Background

Erasure Coding

Defined: a technique used in computer systems to handle data loss and corruption
Applications:
- network data transmission
- file archiving
- bar code reliability

Start with \(K \) blocks of data.
Encode to get \(M \) additional blocks of coding data.
Decoding recovers the data when up to \(M \) blocks are lost.

Jerasure - an open-source erasure coding library

Reed-Solomon coding:
- Data is organized in blocks.
- PacketSize (PS) \(\times \) PacketSlices (PPS) = BlockSize
- Performs matrix multiplication over Galois field \(GF(2^W) \)

\[K = 3 \quad PPS = 2 \quad M = 2 \]

Performance tests and results

Testing Methods

- Encoded 100 MB with Reed-Solomon and Cauchy Reed-Solomon
- -C3 compiler optimizations
- Averaged 5 runs where each run averaged 10 encodes

Coding Parameters:

- Reed-Solomon
 - \(W = 8, 16, 32 \)
 - \(M \) varied from 1 to 8
 - NumberOfCores increased from 1 to 4

- Cauchy Reed-Solomon
 - \(WPD = 5 \), the smallest valid value for all tested values of \(K \) and \(M \)

Parallel programming

In recent years, CPU speeds have leveled off due to device limitations such as power consumption.

- Modern processor advancements focus heavily on multi-core CPUs.
- Software must be specially programmed to take advantage of the multiple cores.

Multi-threaded erasure coding in Jerasure

Michael Jugan
mjugan1@utk.edu

Goals

Update Jerasure to utilize multiple processor cores while coding
- Increase performance
- Provide an intuitive user interface

Implementation

Four methods for splitting the work among threads:

- disks (M)
- packet_rows (WP M)
- packet_cols (PPS / PPS)
- packets (PPS x M)

Each color represents the data coded by a single thread.

Two new public variables were added to class JER_Slices.
- string MultiThreadMethod

Users add two additional lines of code before calling Encode().

- slices->MultiThreadMethod = "disks";
- slices->MultiThreadMethod = "packets";

Performance tests and results

Testing Methods

- Encoded 100 MB with Reed-Solomon and Cauchy Reed-Solomon
- -C3 compiler optimizations
- Averaged 5 runs where each run averaged 10 encodes

Coding Parameters:

- Reed-Solomon
 - \(W = 8, 16, 32 \)
 - \(M \) varied from 1 to 8
 - NumberOfCores increased from 1 to 4

- Cauchy Reed-Solomon
 - \(WPD = 5 \), the smallest valid value for all tested values of \(K \) and \(M \)

Conclusion

- Increased performance
 - 2 cores \(\rightarrow \) almost 2x speedup
 - depends heavily on the chosen coding parameters

- Easy to use
 - requires two additional lines of code.

- Future work
 - automate the process of finding optimal settings

References