
Faster Checkpointing with N + 1 Parity

James S. Plank

Department of Computer Science

Univeristy of Tennessee

Knoxville, TN 37996

plank@cs.utk.edu

Kai Li

Department of Computer Science

Princeton University

Princeton, NJ 08544

li@cs.princeton.edu

Appearing in:

24th Annual International Symposium on Fault-Tolerant Computing

Austin, Texas

June 15-17, 1994

Faster Checkpointing with N + 1 Parity

James S. Plank Kai Li

Department of Computer Science Department of Computer Science

University of Tennessee Princeton University

Knoxville, TN 37920 Princeton, NJ 08544

Abstract

This paper presents a way to perform fast, in-

cremental checkpointing of multicomputers and dis-

tributed systems by using N + 1 parity. A basic al-

gorithm is described that uses two extra processors for

checkpointing and enables the system to tolerate any

single processor failure. The algorithm's speed comes

from a combination of N + 1 parity, extra physical

memory, and virtual memory hardware so that check-

points need not be written to disk. This eliminates the

most time-consuming portion of checkpointing.

The algorithm requires each application processor

to allocate a �xed amount of extra memory for check-

pointing. This amount may be set statically by the

programmer, and need not be equal to the size of the

processor's writable address space. This alleviates a

major restriction of previous checkpointing algorithms

using N + 1 parity [28].

Finally, we outline how to extend our algorithm to

tolerate any m processor failures with the addition of

2m extra checkpointing processors.

1 Introduction

Checkpointing is an important topic in computer

science as it is the only way to provide fault tolerance

in a general-purpose computing environment [1]. With

the proliferation of large parallel and distributed sys-

tems, checkpointing has been the method of choice for

providing fault-tolerance [3, 5, 10, 14, 15, 27]. Check-

pointing typically requires the saving of one or more

processors' address spaces to stable storage so that af-

ter a failure, the machine's state may be restored to

the saved checkpoint. Besides fault-tolerance, check-

pointing has been used for process migration, job

swapping and debugging.

The major overhead of checkpointing is writing

the checkpoint to disk. Results of implementations

have shown that the overriding concern in making

checkpoints fast is either reducing or hiding the over-

head of disk writing. This is especially a concern

in parallel and distributed systems, where the num-

ber of processors is often vastly larger than the num-

ber of disks. Proposed solutions to reducing the

e�ect of disk writing have been to use incremen-

tal checkpointing [9, 11, 33], compiler support [20],

compression [20, 27], copy-on-write [21], non-volatile

RAM [15], and pre-copying [9]. Although these meth-

ods succeed to varying degrees, they all default to the

speed of the storage medium as the bottleneck in de-

creasing overhead.

In this paper, we present a set of incremental check-

pointing algorithms that perform no writing to disk.

Instead, they assume that no more than m proces-

sors fail in a parallel or distributed system at any one

time, and describe how to recover from such failures.

We will start with a detailed description of the algo-

rithm when m equals one, and then describe how it

can be modi�ed for larger values of m. The bottom

line is that with 2m extra processors, we can protect

the system from any m processors failing.

The algorithm revolves around N +1 parity, previ-

ously used by Gibson [12] to provide reliability in disk

arrays. N + 1 parity was proposed by Plank [28] as

a way to perform diskless checkpointing, but the pro-

posed algorithm is non-incremental, and needs each

processor to maintain two in-memory copies of local

checkpoints. This forces each processor to allocate

two thirds of its physical memory for the sole use of

checkpointing, which is unreasonable.

The algorithm presented here alleviates this prob-

lem by using incremental checkpointing: Extra space

is required only for the portions of each processor's

memory that have changed since the previous check-

point. We allow the user to specify an upper limit on

this space and when it is consumed, a new checkpoint

must be taken. This introduces a tradeo� between

the extra memory required for checkpointing and the

number of checkpoints that must be taken. We evalu-

ate this tradeo� in detail.

By omitting disk-writing from the checkpointing

protocol, programmers should be able to checkpoint

far more frequently than when they have to write to

disk. Instead of checkpointing on the order of once an

hour, programmers may checkpoint as frequently as

once every second, or every few seconds. This should

drastically reduce the amount of lost work due to pro-

cessor failures.

Moreover, this algorithm allows one's computa-

tional model to be one of a continuously running par-

allel system. If a processor, or up to m processors fail,

then they can be replaced instantly with any available

processor or processors. The system does not have to

be halted and restarted when the failing processors are

reset. Moreover, the amount of work lost due to the

failures is small { on the order of seconds. Thus, the

algorithm may be used for process migration and/or

load-balancing in a recon�gurable distributed system

such as PVM [2]. Finally, as there is no reliance on

disk, there are no problems concerning the availability

of stable storage following a failure or migration.

Combined with an all-encompassing checkpointing

method for wholesale system failures [10, 14, 18, 22,

28, 31], this algorithm provides an e�cient composite

system for fault-tolerant computing: The faster algo-

rithm is used to checkpoint at small intervals, like once

a second, and the all-encompassing method is used to

checkpoint at large intervals, like once an hour. Thus,

the more frequent case of a few processors failing (or

being reclaimed by their owners in a distributed work-

station environment) is dealt with swiftly, involving no

disk interaction, and a minimal loss of computation.

The rarer case of the whole system failing is handled

as well, albeit more slowly, as it has more saved state

from which to recover.

2 The Basic Algorithm

To describe the basic algorithm, we assume to

have a collection of n + 2 processors: p

1

; . . . ; p

n

, p

c

and p

b

. Processors p

c

and p

b

are called the \check-

point processor" and \backup processor" respectively.

Both are dedicated solely to checkpointing. Proces-

sors p

1

; . . . ; p

n

are free to execute applications, and are

thus called \application processors." The application

processors must reserve a �xed amount of memory for

checkpointing. We denote this amount byM . Finally,

we assume that the checkpointing mechanism is able

to access the memory management unit (MMU) of

each processor, enabling it to protect pages of memory

as read-only or read-write, and to catch the resulting

page faults.

The basic idea of the algorithm is as follows: At all

points in time, there will be a valid consistent check-

point maintained by the system in memory. Con-

sistent checkpointing has been well-documented and

well-studied [6, 8, 17, 18, 22]. A consistent check-

point is comprised of a local checkpoint for each ap-

plication processor, and a log of messages. To recover

from a consistent checkpoint, each processor restores

its execution to the state of its local checkpoint, and

then messages are re-sent from the message log. For

the sake of simplicity, we assume that the consistent

checkpoint has no message state. For example, the

processors can use the \Sync-and-Stop" checkpoint-

ing protocol [28] to guarantee no message state.

The consistent checkpoint is maintained coopera-

tively by all processors, p

1

; . . . ; p

n

; p

c

; p

b

, using N + 1

parity [12]. Speci�cally, each application processor

will have a copy of its own local checkpoint in physical

memory. The checkpoint processor will have a copy of

the \parity checkpoint," which is de�ned as follows:

� Let the size of each application processor p

i

's

checkpoint be S

i

.

� The checkpoint processor records each value of

S

i

, for 1 � i � n.

� The size S

c

of the parity checkpoint is the maxi-

mum S

i

for 1 � i � n.

� Let b

i;j

be the j-th byte of of p

i

's checkpoint if

j � S

i

, and 0 otherwise.

� Each byte b

c;j

of the parity checkpoint is equal

to the bitwise exclusive or (�) of the other bytes:

b

c;j

= b

1;j

� b

2;j

� . . .� b

n;j

, for 1 � j � S

c

.

The backup processor is used to keep a copy of the

parity checkpoint when the checkpoint processor needs

to update its copy.

Now, if any application processor p

i

fails, then the

system can be recovered to the state of the consis-

tent checkpoint by having each non-failed processor

restore its state to its local checkpoint, and by hav-

ing the failed processor calculate its checkpoint from

all the other checkpoints, and from the parity check-

point. Speci�cally, it retrieves its value of S

i

from the

checkpoint processor (or from the backup processor if

the checkpoint processor is changing its state). Then

it calculates its checkpoint:

b

i;j

= b

1;j

� . . .� b

i�1;j

� b

i+1;j

� . . .� b

n;j

� b

c;j

;

for 1 � j � S

i

If the checkpoint processor fails, then it restores its

state from the backup processor, or by recalculating

the parity checkpoint from scratch. The backup pro-

cessor may be restored similarly.

The actual algorithm works as follows: At the be-

ginning of each application processor's execution, it

takes checkpoint 0: It sends the size of its applica-

tion's writable address space to the checkpoint pro-

cessor, along with the contents of this space. Next, it

protects all of its pages as read-only. The checkpoint

processor records each value of S

i

, and calculates the

parity checkpoint from the contents of each proces-

sor's address space. When the checkpoint processor

�nishes calculating the parity checkpoint, it sends a

copy to the backup processor, which stores it.

After sending p

c

its address space, each applica-

tion processor clears its M bytes of extra memory.

This space is split in half, and each half is used as a

checkpointing bu�er. We will call them the primary

and secondary checkpointing bu�ers. After designat-

ing the checkpointing bu�ers, the processor is free to

start executing its application. When the application

generates a page-fault by attempting to write a read-

only page, the processor catches the fault, and copies

the page to its primary checkpointing bu�er. It then

resets the page's protection to read-write, and returns

from the fault.

If any processor fails during this time, the system

may be restored to the most recent checkpoint. Each

application processor's checkpoint consists of the read-

only pages in its writable address space, and the pages

in its primary checkpointing bu�er. The processor can

restore this checkpoint by copying (or mapping) the

pages back from the bu�er, reprotecting them as read-

only, and then restarting. bviously, if the checkpoint

processor fails during this time, it can be restored

from the backup processor, and if the backup proces-

sor fails, then it can be restored from the checkpoint

processor.

Now, when any processor uses up all of its primary

checkpointing bu�er, then it must start a new global

checkpoint. In other words, if the last completed

checkpoint was checkpoint number c, then it starts

checkpoint c+ 1. The processor performs any coordi-

nation required to make sure that the new checkpoint

is consistent, and then takes its local checkpoint. To

take the local checkpoint, it must do the following for

each read-write protected page page

k

in its address

space:

� Calculate di

k

= page

k

�buf

k

, where buf

k

is the

saved copy of page

k

in the processor's primary

checkpointing bu�er.

� Send di

k

to the checkpoint processor, which

XOR's it with its own copy of page

k

. This has the

e�ect of subtracting buf

k

from the parity page

and adding page

k

.

� Set the protection of page

k

to be read-only.

After sending all the pages, the processor swaps the

identity of its primary and secondary checkpointing

bu�ers.

If an application processor fails during this period,

the system can still restore itself to checkpoint c. First

consider a non-failed application processor that has

not started checkpoint c + 1. It restores itself as de-

scribed above, by copying or mapping all pages back

from its primary checkpointing bu�er, resetting the

pages to read-only, and restarting the processor from

this checkpoint. Suppose instead that the application

processor has started checkpoint c + 1. Then, it �rst

restores itself to the state of local checkpoint c + 1

by copying or mapping pages from the primary check-

pointing bu�er, and next, it restores itself to the state

of checkpoint c by copying or mapping pages from

the secondary checkpointing bu�er. When all these

pages are restored, then the processor's state is that

of checkpoint c. The checkpoint processor restores it-

self to checkpoint c by copying the parity checkpoint

from the backup processor. The backup processor

does nothing. nce all non-failed processors have re-

stored themselves, the failed processor can rebuild its

state, and the system can continue from checkpoint c.

If the checkpoint processor fails during this period,

then the application processors roll back to the state

of checkpoint c, and the checkpoint processor restores

itself from the backup processor. If the backup pro-

cessor fails, then the processors roll back to the state

of checkpoint c, and the checkpoint processor's check-

point is recalculated, and then copied to the backup.

When all processors have �nished taking their local

checkpoints for global checkpoint c+1, the checkpoint

processor sends a copy of its checkpoint to the backup

processor, and the application processors may jettison

their secondary checkpointing bu�ers.

3 An xam le

In this section, we present an example of a six-

processor system running this checkpointing algo-

rithm. Processors

1

; . . . ;

4

are the application pro-

cessors. Processor

5

is the checkpoint processor, and

6

is the backup processor. Before starting the ap-

plication, the processors take checkpoint 0: They pro-

tect their writable address spaces to be read-only, clear

P P P P P P
 1 2 3 4 5 6

Secondary ckp buffer

Primary ckp buffer

Application’s
address space

(protected read-only)

Parity
checkpoint #0

Backup of
Parity
Checkpoint #0

Figure 1: State at checkpoint 0.

P P P P P P
 1 2 3 4 5 6

Figure 2: State slightly after checkpoint 0.

their checkpointing bu�ers, and send the contents of

their address spaces to

5

.

5

calculates the parity

checkpoint, and then sends it to the backup proces-

sor,

6

. At this point, the system looks like Figure 1.

Next, the application processors run the applica-

tion. When page faults occur, the faulting pages are

copied to the processor's primary checkpointing bu�er

and set to read-write, so that the application may

continue. The state of the system looks as in Fig-

ure 2. Processor

1

has copied three pages to its pri-

mary checkpointing bu�er. Processors

2

and

3

have

copied two pages each, and

4

has copied one. Were a

failure occur to one of the application processors, then

the others would restore themselves to checkpoint 0

by copying or mapping the pages back from the pri-

mary checkpointing bu�er to the application's mem-

ory and reprotecting those pages as read-only. The

failed processor may then reconstruct its checkpoint

from the other application processors' checkpoints and

from the parity checkpoint. If a non-application pro-

cessor fails, then it may restore itself from the other

non-application processor.

Since processor

1

has used up its primary check-

pointing bu�er, checkpoint 1 must be started.

1

goes

through any synchronization necessary for the check-

point to be consistent. When it is time to take its

local checkpoint,

1

XOR's each changed page with its

bu�ered copy and sends the results to

5

, which uses

them to update the parity checkpoint.

1

then pro-

tects its pages to be read-only, and swaps the identity

of the primary and secondary checkpoint bu�ers. The

state of the system is depicted in Figure 3.

P P P P P P
 1 2 3 4 5 6

+
+

+

Primary ckp buf

Secondary ckp buf

Reprotect to read-only

P P

SS

Figure 3: Processor

1

starts checkpoint 1.

P P P P P P
 1 2 3 4 5 6

+

+

+

+

+

S S

PP

Figure 4: Processors

2

,

3

and

4

take checkpoint 1.

P P P P P P
 1 2 3 4 5 6

Figure 5: Checkpoint 1 is complete.

If an application processor fails at this point, then

the processors may again roll back to checkpoint 0.

1

is able to do this by using pages from its secondary

checkpoint bu�er.

2

,

3

and

4

use pages from their

primary checkpoint bu�er as before. The checkpoint

in

6

must be used, as

5

's checkpoint has been up-

dated to reect

1

's changes for checkpoint 1. If

5

fails, then it copies its checkpoint from

6

, and the

application processors roll back to checkpoint 0. If

6

fails, then the processors again roll back to check-

point 0, and the parity and backup checkpoints are

calculated anew.

Figure 4 shows processors

2

,

3

and

4

taking

their local checkpoints. They XOR their changed pages

with the bu�ered copies and send the results to

5

.

Then, they reprotect the pages and swap the identi-

ties of the primary and secondary checkpoint bu�ers.

If a failure occurs during these activities, then the re-

covery is the same as in Figure 3: The processors still

recover to checkpoint 0. Also during this time, proces-

sor

1

's application continues execution, and its pages

are copied to the new primary checkpoint bu�er. To

restore itself to the state of checkpoint 0, it must copy

or map pages �rst from the primary checkpoint bu�er,

and then from the secondary checkpoint bu�er. As

before, the parity checkpoint in the backup processor

(

6

) must be used.

Finally, Figure 5 depicts the state when all the lo-

cal checkpoints are �nished: The parity checkpoint in

processor

5

is copied to processor

6

, and the applica-

tion processors jettison their secondary checkpointing

bu�ers. Any failure will now be restored to check-

point 1.

Tolerating ailures o ore Than

ne rocessor

The above algorithm allows the system to tolerate

any one processor failure with two extra checkpointing

processors. In this section, we outline how to con�g-

ure the system to tolerate any m processor failures

with 2m extra checkpointing processors. Speci�cally,

let there be n + 2m processors in the system. As be-

fore, processors p

1

; . . . ; p

n

are the application proces-

sors. The rest are split into checkpointing and backup

processors: p

c1

; . . . ; p

cm

, and p

b1

; . . . ; p

bm

. The check-

pointing and backup processors are paired up (p

ci

is

paired with p

bi

), and related like the checkpoint and

backup processors in the previous section: The backup

processor p

bi

contains the contents of p

ci

at the time

of the most recently committed checkpoint. This is so

that there is a copy of p

ci

from which to restore if a

failure occurs while p

ci

is being updated.

The application processors perform the same ac-

tions as in the above algorithm, with one di�erence:

Instead of sending copies of their changed pages to just

the one checkpoint processor, they send their changed

pages to all m checkpoint processors. The checkpoint

processors are like the original checkpoint processor

above, except that they do not just calculate the bit-

wise parity of each page. Instead, each one calculates

a di�erent function of the bytes of the pages. This cal-

culation is such that if any m processors in the entire

system fail, the rest may be used to recalculate the

values of the failed ones. The description of how each

checkpoint processor makes its calculation requires too

much detail for this paper. Instead, it may be found

in [26]. We outline it in the following paragraph:

The calculations resemble Reed-Solomon codes [24,

32]: Instead of performing bitwise arithmetic as the

checkpoint processor does in the algorithm of the pre-

vious sections, each processor breaks the pages into

multi-bit words, and performs arithmetic on those

words over a Galois Field. The number of bits per

word depends on the size of n and m. Although

more complex computationally than N +1 parity, this

coding is not prohibitively complex: Instead of an

exclusive-or for each byte, each processor must per-

form a few table lookups and some bitwise arithmetic.

Recovery involves gaussian elimination of an n�nma-

trix, and then for each byte, more table lookups and

bitwise arithmetic. Again, complete details may be

found in [26]. Since each processor is devoted solely to

checkpointing, it is well-situated to perform the com-

putation for checkpointing and recovery, and the en-

tire process should still be faster than checkpointing

to disk.

iscussion

There are two types of overhead that the basic al-

gorithm imposes on user programs. First is the time

overhead of taking checkpoints, and second are the ex-

tra memory requirements, as manifested by the vari-

able M .

The time overhead of checkpointing has the follow-

ing components:

� Processing page faults.

� Coordinating checkpoints for consistency.

� Calculating each di

k

.

� Sending di

k

to the checkpoint processor.

� The frequency of checkpointing.

Wedo not analyze the �rst two components as they are

they same for this algorithm as for other incremental

and consistent checkpointing algorithms [9, 27]. They

should not amount to as much overhead as the third

and fourth components. These components, the time

to calculate each di

k

and send it to the checkpoint

processor, depend on the speed of the processor, the

speed of the interconnection network, and the number

of bytes sent.

We notice that the sum of these components may

be improved by a simple optimization, stemming from

the fact that each processor sends di

k

= page

k

�buf

k

to the parity processor. This is as opposed to normal

incremental checkpointing algorithms [9, 11, 33] that

send page

k

to stable storage during an incremental

checkpoint. The bene�t of sending di

k

is that all

bytes of page

k

which have not been changed since the

previous checkpoint will be zero in di

k

. This allows

us to optimize the algorithm by sending only the non-

zero bytes of di

k

, thereby lowering the number of

bytes sent to the checkpoint processor when only frac-

tions of pages are altered. This technique { sending

the diff of the changed pages { should be a marked

improvement over blindly sending di

k

when only a

few bytes of a page are touched in a checkpointing

interval.

The frequency of checkpointing is related to the ex-

tra memory requirements, and thus the two are dis-

cussed together. As stated in the Introduction, there

is a tradeo� between the extra memory requirements

and the frequency of checkpointing. At one extreme,

if the processors can allocate enough extra memory for

two whole checkpoints, as suggested in [28], then the

primary checkpointing bu�er will never become com-

pletely full, and thus the processors can checkpoint at

the direction of the user { any checkpointing interval

can be supported. At the other extreme, if the pro-

cessors can allocate only a minimum of extra memory,

such as �ve pages, for checkpointing, then the bu�ers

will be �lling up constantly, forcing checkpoints to be

taken at very small intervals, and grinding the system

to a halt.

bviously, the ideal place between these extremes

depends on the processors and on the program being

executed. If the program exhibits great locality, then

a small checkpointing bu�er will be su�cient to keep

the system from bogging down. If the processors have

a large amount of available physical memory, then a

large checkpointing bu�er may be feasible. For pro-

grams whose locality is bad enough to constantly �ll

up the maximum size checkpointing bu�ers available

on the application processors, this method may im-

pose too much overhead to be reasonable.

ne goal of our future work is to make an empiri-

cal evaluation of how this checkpointing performs on

a variety of programs, networks, and processor char-

acteristics. To provide a more limited evaluation we

draw from two sources. First are previous results from

Elnozahy, Johnson and Zwaenepoel [9]. They imple-

mented incremental, consistent checkpointing to a cen-

tral �le server in a distributed system of 16 processors.

Although they checkpointed at a coarse interval of two

minutes, in six out of their eight test programs, incre-

mental checkpoints consisted of less than half of the

application's memory. This leads us to believe that at

far �ner checkpointing intervals (on the order of ev-

ery second or every few seconds), the extra memory

requirements (i.e. M) should be much smaller.

Second, we have instrumented some distributed

programs in PVM [2] to record their behavior under

this algorithm for varying values of M . The results

in Figure 6 through Figure 8 display the instrumen-

tation of multiplying two 1300x1300 matrices using

eight DEC alpha workstations (six for the applica-

tion, one to record the parity checkpoint, and one to

backup the parity processor) connected via an Ether-

net. Each application processor uses 7.2 megabytes of

memory without checkpointing. The processors have

8 kilobyte pages and well over 24 megabytes of phys-

ical memory (thus space for checkpointing bu�ers is

not a problem).

The data in Figure 6 show that matrix multiplica-

tion is a good candidate for checkpointing using this

method. Its locality is such that with even a tiny

bu�er size of 160K (this is just ten pages for each of

the primary and secondary checkpointing bu�ers), the

overall running time of the program is increased by an

average of only 40 seconds. This is under 10 over-

head.

The uctuations in running time seen by the max-

imum and minimum values for each point in Fig-

ure 6 are due to the fact that these tests were run

using general-purpose machines in Princeton's Com-

puter Science Department. Although the tests were

run at night, the machines and network could not be

allocated for exclusive testing. Thus, network and ma-

chine contention from other users has made its way

into the graph.

Figure 7 displays the average number of checkpoints

taken for the given checkpoint bu�er size, and then

average number of CPU seconds between checkpoints.

As CPU seconds are not a�ected drastically by ex-

160K

400K

800K

1.6M

3.2M

4.8M

8.0M

12.0M

N
o checkpointingSize of M

500

520

540

560

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Figure 6: Running Time of Checkpointing

ternal processes, this data factors out the e�ects of

the shared machines. Figure 7 corroborates Figure 6,

showing that all checkpoint bu�er sizes give reason-

able inter-checkpoint intervals. Given this data, a user

might choose 800K to be the size of M , as that neces-

sitates a checkpoint for every four seconds of CPU

time.

Figure 8 shows the success of compressing each

di

k

so that only the non-zero bytes are transmitted.

As one would expect, as the checkpoint bu�ers get

bigger, pages get written more between checkpoints,

resulting in fewer zero bytes in di

k

, and thus less

compressibility. Still, the compression ratios observed

Nu er Secon s

tes
of et een

ec oints ec oints

160
63 0.

00
1 0 .00

00
.33

1.6
3 .

3.
1 1 . 6

.
10 31.

.0
3 0.11

1 .0
0 -

Figure 7: Number of Checkpoints

ec oint o resse o ression

tes
Size ec oint atio

tes Size tes

160
0 1 6

00
00 61

00
00 1

1.6
00 360

3.
1.6 16

.
. 1.3

.0
.0 .3

Figure 8: Average Size of Checkpoints

show signi�cant savings in the amount of bytes trans-

mitted.

ne might observe that if each processor is produc-

ing 172K checkpoints every four seconds, as in this

example, then a local disk should be able to write the

incremental checkpoints as fast as they are produced.

This is true, and is mentioned in the Future Work be-

low. owever, in a system like the one tested, where

all disks belong to a central �le server and are shared

among hundreds of users, disk contention is a signif-

icant issue, and checkpointing to processors will be

more e�cient.

elated or

Checkpointing is a well-documented topic in fault-

tolerance. In parallel and distributed systems, the

�eld has been divided into pessimistic [4, 5, 29], opti-

mistic [14, 31], and consistent checkpointing [6, 7, 8,

15, 17, 18, 22, 30]. Implementations have been tested

on uniprocessors [11, 20, 23], multiprocessors [19, 21],

distributed systems [9, 15], and multicomputers [27].

All of these systems have checkpointed to disk, and

consequently taken e�orts to minimize the overhead

caused by disk writes.

Johnson and Zwaenepoel presented an algorithm

to reconstruct the message state of a distributed sys-

tem when at most one processor fails, with no disk-

writing [13]. The algorithm has the sending processor

save the message so that it may resend if the receiver

fails. Processors save their own execution states in

disk checkpoints.

Keleher, Cox and Zwaenepoel used diff's to prop-

agate updates to shared pages in their distributed

shared memory system \Munin" [16]. As in this pa-

per, the diff's are used to lower the latency of trans-

porting whole pages by sending fewer than a pageful

of bytes when possible.

N + 1 parity was used to provide single-site fault-

tolerance by Gibson in his design and implementa-

tion of RAID disk arrays [12]. Gibson also addresses

multiple-site failures, and gives an algorithm for toler-

ating 2-site failures with 2n

1

extra disks. This algo-

rithm scales to tolerate m-site failures withmn

�1

ex-

tra disks. Reed-Solomon codes were not employed to

reduce the number of extra disks to m because of the

extra complexity that such codes require in the disk

controller hardware. This is not a problem in our sys-

tem because the unit of fault-tolerance is a processor,

well-capable of handling the extra calculations. RAID

techniques were also combined with memory manage-

ment in a design of disk arrays to support transaction

recovery in [25].

onclusion

We have presented a fast incremental checkpoint-

ing algorithm for distributed memory programming

environments and multicomputers. This algorithm is

unique as it checkpoints the entire system without us-

ing any stable storage. Therefore, its speed is not

limited by the speed of secondary storage devices.

The basic algorithm presented above tolerates the

failure of any one processor with the addition of two

checkpointing processors. This algorithm generalizes

so that any m processor failures can be tolerated with

the addition of 2m checkpointing processors.

f concern in this algorithm is the amount of extra

memory per processor required for checkpointing, and

how it relates to the frequency of checkpointing. In

the discussion above, we argue that a �xed amount

of extra memory is reasonable for many applications.

Results from Elnozahy, Johnson and Zwaenepoel [9],

as well as our own instrumentation of a distributed

matrix multiply corroborate this claim.

uture or

For future work, we are continuing to assess the

performance of this algorithm on more test programs.

The result of this work should be to quantify what

values of M are reasonable for programs of di�ering

locality patterns.

This work is being extended in three di�erent di-

rections. First is to write a full-blown checkpoint-

ing implementation on PVM using a combination of

this method and an all-encompassing checkpointing

method to disk. The goal is to provide fast fault-

tolerance and process migration (for load balancing)

using this method, and still be able to tolerate whole-

sale system failures. Second, we are working with Rob

Netzer and Jain u to exploring whether or not we

can improve the performance of incremental check-

pointing (to disk) by using a checkpoint bu�er and

compressing diff's as speci�ed in this paper. Fi-

nally, we are working with Jack Dongarra and oung-

bae Kim to explore how diskless checkpointing can

be mixed with application-oriented checkpointing to

achieve fault-tolerance without the reliance on page-

protection hardware. The goal in all of these project

is assess the overhead of checkpointing with meth-

ods described in this paper, as compared to stan-

dard checkpointing implementations to stable stor-

age [9, 20, 21, 27].

e erences

1 . n erson an . . ee.

. rentice a nternationa nc.

n e oo i s Ne erse 1 1.

. . e ue in . . on arra . eist . .

anc e an . S. Sun era . etero eneous net-

or co utin . n

1 3.

3 . . ir an. S S s ste for fau t-to erant is-

tri ute co utin . ec nica e ort 6-

orne ni ersit ri 1 6.

. or . au ac an S. azer. essa e

s ste su ortin fau t to erance. n

a es 0 t anta cto er 1 3.

. or . au . raetsc . err an an

. er e. au t to erance un er N .

1 1 e 1 .

6 . . an an . a ort. istri ute sna -

s ots eter inin o a states of istri ute s s-

te s.

3 1 3 e ruar 1 .

. ristian an . a anain. ti esta - ase

c ec ointin rotoco for on - i e istri ute co -

utations. n

a es 1 0 cto er

1 1.

. ritc o an . a or. e in i ition s ectru

an t e ac ie e ent of causa consistenc . ec ni-

ca e ort 0-1101 orne ni ersit e ruar

1 0.

. N. noza . . o nson an . aene oe .

e erfor ance of consistent c ec ointin . n

1 .

10 . N. noza an . aene oe . anet o rans-

arent ro ac -reco er it o o er ea i ite

ro ac an fast out ut co it.

1 a 1 .

11 S. . e an an . . ro n. or s ste for

ro ra e u in ia re ersi e e ecution.

1 11 1 3 an 1 .

1 art an i son.

. t esis ni ersit of

a ifornia er e e ece er 1 0.

13 . . o nson an . aene oe . Sen er- ase

essa e o in . n

a es 1 1 une 1 .

1 a i . o nson.

.

t esis ice ni ersit ece er 1 .

1 . . aas oe . ic ie s . . a an . S.

anen au . rans arent fau t-to erance in ara e

rca ro ra s. ec nica e ort - ri e ni-

ersiteit ster a cto er 1 1.

16 . e e er . . o an . aene oe . az con-

sistenc for soft are istri ute s are e or . n

a es 13 1 a 1 .

1 . oo an S. oue . ec ointin an ro ac -

reco er for istri ute s ste s.

S -13 1 3 31 anuar

1 .

1 . . ai an . . an . n istri ute sna -

s ots. 1 3 1

a 1 .

1 . . aran eira . a e an . ene ein. er-

i enta e a uation of tec ni ues for fau t-to erance.

ec nica e ort - -3 e art ent of o uter

Sciences ni ersit of e as at ustin u 1 .

0 - . . i an . . uc s. o i er-

assiste tec ni ues for c ec ointin . n

a es 1 1 0.

1 . i . . Nau ton an . S. an . ea -ti e

concurrent c ec oint for ara e ro ra s. n

a es Seat-

t e as in ton ar 1 0.

. i . . Nau ton an . S. an . n e cient

c ec ointin et o for u tico uters it or -

o e routin .

0 3 une 1 .

3 . itz o an . So o on. Su ortin c ec oint-

in an rocess i ration outsi e t e ni erne . n

a es 3 0 anuar 1 .

. . ac i ia s an N. . . S oane.

. Nort - o an

u is in o an ster a Ne or for

1 .

. N. oura . . uc s an . . Saa .

ata ase reco er usin re un ant is arra s.

anuar

1 3.

6 . S. an . rie an an . i. fai -

ure correction tec ni ue for ara e stora e e ices

it ini a e ice o er ea . Su itte . ontact

for a co 1 .

. S. an an . i. erfor ance resu ts of a

consistent c ec ointer on t e i S 60. Su itte

to

1 .

a es S. an .

. t esis rinceton ni ersit an-

uar 1 3.

. . o e an . . resotto. u is in re-

ia e roa cast co unication ec anis . n

a es 100 10 cto er 1 3.

30 . S ezia etti an . earns. cient istri ute

sna s ots. n

a es

3 3 a ri e assac usetts a 1 6.

o uter Societ .

31 . . Stro an S. e ini. ti istic reco er in

istri ute s ste s.

a es 0 6 u ust 1 .

3 . . an int. .

S rin er- er a Ne or 1 .

33 . . i son an . o er. e onic e or

for rocess istories. n

a es 330 3 3 ort an re on une 1 .

