkpointing buffers, the processor is free to
start executing its application. When the application
generates a page-fault by attempting to write a read-
only page, the processor catches the fault, and copies
the page to its primary checkpointing buffer. It then
resets the page’s protection to read-write, and returns
from the fault.

If any processor fails during this time, the system
may be restored to the most recent checkpoint. Each
application processor’s checkpoint consists of the read-
only pages in its writable address space, and the pages
in its primary checkpointing buffer. The processor can
restore this checkpoint by copying (or mapping) the
pages back from the buffer, reprotecting them as read-
only, and then restarting. Obviously, if the checkpoint
processor fails during this time, it can be restored
from the backup processor, and if the backup proces-
sor fails, then it can be restored from the checkpoint
processor.

Now, when any processor uses up all of its primary
checkpointing buffer, then it must start a new global
checkpoint. In other words, if the last completed
checkpoint was checkpoint number ¢, then it starts
checkpoint ¢ 4+ 1. The processor performs any coordi-
nation required to make sure that the new checkpoint
is consistent, and then takes its local checkpoint. To
take the local checkpoint, it must do the following for
each read-write protected page page; in its address
space:

o Calculate diff , = page,, ® buf,,, where buf is the
saved copy of page, in the processor’s primary
checkpointing buffer.

e Send diff, to the checkpoint processor, which
XOR’s it with its own copy of page;. This has the
effect of subtracting buf, from the parity page
and adding pagey,.

o Set the protection of page; to be read-only.

After sending all the pages, the processor swaps the
identity of its primary and secondary checkpointing
buffers.

If an application processor fails during this period,
the system can still restore itself to checkpoint ¢. First
consider a non-failed application processor that has
not started checkpoint ¢ 4+ 1. It restores itself as de-
scribed above, by copying or mapping all pages back
from its primary checkpointing buffer, resetting the
pages to read-only, and restarting the processor from
this checkpoint. Suppose instead that the application
processor has started checkpoint ¢ 4+ 1. Then, it first
restores itself to the state of local checkpoint ¢ + 1
by copying or mapping pages from the primary check-
pointing buffer, and next, it restores itself to the state
of checkpoint ¢ by copying or mapping pages from
the secondary checkpointing buffer. When all these
pages are restored, then the processor’s state is that
of checkpoint ¢. The checkpoint processor restores it-
self to checkpoint ¢ by copying the parity checkpoint
from the backup processor. The backup processor
does nothing. Once all non-failed processors have re-
stored themselves, the failed processor can rebuild its
state, and the system can continue from checkpoint c.

If the checkpoint processor fails during this period,
then the application processors roll back to the state
of checkpoint ¢, and the checkpoint processor restores
itgelf from the backup processor. If the backup pro-
cessor fails, then the processors roll back to the state
of checkpoint ¢, and the checkpoint processor’s check-
point is recalculated, and then copied to the backup.

When all processors have finished taking their local
checkpoints for global checkpoint ¢+ 1, the checkpoint
processor sends a copy of its checkpoint to the backup
processor, and the application processors may jettison
their secondary checkpointing buffers.

3 An Example

In this section, we present an example of a six-
processor system running this checkpointing algo-
rithm. Processors Py, ..., Py are the application pro-
cessors. Processor Ps is the checkpoint processor, and
Ps is the backup processor. Before starting the ap-
plication, the processors take checkpoint 0: They pro-
tect their writable address spaces to be read-only, clear

Application's Parity Backup of
address space < ; < > Parity
(protected read-only) checkpoint #0 Checkpoint #0

Primary ckp buffer
Secondary ckp buffer {
i P2 3 g 5 6

Figure 1: State at checkpoint 0.

]

i P2 E

4

Figure 2: State slightly after checkpoint 0.

their checkpointing buffers, and send the contents of
their address spaces to Ps. Py calculates the parity
checkpoint, and then sends it to the backup proces-
sor, Ps. At this point, the system looks like Figure 1.

Next, the application processors run the applica-
tion. When page faults occur, the faulting pages are
copied to the processor’s primary checkpointing buffer
and set to read-write, so that the application may
continue. The state of the system looks as in Fig-
ure 2. Processor P; has copied three pages to its pri-
mary checkpointing buffer. Processors P, and P35 have
copied two pages each, and P, has copied one. Were a
failure occur to one of the application processors, then
the others would restore themselves to checkpoint 0
by copying or mapping the pages back from the pri-
mary checkpointing buffer to the application’s mem-

ory and reprotecting those pages as read-only. The
failed processor may then reconstruct its checkpoint
from the other application processors’ checkpoints and
from the parity checkpoint. If a non-application pro-
cessor fails, then 1t may restore itself from the other
non-application processor.

Since processor P; has used up its primary check-
pointing buffer, checkpoint 1 must be started. P; goes
through any synchronization necessary for the check-
point to be consistent. When it is time to take its
local checkpoint, P; XOR’s each changed page with its
buffered copy and sends the results to Ps, which uses
them to update the parity checkpoint. P; then pro-
tects 1ts pages to be read-only, and swaps the 1dentity
of the primary and secondary checkpoint buffers. The
state of the system is depicted in Figure 3.

Reprotect to read-only <

Secondary ckp buf ‘{

Primary ckp buf

P P R P,

p
S
l:)2 3 4

Figure 3: Processor P; starts checkpoint 1.

i

Figure 4: Processors P, P35 and P, take checkpoint 1.
P P P5 P6

-@
I:)l I:)2 3 4

Figure 5: Checkpoint 1 is complete.

If an application processor fails at this point, then
the processors may again roll back to checkpoint 0.
Py 1s able to do this by using pages from its secondary
checkpoint buffer. P, Ps and P, use pages from their
primary checkpoint buffer as before. The checkpoint
in Ps must be used, as Ps’s checkpoint has been up-
dated to reflect Pi’s changes for checkpoint 1. If P
fails, then it copies its checkpoint from Ps, and the
application processors roll back to checkpoint 0. If
Ps fails, then the processors again roll back to check-
point 0, and the parity and backup checkpoints are
calculated anew.

Figure 4 shows processors Ps, P53 and P, taking
their local checkpoints. They XOR their changed pages
with the buffered copies and send the results to Ps.
Then, they reprotect the pages and swap the identi-
ties of the primary and secondary checkpoint buffers.
If a failure occurs during these activities, then the re-
covery is the same as in Figure 3: The processors still
recover to checkpoint 0. Also during this time, proces-
sor P’s application continues execution, and its pages
are copied to the new primary checkpoint buffer. To
restore itself to the state of checkpoint 0, it must copy
or map pages first from the primary checkpoint buffer,
and then from the secondary checkpoint buffer. As
before, the parity checkpoint in the backup processor
(Ps) must be used.

Finally, Figure 5 depicts the state when all the lo-
cal checkpoints are finished: The parity checkpoint in
processor Ps 1s copied to processor Ps, and the applica-
tion processors jettison their secondary checkpointing
buffers. Any failure will now be restored to check-
point 1.

4 Tolerating Failures of More Than
One Processor

The above algorithm allows the system to tolerate
any one processor failure with two extra checkpointing
processors. In this section, we outline how to config-
ure the system to tolerate any m processor failures
with 2m extra checkpointing processors. Specifically,
let there be n + 2m processors in the system. As be-
fore, processors py,...,p, are the application proces-
sors. The rest are split into checkpointing and backup
PrOCESSOrs: Peiy - - .y Pem, and pp1, ..., Pom. The check-
pointing and backup processors are paired up (pe; is
paired with pp;), and related like the checkpoint and
backup processors in the previous section: The backup
processor py; contains the contents of p.; at the time
of the most recently committed checkpoint. This is so

that there is a copy of p.; from which to restore if a
failure occurs while p.; is being updated.

The application processors perform the same ac-
tions as in the above algorithm, with one difference:
Instead of sending copies of their changed pages to just
the one checkpoint processor, they send their changed
pages to all m checkpoint processors. The checkpoint
processors are like the original checkpoint processor
above, except that they do not just calculate the bit-
wise parity of each page. Instead, each one calculates
a different function of the bytes of the pages. This cal-
culation is such that if any m processors in the entire
system fail, the rest may be used to recalculate the
values of the failed ones. The description of how each
checkpoint processor makes its calculation requires too
much detail for this paper. Instead, it may be found
in [26]. We outline it in the following paragraph:

The calculations resemble Reed-Solomon codes [24,
32]: Instead of performing bitwise arithmetic as the
checkpoint processor does in the algorithm of the pre-
vious sections, each processor breaks the pages into
multi-bit words, and performs arithmetic on those
words over a Galois Field. The number of bits per
word depends on the size of n and m. Although
more complex computationally than N + 1 parity, this
coding is not prohibitively complex: Instead of an
exclusive-or for each byte, each processor must per-
form a few table lookups and some bitwise arithmetic.
Recovery involves gaussian elimination of an n x n ma-
trix, and then for each byte, more table lookups and
bitwise arithmetic. Again, complete details may be
found in [26]. Since each processor is devoted solely to
checkpointing, it is well-situated to perform the com-
putation for checkpointing and recovery, and the en-
tire process should still be faster than checkpointing

to disk.

5 Discussion

There are two types of overhead that the basic al-
gorithm imposes on user programs. First is the time
overhead of taking checkpoints, and second are the ex-
tra memory requirements, as manifested by the vari-
able M.

The time overhead of checkpointing has the follow-
ing components:

e Processing page faults.
e Coordinating checkpoints for consistency.

o Calculating each diff;.

e Sending diff ;, to the checkpoint processor.
e The frequency of checkpointing.

We do not analyze the first two components as they are
they same for this algorithm as for other incremental
and consistent checkpointing algorithms [9, 27]. They
should not amount to as much overhead as the third
and fourth components. These components, the time
to calculate each diff , and send it to the checkpoint
processor, depend on the speed of the processor, the
speed of the interconnection network, and the number
of bytes sent.

We notice that the sum of these components may
be improved by a simple optimization, stemming from
the fact that each processor sends diff , = page, Bbuf,
to the parity processor. This is as opposed to normal
incremental checkpointing algorithms [9, 11, 33] that
send page;, to stable storage during an incremental
checkpoint. The benefit of sending diff, is that all
bytes of page, which have not been changed since the
previous checkpoint will be zero in diff .. This allows
us to optimize the algorithm by sending only the non-
zero bytes of diff,, thereby lowering the number of
bytes sent to the checkpoint processor when only frac-
tions of pages are altered. This technique — sending
the diff of the changed pages — should be a marked
improvement over blindly sending d:ff, when only a
few bytes of a page are touched in a checkpointing
interval.

The frequency of checkpointing is related to the ex-
tra memory requirements, and thus the two are dis-
cussed together. As stated in the Introduction, there
is a tradeoff between the extra memory requirements
and the frequency of checkpointing. At one extreme,
if the processors can allocate enough extra memory for
two whole checkpoints; as suggested in [28], then the
primary checkpointing buffer will never become com-
pletely full, and thus the processors can checkpoint at
the direction of the user — any checkpointing interval
can be supported. At the other extreme, if the pro-
cessors can allocate only a minimum of extra memory,
such as five pages, for checkpointing, then the buffers
will be filling up constantly, forcing checkpoints to be
taken at very small intervals, and grinding the system
to a halt.

Obviously, the ideal place between these extremes
depends on the processors and on the program being
executed. If the program exhibits great locality, then
a small checkpointing buffer will be sufficient to keep
the system from bogging down. If the processors have
a large amount of available physical memory, then a
large checkpointing buffer may be feasible. For pro-
grams whose locality is bad enough to constantly fill

up the maximum size checkpointing buffers available
on the application processors, this method may im-
pose too much overhead to be reasonable.

One goal of our future work is to make an empiri-
cal evaluation of how this checkpointing performs on
a variety of programs, networks, and processor char-
acteristics. To provide a more limited evaluation we
draw from two sources. First are previous results from
Elnozahy, Johnson and Zwaenepoel [9]. They imple-
mented incremental, consistent checkpointingto a cen-
tral file server in a distributed system of 16 processors.
Although they checkpointed at a coarse interval of two
minutes, in six out of their eight test programs, incre-
mental checkpoints consisted of less than half of the
application’s memory. This leads us to believe that at
far finer checkpointing intervals (on the order of ev-
ery second or every few seconds), the extra memory
requirements (i.e. M) should be much smaller.

Second, we have instrumented some distributed
programs in PVM [2] to record their behavior under
this algorithm for varying values of M. The results
in Figure 6 through Figure 8 display the instrumen-
tation of multiplying two 1300x1300 matrices using
eight DEC alpha workstations (six for the applica-
tion, one to record the parity checkpoint, and one to
backup the parity processor) connected via an Ether-
net. Each application processor uses 7.2 megabytes of
memory without checkpointing. The processors have
8 kilobyte pages and well over 24 megabytes of phys-
ical memory (thus space for checkpointing buffers is
not a problem).

The data in Figure 6 show that matrix multiplica-
tion i1s a good candidate for checkpointing using this
method. Its locality is such that with even a tiny
buffer size of 160K (this is just ten pages for each of
the primary and secondary checkpointing buffers), the
overall running time of the program is increased by an
average of only 40 seconds. This is under 10% over-

head.

The fluctuations in running time seen by the max-
imum and minimum values for each point in Fig-
ure 6 are due to the fact that these tests were run
using general-purpose machines in Princeton’s Com-
puter Science Department. Although the tests were
run at night, the machines and network could not be
allocated for exclusive testing. Thus, network and ma-
chine contention from other users has made its way
into the graph.

Figure 7 displays the average number of checkpoints
taken for the given checkpoint buffer size, and then
average number of CPU seconds between checkpoints.
As CPU seconds are not affected drastically by ex-

560 —
@
©
c
%
2 %40
£
'_
()]
c
=
S 520
2
500 —
T T T T T T T =" |
= N o) [w A 0 B zZ
Q o N 5
g g 8 2 B2 gg 3
8
Py
el
Q.
- El
Sizeof M Ed
«

Figure 6: Running Time of Checkpointing

ternal processes, this data factors out the effects of
the shared machines. Figure 7 corroborates Figure 6,
showing that all checkpoint buffer sizes give reason-
able inter-checkpoint intervals. Given this data, a user
might choose 800K to be the size of M, as that neces-
sitates a checkpoint for every four seconds of CPU
time.

Figure 8 shows the success of compressing each
diff . so that only the non-zero bytes are transmitted.
As one would expect, as the checkpoint buffers get
bigger, pages get written more between checkpoints,
resulting in fewer zero bytes in diff ,, and thus less
compressibility. Still, the compression ratios observed

M Number CPU Seconds
(bytes) of Between
Checkpoints | Checkpoints
160K 763 0.48
400K 180 2.00
800K 82 4.33
1.6M 39 8.98
3.2M 17 19.96
4.8M 10 31.28
8.0M 3 80.11
12.0M 0 -

Figure 7: Number of Checkpoints

M Checkpoint | Compressed | Compression
(bytes) Size Checkpoint Ratio
(bytes) Size (bytes) (%)
160K 80K 19K 76
400K 200K 78K 61
800K 400K 172K 57
1.6M 800K 360K 55
3.2M 1.6M 816K 49
4.8M 2.4M 1.3M 45
8.0M 4.0M 2.3M 42

Figure 8: Average Size of Checkpoints

show significant savings in the amount of bytes trans-
mitted.

One might observe that if each processor is produc-
ing 172K checkpoints every four seconds, as in this
example, then a local disk should be able to write the
incremental checkpoints as fast as they are produced.
This is true, and is mentioned in the Future Work be-
low. However, in a system like the one tested, where
all disks belong to a central file server and are shared
among hundreds of users, disk contention is a signif-
icant issue, and checkpointing to processors will be
more efficient.

6 Related Work

Checkpointing is a well-documented topic in fault-
tolerance. In parallel and distributed systems, the
field has been divided into pessimistic [4, 5, 29], opti-
mistic [14, 31], and consistent checkpointing [6, 7, 8,
15, 17, 18, 22, 30]. Implementations have been tested
on uniprocessors [11, 20, 23], multiprocessors [19, 21],
distributed systems [9, 15], and multicomputers [27].
All of these systems have checkpointed to disk, and
consequently taken efforts to minimize the overhead
caused by disk writes.

Johnson and Zwaenepoel presented an algorithm
to reconstruct the message state of a distributed sys-
tem when at most one processor fails, with no disk-
writing [13]. The algorithm has the sending processor
save the message so that it may resend if the receiver
fails. Processors save their own execution states in
disk checkpoints.

Keleher, Cox and Zwaenepoel used diff’s to prop-
agate updates to shared pages in their distributed
shared memory system “Munin” [16]. As in this pa-
per, the diff’s are used to lower the latency of trans-
porting whole pages by sending fewer than a pageful

of bytes when possible.

N + 1 parity was used to provide single-site fault-
tolerance by Gibson in his design and implementa-
tion of RAID disk arrays [12]. Gibson also addresses
multiple-site failures, and gives an algorithm for toler-
ating 2-site failures with 2n2 extra disks. This algo-
rithm scales to tolerate m-site failures with mn ™= ex-
tra disks. Reed-Solomon codes were not employed to
reduce the number of extra disks to m because of the
extra complexity that such codes require in the disk
controller hardware. This is not a problem in our sys-
tem because the unit of fault-tolerance is a processor,
well-capable of handling the extra calculations. RAID
techniques were also combined with memory manage-
ment in a design of disk arrays to support transaction
recovery in [25].

7 Conclusion

We have presented a fast incremental checkpoint-
ing algorithm for distributed memory programming
environments and multicomputers. This algorithm is
unique as it checkpoints the entire system without us-
ing any stable storage. Therefore, its speed is not
limited by the speed of secondary storage devices.

The basic algorithm presented above tolerates the
failure of any one processor with the addition of two
checkpointing processors. This algorithm generalizes
so that any m processor failures can be tolerated with
the addition of 2m checkpointing processors.

Of concern in this algorithm is the amount of extra
memory per processor required for checkpointing, and
how it relates to the frequency of checkpointing. In
the discussion above, we argue that a fixed amount
of extra memory is reasonable for many applications.
Results from Elnozahy, Johnson and Zwaenepoel [9],
as well as our own instrumentation of a distributed
matrix multiply corroborate this claim.

8 Future Work

For future work, we are continuing to assess the
performance of this algorithm on more test programs.
The result of this work should be to quantify what
values of M are reasonable for programs of differing
locality patterns.

This work i1s being extended in three different di-
rections. First is to write a full-blown checkpoint-
ing implementation on PVM using a combination of
this method and an all-encompassing checkpointing

method to disk. The goal is to provide fast fault-
tolerance and process migration (for load balancing)
using this method, and still be able to tolerate whole-
sale system failures. Second, we are working with Rob
Netzer and Jain Xu to exploring whether or not we
can improve the performance of incremental check-
pointing (to disk) by using a checkpoint buffer and
compressing diff’s as specified in this paper. Fi-
nally, we are working with Jack Dongarra and Young-
bae Kim to explore how diskless checkpointing can
be mixed with application-oriented checkpointing to
achieve fault-tolerance without the reliance on page-
protection hardware. The goal in all of these project
is assess the overhead of checkpointing with meth-
ods described in this paper, as compared to stan-
dard checkpointing implementations to stable stor-

age [9, 20, 21, 27].

References

[1] T. Anderson and P. A. Lee. Fault Tolerance Princi-
ples and Practice. Prentice/Hall International, Inc.,
Englewood Cliffs; New Jersey, 1981.

[2] A. L. Beguelin, J. J. Dongarra, A. Geist, R. J.
Manchek, and V. S. Sunderam. Heterogeneous net-
work computing. In Siwxth SIAM Conference on Par-
allel Processing, 1993.

[3] K. P. Birman. ISIS: A system for fault-tolerant dis-
tributed computing. Technical Report TR 86-744,
Cornell University, April 1986.

[4] A. Borg, J. Baumbach, and S. Glazer. A message
system supporting fault tolerance. In Proceedings of
the ACM Symposium on Operating System Principles,
pages 90-99, Atlanta, GA, October 1983.

[5] A. Borg, W. Blau, W. Graetsch, F. Herrman, and
W. Oberle. Fault tolerance under UNIX. ACM Trans-
actions on Computer Systems, 7(1):1-24, Feb 1989.

[6] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3(1):3-75, February 1985.

[7] F. Cristian and F. Jahanain. A timestamp-based
checkpointing protocol for long-lived distributed com-
putations. In Proceedings of the 10th Symposium on
Reliable Distributed Systems, pages 12-20, October
1991.

[8] C. Critchlow and K. Taylor. The inhibition spectrum
and the achievement of causal consistency. Techni-
cal Report TR 90-1101, Cornell University, February
1990.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel.

The performance of consistent checkpointing. 1In

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Proceedings of the 11th Symposium on Reliable Dis-
tributed Systems, 1992.

E. N. Elnozahy and W. Zwaenepoel. Manetho: Trans-
parent rollback-recovery with low overhead, limited
rollback and fast output commit. [FEE Transactions
on Computers Special Issue on Fault-Tolerant Com-
puting, 41(5), May 1992.

S. I. Feldman and C. B. Brown. Igor: A system for
program debugging via reversible execution. ACM
SIGPLAN Notices, Workshop on Parallel and Dis-
tributed Debugging, 24(1):112-123, Jan 1989.

Garth Alan Gibson. Redundant Disk Arrays: Reliable,
Parallel Secondary Storage. PhD thesis, University of
California, Berkeley, December 1990.

D. B. Johnson and W. Zwaenepoel. Sender-based
message logging. In Proceedings of the 17th Inter-
national Symposium on Fault-Tolerant Computing,
pages 14-19, June 1987.

David B. Johnson. Distributed System Fault Toler-
ance Using Message Logging and Checkpointing. PhD
thesis, Rice University, December 1989.

M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S.
Tanenbaum. Transparent fault-tolerance in parallel
Orca programs. Technical Report 1R-258, Vrije Uni-
versiteit, Amsterdam, October 1991.

P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy con-
sistency for software distributed shared memory. In
Proceedings of the 19th Annual Symposium on Com-
puter Architecture, pages 13-21, May 1992.

R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IFEF Transactions
on Software Engineering, SE-13(1):23-31, January
1987.

T. H. Lai and T. H. Yang. On distributed snap-
shots. Information Processing Letters, 25:153-158,
May 1987.

L. A. Laranjeira, M. Malek, and R. Jenevein. Exper-
imental evaluation of techniques for fault-tolerance.
Technical Report TR-92-32, Department of Computer
Sciences, University of Texas at Austin, July 1992.

C-C. J. i and W. K. Fuchs. CATCH - Compiler-
assisted techniques for checkpointing. In Proceedings
of the 20th International Symposium on Fault Toler-
ant Computing, pages 74-81, 1990.

K. Li, J. F. Naughton, and J. S. Plank. Real-time,
concurrent checkpoint for parallel programs. In Sec-
ond ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 79-88, Seat-
tle, Washington, Mar 1990.

K. Li, J. F. Naughton, and J. S. Plank. An efficient
checkpointing method for multicomputers with worm-

hole routing. International Journal of Parallel Pro-
cessing, 20(3), June 1992.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

M. Litzkow and M. Solomon. Supporting checkpoint-
ing and process migration outside the Unix kernel. In
Conference Proceedings, Usenixz Winter 1992 Techni-
cal Conference, pages 283—-290, January 1992.

F.J. MacWilliams and N.J.A. Sloane. The Theory
of Error-Correcting Codes, Part I. North-Holland
Publishing Company, Amsterdam, New York, Oxford,
1977.

A. N. Mourad, W. K. Fuchs, and D. G. Saab.
Database recovery using redundant disk arrays. Jour-
nal of Parallel and Distributed Computing, January
1993.

J. S. Plank, J. Friedman, and K. Li. A fail-
ure correction technique for parallel storage devices
with minimal device overhead. Submitted. Contact
plank@cs.utk.edu for a copy, 1994.

J. S. Plank and K. Li. Performance results of ¢ckp — a
consistent checkpointer on the iPSC/860. Submitted
to Scalable High Performance Computing Conference,
1994.

James S. Plank. Ffficient Checkpointing on MIMD
Architectures. PhD thesis, Princeton University, Jan-
uary 1993.

M. L. Powell and D. L. Presotto. Publishing: A re-
liable broadcast communication mechanism. In Pro-
ceedings of the ACM SIGOPS Symposium on Operat-
ing System Principles, pages 100-109, October 1983.

M. Spezialetti and P. Kearns. Efficient distributed
snapshots. In Proceedings of The Sixth International
Conference on Distributed Computing Systems, pages
382-388, Cambridge, Massachusetts, May 1986. IEEE
Computer Society.

R. E. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Computer
Systems, pages 204-226, August 1985.

J. H. van Lint. Introduction to Coding Theory.
Springer-Verlag, New York, 1982.

P. R. Wilson and T. G Moher. Demonic memory
for process histories. In SIGPLAN ’89 Conference on
Programming Language Design and Implementation,
pages 330-343, Portland, Oregon, June 1989.

