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Abstract

Coordinated checkpointing systems are popular and
general-purpose tools for implementing process migra-
tion, coarse-grained job swapping, and fault-tolerance
on networks of workstations. Though simple in con-
cept, there are several design decisions concerning the
placement of checkpoint files that can impact the perfor-
mance and functionality of coordinated checkpointers.
Although several such checkpointers have been imple-
mented for popular programming platforms like PVM
and MPI, none have taken this issue into considera-
tion.

This paper addresses the issue of checkpoint place-
ment and its impact on the performance and func-
tionality of coordinated checkpointing systems. Sev-
eral strategies, both old and new, are described and
implemented on a network of SPARC-5 workstations
running PVM. These strategies range from very sim-
ple to more complex, borrowing heavily from ideas in
RAID (Redundant Arrays of Inexpensive Disks) fault-
tolerance. The results of this paper will serve as a guide
so that future implementations of coordinated check-
pointing can allow their users to achieve the combina-
tion of performance and functionality that is right for
their applications.

1. Introduction

Coordinated checkpointing is a well-known technique
for providing fault-tolerance in parallel programs [4, 8,
14]. With coordinated checkpointing, all processors co-
ordinate to define a global consistent state and then
save that state to disk. Upon a failure, all processors
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roll back to that saved state and restart the compu-
tation. Coordinated checkpointing is attractive over
other methods (e.g. optimistic or independent check-
pointing [12, 13, 32, 37, 39]) because it is simple, it
never requires multiple rollbacks, and it can handle
nondeterminism in the program. Moreover, the same
checkpointing mechanism can be used to implement
three very useful functionalities: process migration,
coarse-grained job-swapping, and tolerance of proces-
sor failures.

Recently there have been three separate implemen-
tations of coordinated checkpointing on PVM and
MPI, the de facto standards for parallel programming
on networks of workstations [11, 20]. These are Fail-
Safe PVM [16], MIST [3], and CoCheck [30, 31]. All
three have similar goals — to build public-domain tools
that use transparent coordinated checkpointing for pro-
cess migration, coarse-grained job swapping and whole-
sale fault-tolerance.

This paper focuses on a deficiency in all three
tools: the inability to provide a useful degree of fault-
tolerance with good performance for the variety of
workstation networks that exist. New approaches
are suggested that solve this deficiency with very lit-
tle extra complexity. These approaches apply RAID
techniques [5] to standard coordinated checkpointing.
We evaluate the performance of the old and new ap-
proaches as observed on a network of SPARC-5 work-
stations running PVM. The goal of this work is to
present a convincing argument for these approaches to
be incorporated as standard features in future releases
of coordinated checkpointing tools.

2. Coordinated Checkpointing

Coordinated checkpointing is a topic in fault-
tolerance with a very rich history [7]. The goal of coor-
dinated checkpointing is for a collection of processors
with distinct memories and clocks to define and store
a consistent checkpoint. This consistent checkpoint is



composed of local checkpoints for each processor, and a
log of messages. The system recovers from the consis-
tent checkpoint by having each processor recover from
its local checkpoint and then replaying messages from
the log. The major obstacles in coordinated check-
pointing are defining the points at which each processor
should checkpoint, and determining the composition of
the message log.

There have been many algorithms presented for co-
ordinated checkpointing (e.g. [1, 4, 14, 15, 36]). Imple-
mentations have shown that the major source of over-
head in checkpointing systems is saving the processor
states. The choice of consistency algorithm is largely
immaterial [8, 9, 27]. For this reason, an algorithm
called “sync-and-stop” is usually implemented. In this
algorithm, the processors are frozen until all messages
that are currently in transit have reached their destina-
tions. The processors then checkpoint and resume the
computation. No message logging is necessary. This
algorithm is attractive because of its simplicity. It is
easy to implement on most message-passing systems,
and its performance is not noticeably worse than more
complex algorithms [27].

Since 1993, there have been three coordinated check-
pointers either released as public domain, or targeted
for release in the near future. These are Fail-Safe
PVM [16], MIST [3], and CoCheck [30, 31]. All three
have been implemented on top of PVM, a very popu-
lar public-domain system for parallel programming on
networks of workstations [11]. In addition, CoCheck
has been implemented on top of MPI [20], which can
be viewed as the next generation of PVM.

These checkpointers very similar. They are designed
to work on networks of standard Unix workstations
with no modification to the workstations’ operating
systems. Moreover, they are transparent. In other
words, the application programs also do not need to be
modified. Instead, they are linked with a checkpointing
library, and checkpointing is controlled through initial-
ization files, command line arguments, or external pro-
cesses. All use the sync-and-stop algorithm for check-
point consistency, and therefore require no message log-
ging.

One functionality implemented by all three tools is
process migration. For process migration all proces-
sors do not explicitly checkpoint. Instead, a proces-
sor that is either too heavily loaded or needed by its
owner checkpoints itself to a spare processor which then
takes over its computation. The message-passing sys-
tem must be modified so that messages destined for the
old processor get rerouted. For PVM and MPI, this
modification is simplified by coordinated checkpoint-
ing and the sync-and-stop algorithm. If all processors

coordinate so that there are no outstanding messages
during the migration, then the rerouting is simplified
greatly [31]. The performance of process migration de-
pends solely on the bandwidth of the network and thus
each of the three implementations has optimal perfor-
mance. We do not discuss process migration further in
this paper.

n application processors

checkpoint to

local disk

Figure 1. CGJS checkpointing

The checkpointers also implement two other check-
pointing strategies — CGJS (coarse-grained job swap-
ping) checkpointing, and CFS (central file server)
checkpointing. With CGJS checkpointing, each proces-
sor checkpoints to a local disk (see Figure 1). This kind
of checkpointing is ideal for coarse-grained job swap-
ping: after the processors have checkpointed, the ap-
plication is terminated. To restart the application, the
same processors restart from their local checkpoints.

Alternatively, new processors can be used if they are
able to access the old processors’ checkpoints. In this
way, CGJS checkpointing may also be used for fault-
tolerance.

n application processors

central disk
Figure 2. CFS checkpointing

With CFS-checkpointing, the processors all check-
point to a central file system that is assumed to be
stable (see Figure 2). If any number of processors fail,
then the computation is halted completely. It then
restarts using the same number of machines and check-
points from the central file system. It is assumed that
all machines are of the same architecture, and that
checkpoint files from one machine may be restarted by



another.

3. Performance Considerations

While the performance and functionality of these
three checkpointers is good for many applications and
workstation environments, there are many circum-
stances where they are lacking. To fully understand
why, we first describe the various criteria by which
the performance of coordinated checkpointing can be
judged.

Checkpoint Overhead: Checkpoint overhead is
defined to be the time added to the running time of
the target program as a result of checkpointing. This
is the single most important part of a checkpointer’s
performance — if the checkpoint overhead is too high,
users would rather risk having a failure than enduring
the performance degradation of checkpointing.

Checkpoint Latency: Checkpoint latency is the
time that it takes for the checkpointer to complete a
checkpoint, from start to finish. Checkpoint latency
affects the interval of checkpointing, since a new check-
point cannot be started until the previous checkpoint
has completed. It also affects the progress of the appli-
cation following a failure, since the program can only
roll back to completed checkpoints. In unoptimized
checkpointers, the checkpoint overhead equals the sum
of the checkpoint latencies, and thus the two can be
viewed as equivalent.

An important optimization to checkpointing sys-
tems is the “copy-on-write” optimization [8, 18, 25],
where an in-memory copy of the checkpoint is made
using copy-on-write, and that copy is written to disk
while the application continues to execute. This opti-
mization is very effective at decreasing the overhead of
checkpointing while slightly increasing the latency.

Vaidya has demonstrated that small fluctuations in
checkpoint overhead have far more impact on the per-
formance of a checkpointing system than large fluctua-
tions in checkpoint latency [35]. In other words, as long
as the latency is smaller than the desired checkpointing
interval, its value is of little importance.

Recovery Time: This is the time that it takes for
the system to recover from a failure. Like checkpoint
latency, recovery time is only important if the chances
of failure are high.

Disk Space Consumed: This is the total amount
of disk space that is used to take a checkpoint. Since
the total size of coordinated checkpoints can be very
large on a parallel system, a user must check to see
if there is enough disk space available for checkpoint-
ing. Moreover, since the previous checkpoint cannot be
deleted until the current checkpoint is completed, there

must be at least two checkpoints’ worth of disk space
available to a user that plans to use checkpointing [14].

Fault Coverage: This is the number of processor
failures that a checkpointing system can tolerate. If
the parallel processing system can operate in the face
of single processor failures and failures occur indepen-
dently, then it is often beneficial to checkpoint in such
a way that only single processor failures are tolerated.
This is because checkpointing for single processor fail-
ures can incur far less overhead than checkpointing for
wholesale system failures. Vaidya has shown that such
cases warrant a two-level checkpointing scheme, where
checkpoints for single-processor failures are taken fre-
quently with low overhead, and checkpoints tolerating
wholesale failures are taken infrequently with a higher
overhead [34].

Impact on Shared Resources: Most workstation
networks are shared. Either the workstations are pri-
vately owned and lent to a public pool when not used
by the owner, or the entire network is shared by all
users. We assume that the workstations used by the
application are allocated for exclusive use. However,
the network and the central file servers may be shared
by all users. Thus, the impact of checkpointing on the
network and the central file servers can be a significant
concern.

3.1. Local vs. Central Storage

A critical feature in the performance of coordinated
checkpointing is the difference between local and cen-
tral disk storage. The following are assumptions that
we make concerning these two types of storage:

o Each processor has access to local disk storage.
This storage is relatively fast and is only accessi-
ble by that processor. In the case of a processor
crash, the contents of this disk are unavailable
until the processor resumes operation or some-
one physically removes the disk and attaches it
to a functional processor.

e Each processor has access to a central file server.
The disks belonging to this server have more ca-
pacity than the local disks and are often faster.
However, the processors perform file operations
to this central server via a network file system
like NFS, and often exhibit performance that is
far worse than their local disks. We assume that
the file server is always available. (For example,
many vendors sell special “server” machines with
built-in fault-tolerance for high availability).

The ramification of these assumptions on Fail-Safe

PVM, MIST and CoCheck is that CGJS checkpointing



is fast, while CFS checkpointing can be extremely slow,
since all processors write to the central file system at
one time. The checkpoint overheads need not be large,
since all three systems use the “copy-on-write” opti-
mization. However, the latencies and recovery times of
CFS checkpointing are very large.

CGJS checkpointing has no impact on shared re-
sources, since all checkpointing activity is local. How-
ever, CFS checkpointing saturates the central file server
for the duration of checkpointing, which as mentioned
above, can be very long. Thus, CFS checkpointing can
have a very negative impact on the central file system.

4. Common Workstation Networks

In assessing whether CGJS and CFS checkpoint-
ing are sufficient for long-running parallel applications
on networks of workstations, we must ask ourselves
whether CFS checkpointing is ever necessary, and if so,
whether checkpoint latency, recovery time, and load on
the central file server are important performance crite-
ria. In this section we describe four common types of
workstation networks, detailing their defining charac-
teristics and the impact they have on the performance
of checkpointing.

Privately Owned by the User: In these work-
station networks, the user exclusively owns everything:
processors, network and central file servers. In such an
environment, the user’s only concern is for hardware
and transient software failures. Both are relatively in-
frequent [19], and can be tolerated by checkpoints to
local disk. If a processor fails and remains unavail-
able, the user can physically move its local disk to an
available processor. In such a network, the user’s sole
concern is minimizing checkpoint overhead.

Shared Pool of Workstations: Here a organiza-
tion or department owns a collection of workstations
that all users must share. In such environments, a
user may be able to allocate processors exclusively, but
the network and file servers are shared by all. Often
in such environments, interactive users of workstations
take priority over CPU-intensive users, and thus a user
who is executing a long-running program on many ma-
chines may be asked to relinquish a machine. Thus,
failures are more common than in a privately owned
network. Moreover, the user must be concerned with
the impact of his or her program on shared resources.
In particular, if the user degrades the performance of
the network or file server for a significant period of
time, his or her jobs may be terminated by the system
manager. If a processor does fail, the local disk may
or may not be movable, depending on the machine and
the department’s policy.

Shared Pool of Privately Owned Worksta-
tions: In these networks, workstations are owned by
individuals. When the owners are not using the work-
stations, they are “loaned” to a pool for other users.
When the owners return, they reclaim their machines
from the pool. Such is the environment supported by
Condor [33]. One requirement of such a system is that
when a user reclaims his/her machine, there should be
no residual load from other jobs. Therefore, once a
machine is revoked, its memory and local disk should
be unavailable to other users.

In these networks, the users desiring CPU capac-
ity must be concerned with processor revocations that
look like permanent processor failures and may be fre-
quent [21]. Moreover, since the network and file servers
are shared, users must also be concerned with the im-
pact of their programs on shared resources.

Combination Networks: Some networks are a
combination of the above. For example, at the Univer-
sity of Tennessee, our network of 24 SPARC-5 work-
stations has two roles. During the day, it is used by
students for classwork and labs, and thus fits the model
of a shared pool of workstations: only idle processors
may be employed for general-purpose CPU-intensive
computing. From 12:15 AM to 8:45 AM however, it
may be allocated exclusively as a parallel programming
platform, and at this time it resembles a network that
is privately owned by the user. One major difference
is that if a processor fails and remains failed in this
environment, its local disk becomes unavailable, be-
cause the machine room is inaccessible during the late
evening.

4.1. Ramifications

There are two important characteristics of the above
networks that affect coordinated checkpointing. First,
in shared workstation environments, the probability
of failures is much higher than in a private network.
Moreover, these failures can be viewed as permanent,
involving the loss of the failing processors’ local disks.
Second, in all but the privately owned network, the im-
pact on shared resources is a valid concern. The com-
bination of these two characteristics means that both
CFS and CGJS checkpointing are undesirable. With
the permanent loss of local disks, CGJS checkpoint-
ing has no fault-coverage, and while CFS checkpointing
can tolerate all failures, it has poor latency and recov-
ery time, and a very severe impact on the performance
of the central file server.



5. RAID Strategies for Storing Check-
points

In this section, we present three different strategies
for storing coordinated checkpoints. All three stem
from the fault-tolerant mechanisms of RAID systems.

n application processors

checkpoint to
local disk

~ v

~

Then copy the checkpoint to a neighbor

Figure 3. MIR checkpointing

MIR: Checkpoint Mirroring: This is a simple
approach to checkpointing for single processor failures.
It was suggested by both Ledn [16] and Vaidya [34] and
is analogous to disk mirroring in RAID systems [5].
With checkpoint mirroring, a CGJS checkpoint is
taken, and then each processor copies its checkpoint
to another processor’s local disk (see Figure 3). This
can be done by background processes on both machines
that cooperate to copy the checkpoint file.

If a processor fails, its checkpoint will be available on
the local disk of a non-failed processor. This allows a
spare processor to take its place without recovering the
failed processor’s local disk. The logical extension to
disk mirroring to recover from m > 1 processor failures
is to have each processor store its checkpoint on the
local disks of m other processors.

Like its RAID counterpart, checkpoint mirroring has
good performance, but uses a great deal of space: m+1
checkpoints per processor.

n application processors

Then store the parity checkpoint on central disk 8

Figure 4. PAR checkpointing

PAR: n+I1-Parity: This is analogous to RAID
Level 5 fault-tolerance [5], and is motivated by diskless
checkpointing techniques [26]. Like checkpoint mir-
roring, it tolerates single processor failures, but with
considerably less space overhead. With n+1-parity, a
CGJS checkpoint is taken, and then the processors co-
operate to store a parity checkpoint on the central disk
(see Figure 4). The parity checkpoint is defined to be
the bitwise exclusive-or (@) of each processor’s check-
point. In other words, assuming that there are n ap-
plication processors, the i-th byte of the parity check-
point, ¢, 41,4, is defined to be

Cntli =C1iDC2iD...DBcny,

where ¢;; is the i-th byte of processor j’s checkpoint
(or zero if processor j’s checkpoint is smaller than i
bytes).

If a processor fails, then its checkpoint can be re-
constructed as the bitwise exclusive or of the remain-
ing processors’ checkpoints and the parity checkpoint.
Thus, with n41-parity, single processor failures may
be tolerated with n+1 total checkpoints as opposed to
2n checkpoints with checkpoint mirroring.

RS: Reed-Solomon Coding: The logical exten-
sion of n+1-Parity for tolerating m > 1 failures is Reed-
Solomon coding. This technique is too complex to de-
scribe in detail — the interested reader is referred to
papers by Schwarz [28] and Plank [23]. To sketch, after
taking the CGJS checkpoint, the processors cooperate
to store m checkpoints on central storage. The i-th
byte of each of these checkpoints is defined to be a
linear combination of the i-th byte of each processor’s
checkpoint:

n
k-1
Cn+j,i:§ J° Ck
k=1

where arithmetic is performed over the Galois Field
GF(28). Since arithmetic over GF(23) is more expen-
sive to compute than parity, each checkpoint takes
longer than with n+1 parity. However, if disk space
is an issue, RS checkpointing consumes far less space
(n + m checkpoints) than solutions based on disk mir-
roring ((m + 1)n checkpoints).

5.1. CFS-BUF Checkpointing

As an aside, we mention one more checkpointing
strategy which improves the overhead of CFS check-
pointing. It is a simple use of CGJS checkpoints as
buffers for checkpointing to central storage. Specifi-
cally, the processors first take a CGJS checkpoint and
then each processor spawns a background process that



copies its local checkpoint to central storage. CFS-
BUF checkpointing has a distinct advantage over CFS
checkpointing. First, CFS checkpointing is only rea-
sonable if combined with the copy-on-write optimiza-
tion. With copy-on-write, a page is only physically
copied if the application program writes to it while the
checkpoint is being taken. Thus, the long checkpoint
latencies of CFS checkpointing increase the probability
of pages being copied. If the application processes con-
sume a great deal of memory, then the process and its
copy can exceed physical memory, leading to degraded
performance. With CFS-BUF checkpointing, the copy
is extant only during the CGJS checkpoint. After that
point, each processor can copy its local checkpoint to
central storage in small increments, thus keeping the
memory requirements of checkpointing to a minimum.

6. Implementation and Experiments

We implemented the six algorithms described above
(CGJS, CFS, CFS-BUF, MIR, PAR and RS) in a
small library to be linked with PVM programs. We
then tested it on a challenging, long-running applica-
tion called PCELL. PCELL is a program that executes
a large grid of cellular automata for numerous itera-
tions. PCELL is challenging for a checkpointing sys-
tem for several reasons. First, for each pair of itera-
tions, it writes almost every word in memory. Thus,
incremental checkpointing [10, 38] cannot optimize the
performance if checkpoints are taken more than two
iterations apart. Second, if checkpoints have a high
latency, then the copy-on-write optimization does not
work very well since many pages are written to and
copied during checkpointing. Third, the checkpoint
images are not patterned, and therefore do not com-
press well. And fourth, the processors synchronize af-
ter each iteration, meaning that staggering checkpoints
to reduce contention results in increased overhead [22].
PCELL is also convenient because each pair of iterations
performs the same actions. Thus, as long as the same
grid size is used, one can use the results of checkpoint-
ing short runs to project the behavior of checkpointing
longer runs.

We executed PCELL on a network of SPARC-5 work-
stations at the University of Tennessee. This network
is composed of 24 workstations connected by a fast
(100 megabit) switched Ethernet. Although the net-
work is “100 megabit”, the SunOS drivers are unable
to get peak performance from this configuration. The
actual bandwidth between two random nodes is about
2 Mbyte/sec. Each workstation has 96 Mbytes of phys-
ical memory and a local disk with 550 Mbytes of stor-
age that can be accessed at a bandwidth of approxi-

mately 1.7 Mbytes/sec. The network is connected to
the department’s central file servers by a standard (10
megabit) Ethernet running NFS. This disk also has a
bandwidth of 1.7 Mbytes/sec, but the performance of
NFS on the Ethernet is far worse. With NFS, remote
file writes achieve a bandwidth of 0.11 Mbytes/sec.

Instance # of Running Time Memory Usage
Iter- per Processor
ations | (sec) (hh:mm:ss) (Mbytes)
SMALL-28 28 912 00:15:12 8.2
LARGE-03 3 794 00:13:14 64.1
LARGE-09 9 2331 00:38:51 64.1
LARGE-35 35 9028 02:30:28 64.1

Table 1. Performance of pceELL without check-
pointing

We ran two sets of tests — one with a small (8192 x
8192) grid, and one with a large (23152 x 23152) grid,
both on 16 processors. Table 1 summarizes the perfor-
mance of PCELL in the absence of checkpointing. Note
that several numbers of iterations were used for the
large grid. This was so that the checkpointing tests
could complete in a reasonable amount of time. Since
PCELL scales linearly with the number of iterations,
this is a valid experimental short-cut.

In the SMALL tests, each processor calls fork() to
spawn a child process that takes the checkpoint. Thisis
the standard way to perform copy-on-write checkpoint-
ing in Unix systems [16, 25]. In the LARGE tests, the
fork() system call fails, citing not enough memory.
Therefore, in these tests, the processors are stopped
until the CGJS checkpoints are taken. The applica-
tion processes then resume and all other checkpointing
activity occurs in the background. There is no CFS
checkpoint taken in the LARGE tests because of the ex-
tremely high overhead (over 8000 seconds) that would
occur.

All results were collected when the machines, the
fast network and the central file server were allocated
exclusively for our use. In each test, one checkpoint
is taken shortly after the processors begin execution.
The results of these tests are displayed in Table 2. The
graphs in Figures 5 and 6 are derived from the numbers
in this table.

6.1. Checkpoint Overhead

As expected, in both cases the CGJS strategies have
the lowest checkpoint overheads. The PAR and MIR
strategies have higher overheads, but these are still rel-
atively small. The highest overheads belong to the RS
strategies. This is because they need a considerable



Test Alg. Running | Checkpoint Checkpoint Latency Disk Space Fault
Time Overhead Total CGJS Rest Consumed Coverage
Latency Local Central (# Perm.
(sec) (sec) (sec) (sec) (sec) | (Mbytes) | (Mbytes) Failures)
SMALL-28 CGJS-COW 915.1 3.0 4.5 4.5 0.0 130.5 0.0 0
SMALL-28 MIR-COW 926.1 14.0 19.2 4.5 14.7 261.0 0.0 1
SMALL-28 PAR-COW 932.5 20.4 60.1 4.4 55.7 130.5 8.2 1
SMALL-28 RS-2-COW 949.7 37.6 2325 4.3 228.2 130.5 16.3 2
SMALL-28 RS-3-COW 966.8 54.7 286.7 4.4 282.2 130.5 245 3
SMALL-28 CFS-COW 938.5 26.3 867.2 0.0 867.2 0.0 130.5 16
SMALL-28 CFS-BUF-COW 924.9 12.8 821.8 4.0 817.8 130.5 130.5 16
LARGE-03 CGJS 852.9 59.3 40.5 40.5 0.0 1026.1 0.0 0
LARGE-03 MIR 973.8 180.3 199.4 39.8 159.5 2052.3 0.0 1
LARGE-03 PAR 1098.8 305.2 563.5 38.6 524.9 1026.1 64.1 1
LARGE-09 RS-2 3129.7 798.5 1820.7 39.6 1781.1 1026.1 128.3 2
LARGE-09 RS-3 3373.3 1042.1 2323.8 39.0 2284.8 1026.1 192.4 3
LARGE-35 CFS-BUF 9529.7 501.9 8564.8 47.5 8517.3 1026.2 1026.2 16

Table 2. Performance of pcELL with checkpointing

number of CPU cycles to compute two and three en-
codings of the checkpoint files respectively.
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Figure 5. Overhead per megabyte of check-
pointing

Figure 5 displays the overheads of all the strate-
gies normalized per Mbyte of the application (i.e. 130.5
Mbytes for the SMALL instances, and 1,026 Mbytes for
the LARGE instances). The SMALL instances show
smaller values of this metric because of the copy-on-
write optimization. In the SMALL instances, the CFS-
BUF-COW strategy outperforms the CFS-COW strat-
egy by roughly a factor of two. These savings come
from the better use of physical memory and the re-
duction of copy-on-write page faults. The CFS-BUF
strategy has a rather high overhead on the LARGE in-
stances. This is from the operating system overhead
that accumulates during more than two hours of NFS
writes that saturate the Ethernet.

6.2. Checkpoint Latency and Recovery

Figure 6 displays the latencies of all the strategies
normalized per Mbyte of the application. This figure
suggests that the strategies fall roughly into to four
groups — extremely fast (CGJS), very fast (MIR and
PAR), not so fast (RS-2 and RS-3), and extremely slow
(CFS and CFS-BUF).

Recovery time is roughly equivalent to the “Rest”
portion of checkpoint latency (column 7 in Table 2).
Thus, recovery time is roughly equal to the checkpoint
latency. It should be obvious that for applications and
environments that may exhibit frequent failures (for
example in the shared pool of privately owned work-
stations), the CFS-based strategies are far too slow to
deliver a decent degree of performance. The same may
be said for the RS strategies.
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Figure 6. Latency per megabyte of check-
pointing



6.3. Disk Space Consumed

Columns 8 and 9 of Table 2 show the total disk
spaced consumed (local and central) by each check-
pointing strategy. One notable feature of this data is
the enormous size of the checkpointing files. As proces-
sors continue to get more local memory and worksta-
tion networks continue to scale, checkpoint sizes will
continue to grow. Thus, disk space can indeed be a
concern. The CGJS and CFS strategies both minimize
the disk space consumed. The PAR and RS strategies
follow closely behind. The MIR and CFS-BUF strate-
gies both use twice the minimal amount of disk space,
which may limit their effectiveness in some systems.

For example, the local disks in our labs each contain
550 Mbytes of storage, enough to hold five checkpoints
of an application that uses all 96 Mbytes of memory.
As mentioned in Section 3, there are times when a co-
ordinated checkpointer needs to hold two checkpoints
on disk. This means that on our system, we cannot
extend the MIR strategy to tolerate two or more pro-
cessor failures.

6.4. Fault Coverage

The last column of Table 2 shows the fault coverage
of each checkpointing strategy. This has been discussed
previously in Sections 2 and 5, and warrants no further
discussion.

6.5. Impact on Shared Resources

There are two shared resources that can be affected
by checkpointing: the central file server and the net-
work. To test the effect of checkpointing on the central
file server, we measured the bandwidth of disk writes
from a separate processor to the central disk while the
checkpointer was checkpointing. The results are pre-
sented in Figure 7.

The results are as expected. While the PAR and RS
algorithms degrade the disk performance by 34 percent,
the CFS strategies degrade the performance by 88 per-
cent. Considering this degradation lasts for a long time
(over 2 hours in the LARGE tests), the CFS strategies
should be considered unusable in an environment where
impact on shared resources is a concern. In contrast,
the PAR and RS algorithms cause a slight degrada-
tion for a shorter period of time, and should be satis-
factory for these environments. The CGJS and MIR
algorithms have no impact on the central file server.

To test the impact on the network, we measured the
bandwidth of sending 20 Mbyte messages between two
non-participating processors on the network while the

No ckp., CGJS, MIR
PAR, RS2 and RS-3
CFSand CFS-BUF

——
0.00 0.05 0.10
(Mbytes/ sec)

Figure 7. Disk bandwidth during checkpoint-
ing

other processors were checkpointing the LARGE in-
stances. During the “control” run, the bandwidth was
measured while the program executed with no check-
pointing. These measurements were taken on both the
fast Ethernet and the regular Ethernet and are pre-
sented in Figure 8. The lines above and below the
marks represent the standard deviations of the mea-
surements.

Figure 8 shows that the point-to-point performance
of the fast Ethernet remains relatively unaffected by
the message traffic of checkpointing. Since the network
is switched, the two testing processors communicate
without interference from the checkpointing processors.
This does not say that the network is unaffected. Were
we to test the communication performance of more
pairs of processors, we expect that MIR, PAR and RS
checkpointing would have more of a negative effect.
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Figure 8. Network bandwidth during check-
pointing

The regular Ethernet is affected adversely by the
PAR, RS, and CFS-BUF strategies. This is due to
writing checkpoint files to the central file server. PAR
shows less of an effect than CFS-BUF because it in-
terleaves the calculation of the parity checkpoint with
the writing of than checkpoint to disk. Thus, it leaves



Transient | Frequent Disk Space Minimize Impact One Multiple || Best Strategy
Failures Failures Is a Concern | on Shared Resources | Failure | Failures
Yes Either Either Either Either Either CGJS (CGJS-COW)
No Either No Either Yes No MIR (MIR-COW)
No Either Yes Either Yes No PAR (PAR-COW)
No No Either No No Yes CFS-BUF (CFS-BUF-COW)
No Yes Either Either No Yes RS (RS-COW)
No Either Either Yes No Yes RS (RS-COW)

Table 3. Recommended checkpointing strategies for different performance parameters

the Ethernet idle more. The RS tests show even less
of an effect that PAR because they perform more cal-
culations per checkpointed byte than in the PAR test.

7. Related Work

As stated in section 2, coordinated checkpointing
and checkpoint consistency are well-studied problems.
The paper by Elnozahy, Johnson and Wang puts most
of this work in perspective and provides a good starting
point for studying these areas of research [7].

Combining local and global checkpoints to trade
off reliability and performance has been studied by
Vaidya [34]. This paper provides an excellent moti-
vation for implementing single-site fault-tolerance in
coordinated checkpointing systems as an alternative
to CFS checkpointing. Vaidya’s method for providing
single-site fault-tolerance is the MIR strategy.

Checkpointing schemes that rely solely on check-
points and encodings in memory have been developed
and discussed by several researchers [6, 26, 29]. These
schemes provide resilience to single processor failures
with low overhead. The limitation of these schemes
is their dependence on good error detection. In or-
der to use the in-memory checkpoints following a pro-
cessor failure, the remaining processors must be able
to recognize the failure, agree on it, and then restore
themselves from their state in memory. If any of these
steps fail, the in-memory checkpoints become useless.
It has been our experience that many message-passing
libraries (PVM, for example) tolerate “clean” failures
(e.g. system shutdowns) very well, but tend to hang or
abort when unexpected failures occur. In such cases,
periodic checkpointing to disk provides an alternative
that is easier to program, and is more reliable than sav-
ing encodings in memory. As message-passing libraries
evolve to perform better error detection, in-memory
checkpointing techniques will become more useful.

This paper uses Reed-Solomon coding to tolerate
multiple processor failures. Although this is the best

general-purpose method for tolerating any number of
failures, there are better methods for specific numbers.
For example, EVENODD parity [2] is a method for tol-
erating two processor failures using only parity oper-
ations. As such, it is faster than using Reed-Solomon
coding for two processor failures. EVENODD parity was
not used for this experiment, but should be used in
preference to Reed-Solomon coding for two processor
fault-tolerance.

Finally, there are other techniques that have been
presented and implemented to reduce checkpoint over-
head and latency, including incremental checkpoint-
ing [10, 38], memory exclusion [25], compression [27]
and compiler assistance [17, 24]. These techniques
should affect all checkpointing strategies equally, and
will not alter any of the conclusions in this paper.

8. Conclusion

This paper has explored several strategies for taking
coordinated checkpoints on a network of workstations.
While current tools for coordinated checkpointing im-
plement simple strategies (CFS and CGJS), an applica-
tion of RAID techniques can yield better performance
for a smaller amount of fault coverage. This is espe-
cially true when checkpoint latency, recovery time, and
impact on shared resources are major concerns.

Based on the results of this paper, we make the rec-
ommendationsin Table 3 concerning which checkpoint-
ing strategy is best for various performance criteria. It
it our hope that future implementations of coordinated
checkpointing tools will include all the strategies men-
tioned in Table 3 in order to give the user maximum
flexibility in tuning the performance of checkpointing
to his or her specific network.
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