|  | TENNESSEE KNOXVILLE | $\begin{aligned} & \text { AICIP } \\ & \text { RLSEARCH } \end{aligned}$ |
| :---: | :---: | :---: |
| ECE 599/692- Deep Learning |  |  |
| Lecture 2 - Background |  |  |
|  | Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville Email: hqi@utk.edu |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi Email: hqi@utk.edu $\qquad$
$\qquad$

$\qquad$
$\qquad$

- Chengcheng Li (cli42@vols.utk.edu)
$\qquad$
Seminar works
Engineered features vs. Automatic features
What do we cover? $\qquad$
$\qquad$
Programming environment
Tensorflow and Google Cloud Platform (GCP)
Linear algebra, probability and statistics, numerical computation, machine learning basics
1 THENNESSSEE $\quad 2$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Different Terminologies |
| :--- |
| - Pattern Recognition vs. Pattern Classification |
| - Mashine Learning vs. Artificial Intelligence |
| - Machine Learning vs. Pattern Recognition |
| - Engineered Features vs. Automatic Features |
|  |
|  |
|  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| CS425/528 Content <br> - Introduction (ch. 1) <br> - Supervised Learning (ch. 2) <br> - Bayesian Decision Theory (ch. 3) <br> - Parametric Methods (chs. 4-5) <br> - Dimensionality Reduction (ch. 6) <br> - Clustering (ch. 7) <br> - Non-Parametric Methods (ch. 8) <br> - Decision Trees (ch. 9) <br> - Neural Networks (chs. 10-11) <br> - Local Models (ch. 12) <br> - Kernel Machines (ch. 13) <br> - Reinforcement Learning (ch. 18) | AICIP <br> RESDARCH |
| :---: | :---: |
|  | 8 |

$\qquad$
$\qquad$

- Bayesian Decision Theory (ch. 3)
metric Methods (chs. 4-5) $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| What Do We Cover? <br> - Neural networks <br> - Multi-layer Perceptron <br> - Backpropagation Neural Network (Project 1, Due 09/07) <br> - Feedforward networks <br> - Supervised learning - CNN (Project 2, Due 09/21) <br> - Unsupervised learning - AE (Project 3, Due 10/12) <br> - Generative networks <br> - GAN (Project 4, Due 10/26) <br> - Feedback networks <br> - RNN (Project 5, Due 11/09) <br> - Final project (Due TBD) | AICIIP <br> RESLARCH |
| :---: | :---: |
| TMENNESSEE | 10 |

$\qquad$
Neural networks
Backpropagation Neural Network (Project 1, Due 09/07)
Feedforward networks
Supervised learning - CNN (Project 2, Due 09/21)

- Unsupervised learning - AE (Project 3, Due 10/12)
- GAN (Project 4, Due 10/26)
networks
RNN (Project 5, Due 11/09)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| A Bit History <br> 1957-1962 (Rosenblatt): | AICIP <br> HRSEARCH |
| :---: | :---: |
| The dark age 70's ~25 yinsky and Papert): <br> The dark age: 70 's $\sim 25$ years 1986 (Rumelhart, Hinton, McClelland): BP 1989 (LeCun et al.): CNN (LeNet) Another ~25 years 2006 (Hinton et al.): DL <br> 2012 (Krizhevsky, Sutskever, Hinton): AlexNet | ( |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

$\qquad$

| A Bit History - Revisited |
| :--- |

$\qquad$

1956, The Dartmouth Summer Research Project on Artificial Intelligence, organized by $\qquad$
 Other feature of inteliligence can in principle be so precisely described that a machine can be made to simulate it
An attempt will be made to find how to make machines use language, form abstractions and concepts solve kind in
$\qquad$ ctive systems
toma Lightir report by James Lighthill, Artificial Inteligence: A General Survey $\qquad$
1986, BP algorithm
1995, The Fifth Generation Compute
006-???
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Preliminaries <br> - Math and Statistics <br> - Linear algebra <br> - Probability and Statistics <br> - Numerical computation <br> - Machine learning basics <br> - Neural networks and backpropagation <br> - Programming environment Tensorflow <br> GCP | $\begin{aligned} & \text { AICIP } \\ & \text { RESILACH } \end{aligned}$ |
| :---: | :---: |
| OTEMNESSEE | 15 |


| Linear Algebra | AMCIP <br> RLSSLARCH |
| :--- | :--- |

- Scalars, vectors, matrices, tensors
- Linear dependence and span
- Norms
- $I_{p}$ norms, $I_{0}$ norm
- Frobenius norm - $I_{2}$ norm for matrices
- Matrix decomposition
- Eigendecomposition (for square matrices)
- Singular value decomposition (SVD) (for any matrices)
- [Snyder\&Qi:2017]


## AICIIP <br> RLSEARCH

Probability

- Frequentist probability vs. Baysian probability
$\qquad$
- Probability distribution
- Discrete variable and probability mass function (PMF)
$\qquad$
- Continuous variable and probability distribution function (PDF) $\qquad$
- Marginal probability
- Conditional probability (e.g., Baye's rule) $\qquad$

$$
P\left(\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}\right.
$$

3 THMNESSEO
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Numerical Computation | AICLIP <br> RLSEMACH |
| :---: | :---: |

- Global vs. local optimization
- Gradient descent
- Constrained optimization
- Langrange optimization
- Karush-Kuhn-Tucker (KKT) approach

|  | AICIIP |
| :---: | :---: |
| Pattern Classification Approaches | hescami |

$\qquad$

- Supervised vs. unsupervised $\qquad$
- Parametric vs. non-parametric
- Classification vs. regression vs. generation
$\qquad$
- Training set vs. test set vs. validation set
- Cross-validation


| Neural Networks | $\begin{aligned} & \text { AICIP } \\ & \text { RUSLABCH } \end{aligned}$ |
| :---: | :---: |
| - Perceptrons $y= \begin{cases}0 & \mathbf{w}^{T} \mathbf{x}+b \leq 0 \\ 1 & \mathbf{w}^{T} \mathbf{x}+b>0\end{cases}$ <br> where $\mathrm{b}=$-threshold |  |
| Sigmoid neurons $\begin{aligned} & \sigma(z)=\frac{1}{1+\exp (-z)} \\ & y=\frac{1}{1+\exp \left(-\left(\mathbf{w}^{T} \mathbf{x}+b\right)\right)} \end{aligned}$ |  |
| TTENNESSEE | 22 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\sigma(z)=\frac{1}{1+\exp (-z)}$
$y=\frac{1}{1+\exp \left(-\left(\mathbf{w}^{T} \mathbf{x}+b\right)\right)}$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$$
E=\frac{1}{2} \sum_{j}\left(T_{j}-S\left(y_{j}\right)\right)^{2}
$$

Choose a set of initial $\omega_{s t}$ to choose weight $\omega$ to minimize
$\omega_{s t}{ }^{k+1}=\omega_{s t}{ }^{k}-c^{k} \frac{\partial E^{k}}{\partial \omega_{s t}{ }^{k}}$
$\omega_{\text {st }}$ is the weight connecting
input $s$ at neuron $t$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


