
day month year documentname/initials 1

ECE 599/692 – Deep Learning

Lecture 2 - Background

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
http://www.eecs.utk.edu/faculty/qi
Email: hqi@utk.edu

1

Outline
• Instructor and TA

– Dr. Hairong Qi (hqi@utk.edu)
– Chengcheng Li (cli42@vols.utk.edu)

• What’s the difference between different courses and terminologies?
• Why deep learning?

– Seminar works
– Engineered features vs. Automatic features

• What do we cover?
• What’s the expectation?

– ECE599
– ECE692

• Programming environment
– Tensorflow and Google Cloud Platform (GCP)

• Preliminaries
– Linear algebra, probability and statistics, numerical computation,

machine learning basics
2

Different Courses
• Machine Learning (ML) (CS425/528)

• Pattern Recognition (PR) (ECE471/571)

• Deep Learning (DL) (ECE599/692)

• Artificial Intelligence (AI) (CS529 – Autonomous Mobile Robots)

3

???! Sept. 2017: https://www.alibabacloud.com/blog/deep-learning-vs-machine-
learning-vs-pattern-recognition_207110

???! Mar. 2015, Tombone’s Computer Vision Blog:
http://www.computervisionblog.com/2015/03/deep-learning-vs-machine-
learning-vs.html

• Reinforcement Learning (RL) (ECE517)

• Biologically-Inspired Computation (CS527)

http://www.eecs.utk.edu/faculty/qi
mailto:hqi@utk.edu
mailto:cli42@vols.utk.edu

day month year documentname/initials 2

Different Terminologies

• Pattern Recognition vs. Pattern Classification
• Machine Learning vs. Artificial Intelligence
• Machine Learning vs. Pattern Recognition
• Engineered Features vs. Automatic Features

4

The New Deep Learning Paradigm

5

Low-level IP Segmentation

Raw image Enhanced image Objects & regions

Features
Understanding,
Decision,
Knowledge

Classification

Feature
ExtractionEnd-

to-
End

Engineered vs.
Automatic

Deep
Learning

6

Pattern Recognition vs. Pattern
Classification

Feature
extraction

Pattern
classification

Input
media

Feature
vector

Recognition
result

Need domain knowledge

2001

Pattern
Classification
and Scene
Analysis

1973

day month year documentname/initials 3

AI vs. ML or PR

7

PR + Reasoning (RNN) à AI
PR + Planning & RL à AI

CS425/528 Content
• Introduction (ch. 1)
• Supervised Learning (ch. 2)
• Bayesian Decision Theory (ch. 3)
• Parametric Methods (chs. 4–5)
• Dimensionality Reduction (ch. 6)
• Clustering (ch. 7)
• Non-Parametric Methods (ch. 8)
• Decision Trees (ch. 9)
• Neural Networks (chs. 10–11)
• Local Models (ch. 12)
• Kernel Machines (ch. 13)
• Reinforcement Learning (ch. 18)
• Machine Learning Experiments (ch. 19)

8

Pattern Classification

Statistical Approach Non-Statistical Approach

Supervised Unsupervised

Basic concepts:
Distance
Agglomerative method

Basic concepts:
Baysian decision rule
(MPP, LR, Discri.)

Parameter estimate (ML, BL)

Non-Parametric learning (kNN)

LDF (Perceptron)

k-means

Winner-takes-all

Kohonen maps

Dimensionality
Reduction

FLD, PCA

Performance Evaluation
ROC curve (TP, TN, FN, FP)
cross validation

Classifier Fusion
majority voting
NB, BKS

Stochastic Methods
local opt (GD)
global opt (SA, GA)

Decision-tree

Syntactic approach

NN (BP)

Support Vector Machine

Deep Learning (DL)

Mean-shift

ECE471/571 Content

day month year documentname/initials 4

What Do We Cover?
• Neural networks

– Multi-layer Perceptron
– Backpropagation Neural Network (Project 1, Due 09/07)

• Feedforward networks
– Supervised learning - CNN (Project 2, Due 09/21)
– Unsupervised learning – AE (Project 3, Due 10/12)

• Generative networks
– GAN (Project 4, Due 10/26)

• Feedback networks
– RNN (Project 5, Due 11/09)

• Final project (Due TBD)

10

A Bit History
• 1943 (McCulloch and Pitts):
• 1957 - 1962 (Rosenblatt):

– From Mark I Perceptron to the Tobermory Perceptron to Perceptron Computer Simulations
– Multilayer perceptron with fixed threshold

• 1969 (Minsky and Papert):
• The dark age: 70’s ~25 years
• 1986 (Rumelhart, Hinton, McClelland): BP
• 1989 (LeCun et al.): CNN (LeNet)
• Another ~25 years
• 2006 (Hinton et al.): DL
• 2012 (Krizhevsky, Sutskever, Hinton): AlexNet
• 2014 (Goodfellow, Benjo, et al.): GAN

11

• W.S. McCulloch, W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, 5(4):115-133,
December 1943.

• F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, 1962.
• Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry, 1969.
• D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning representations by back-propagating errors,” Nature, 323(9):533-536, October 1986.

(BP)
• Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural Computation, 1(4):541-551, 1989. (LeNet).
• G.E. Hinton, S. Osindero, Y. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, 18:1527-1554, 2006. (DL)
• G.E. Hinton, R.R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, 313(5786):504-507, 2006 (DL)
• A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” Advances in Neural Information

Processing Systems, pages 1097-1105, 2012. (AlexNet)
• I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, “Generative adversarial networks,” NIPS,

2014.

w1
w2
wd

x1
x2

xd

1

y

-b

……

Perceptron (40’s)

A Bit History - Revisited
• 1956-1976

– 1956, The Dartmouth Summer Research Project on Artificial Intelligence, organized by
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon

– The rise of symbolic methods, systems focused on limited domains, deductive vs.
inductive systems

– 1973, the Lighthill report by James Lighthill, “Artificial Intelligence: A General Survey” -
automata, robotics, neural network

– 1976, the AI Winter

• 1976-2006
– 1986, BP algorithm
– ~1995, The Fifth Generation Computer

• 2006-???
– 2006, Hinton (U. of Toronto), Bingio (U. of Montreal, LeCun (NYU)
– 2012, ImageNet by Fei-Fei Li (2010-2017) and AlexNet

12

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at
Dartmouth College ... The study is to proceed on the basis of the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.
An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds
of problems now reserved for humans, and improve themselves. We think that a significant advance can be made
in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

https://en.wikipedia.org/wiki/Dartmouth_workshop
https://en.wikipedia.org/wiki/Lighthill_report

https://en.wikipedia.org/wiki/Dartmouth_workshop

day month year documentname/initials 5

Why Deep Learning?

13

Year Top-5 Error Model
2010 winner 28.2% Fast descriptor coding

2011 winner 25.7% Compressed Fisher vectors

2012 winner 15.3% AlexNet (8, 60M)

2013 winner 14.8% ZFNet

2014 winner
2014 runner-up

6.67% GoogLeNet (22, 4M)
VGGNet (16, 140M)

2015 winner 3.57% ResNet (152)

Human expert: 5.1%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

14

http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

Preliminaries
• Math and Statistics

– Linear algebra
– Probability and Statistics
– Numerical computation

• Machine learning basics
– Neural networks and backpropagation

• Programming environment
– Tensorflow
– GCP

15

day month year documentname/initials 6

Linear Algebra

• Scalars, vectors, matrices, tensors
• Linear dependence and span
• Norms

– lp norms, l0 norm
– Frobenius norm - l2 norm for matrices

• Matrix decomposition
– Eigendecomposition (for square matrices)
– Singular value decomposition (SVD) (for any matrices)
– [Snyder&Qi:2017]

16

Probability

• Frequentist probability vs. Baysian probability
• Probability distribution

– Discrete variable and probability mass function (PMF)
– Continuous variable and probability distribution

function (PDF)
• Marginal probability
• Conditional probability (e.g., Baye’s rule)

17

() () ()
()xp
Pxp

xP jj
j

ωω
ω

|
| =

Information Theory

• Measuring information
– Self-information of an event x=x, I(x) = -logP(x)

– Base e: unit (nats) information gained by observing an event
of probability 1/e

– Base 2: unit (bits or shannons)

– Shannon entropy: H(x) = Ex~P[I(x)] = -Ex~P[logP(x)]
• Kullback-Leibler (KL) divergence

– DKL(P||Q) = Ex~P[logP(x)/Q(x)] = Ex~P[logP(x) – logQ(x)]

• Cross-entropy
– H(P,Q) = H(P) + DKL(P||Q)

18

day month year documentname/initials 7

Numerical Computation

• Global vs. local optimization
• Gradient descent
• Constrained optimization

– Langrange optimization
– Karush-Kuhn-Tucker (KKT) approach

19

Pattern Classification
Approaches
• Supervised vs. unsupervised
• Parametric vs. non-parametric
• Classification vs. regression vs. generation
• Training set vs. test set vs. validation set
• Cross-validation

20

Pattern Classification
Approaches
• Supervised

– Maximum a-posteriori probability

– kNN

– NN, when n -> infty, gk(x;w) -> P(wk|x)

21

() () ()
()xp
Pxp

xP jj
j

ωω
ω

|
| =

P ωm | x() =
p x |ωm()P ωm()

p x()
=

km
nmV

nm
n

k
nV

=
km
k

day month year documentname/initials 8

Neural Networks
• Perceptrons

where b = -threshold

• Sigmoid neurons

22

w1
w2

wd

y

b

x1

x2

xd

1

…

w1

w2

wd

y

x1

x2

xd
…

y =

⇢
0 wTx+ b 0
1 wTx+ b > 0

�(z) =
1

1 + exp(�z)

y =
1

1 + exp(�(wTx+ b))

1

y =

⇢
0 wTx+ b 0
1 wTx+ b > 0

�(z) =
1

1 + exp(�z)

y =
1

1 + exp(�(wTx+ b))

1

y =

⇢
0 wTx+ b 0
1 wTx+ b > 0

�(z) =
1

1 + exp(�z)

y =
1

1 + exp(�(wTx+ b))

1

Network Example – MNIST
Recognition

23Image from: [Nielson]

24

A 3-layer NN

x1

x2

s1

s2

w13

w23

w14

w24

s3

s4

s5
w35

w45

=

=

day month year documentname/initials 9

25

BP – 3-layer Network

Sq Sq Sj Sjxi
hq yj S(yj)Si

wiq wqj

€

E =
1
2

Tj − S y j()()
j
∑

2

Choose a set of initial ωst

ωst
k+1 =ωst

k − ck ∂E
k

∂ωst
k

The problem is essentially �how
to choose weight w to minimize
the error between the expected
output and the actual output�

The basic idea behind
BP is gradient descentwst is the weight connecting

input s at neuron t

26

The Derivative – Chain Rule

Δωqj = −
∂E
∂ωqj

= −
∂E
∂Sj

∂Sj
∂yj

∂yj
∂ωqj

 = − Tj − Sj() $Sj() Sq hq()()

Δωiq = −
∂E
∂ωiq

=
∂E
∂Sj

∂Sj
∂yj

∂yj
∂Sqj

∑
&

'
(
(

)

*
+
+

∂Sq
∂hq

∂hq
∂ωiq

 = Tj − Sj() Sj$() ωqj()
j
∑
&

'
(
(

)

*
+
+
Sq
$() xi()

Sq Sq Sj Sjxi
hq yj S(yj)Si

wiq wqj

Why Deeper?

27

A Tutorial on Deep Learning
Part 1: Nonlinear Classifiers and The Backpropagation Algorithm

Quoc V. Le
qvl@google.com

Google Brain, Google Inc.
1600 Amphitheatre Pkwy, Mountain View, CA 94043

December 13, 2015

1 Introduction

In the past few years, Deep Learning has generated much excitement in Machine Learning and industry
thanks to many breakthrough results in speech recognition, computer vision and text processing. So, what
is Deep Learning?

For many researchers, Deep Learning is another name for a set of algorithms that use a neural network as
an architecture. Even though neural networks have a long history, they became more successful in recent
years due to the availability of inexpensive, parallel hardware (GPUs, computer clusters) and massive
amounts of data.

In this tutorial, we will start with the concept of a linear classifier and use that to develop the concept
of neural networks. I will present two key algorithms in learning with neural networks: the stochastic
gradient descent algorithm and the backpropagation algorithm. Towards the end of the tutorial, I will
explain some simple tricks and recent advances that improve neural networks and their training. For that,
let’s start with a simple example.

2 An example of movie recommendations

It’s Friday night, and I am trying to decide whether I should watch the movie “Gravity” or not. I ask my
close friends Mary and John, who watched the movie last night to hear their opinions about the movie.
Both of them give the movie a rating of 3 in the scale between 1 to 5. Not outstanding but perhaps worth
watching?

Given these ratings, it is di�cult for me to decide if it is worth watching the movie, but thankfully, I
have kept a table of their ratings for some movies in the past. For each movie, I also noted whether I liked
the movie or not. Maybe I can use this data to decide if I should watch the movie. The data look like this:

Movie name Mary’s rating John’s rating I like?

Lord of the Rings II 1 5 No
...

Star Wars I 4.5 4 Yes

Gravity 3 3 ?

Let’s visualize the data to see if there is any trend:

1

In the above figure, I represent each movie as a red “O” or a blue “X” which correspond to “I like the
movie” and “I dislike the movie”, respectively. The question is with the rating of (3, 3), will I like Gravity?
Can I use the past data to come up with a sensible decision?

3 A bounded decision function

Let’s write a computer program to answer this question. For every movie, we construct an example x
which has two dimensions: the first dimension x1 is Mary’s rating and the second dimension x2 is John’s
rating. Every past movie is also associated with a label y to indicate whether I like the movie or not. For
now, let’s say y is a scalar that should have one of the two values, 0 to mean “I do not like” or 1 to mean
“I do like” the movie. Our goal is to come up with a decision function h(x) to approximate y.

Our decision function can be as simple as a weighted linear combination of Mary’s and John’s ratings:

h(x; ✓, b) = ✓1x1 + ✓2x2 + b, which can also be written as h(x; ✓, b) = ✓Tx+ b (1)

In the equation above, the value of function h(x) depends on ✓1, ✓2 and b, hence I rewrite it as h(x; (✓1, ✓2), b)
or in vector form h(x; ✓, b).

The decision function h unfortunately has a problem: its values can be arbitrarily large or small. We
wish its values to fall between 0 and 1 because those are the two extremes of y that we want to approximate.

A simple way to force h to have values between 0 and 1 is to map it through another function called
the sigmoid function, which is bounded between 0 and 1:

h(x; ✓, b) = g(✓Tx+ b), where g(z) =
1

1 + exp(�z)
, (2)

which graphically should look like this:

The value of function h is now bounded between 0 and 1.

2

In the above figure, I represent each movie as a red “O” or a blue “X” which correspond to “I like the
movie” and “I dislike the movie”, respectively. The question is with the rating of (3, 3), will I like Gravity?
Can I use the past data to come up with a sensible decision?

3 A bounded decision function

Let’s write a computer program to answer this question. For every movie, we construct an example x
which has two dimensions: the first dimension x1 is Mary’s rating and the second dimension x2 is John’s
rating. Every past movie is also associated with a label y to indicate whether I like the movie or not. For
now, let’s say y is a scalar that should have one of the two values, 0 to mean “I do not like” or 1 to mean
“I do like” the movie. Our goal is to come up with a decision function h(x) to approximate y.

Our decision function can be as simple as a weighted linear combination of Mary’s and John’s ratings:

h(x; ✓, b) = ✓1x1 + ✓2x2 + b, which can also be written as h(x; ✓, b) = ✓Tx+ b (1)

In the equation above, the value of function h(x) depends on ✓1, ✓2 and b, hence I rewrite it as h(x; (✓1, ✓2), b)
or in vector form h(x; ✓, b).

The decision function h unfortunately has a problem: its values can be arbitrarily large or small. We
wish its values to fall between 0 and 1 because those are the two extremes of y that we want to approximate.

A simple way to force h to have values between 0 and 1 is to map it through another function called
the sigmoid function, which is bounded between 0 and 1:

h(x; ✓, b) = g(✓Tx+ b), where g(z) =
1

1 + exp(�z)
, (2)

which graphically should look like this:

The value of function h is now bounded between 0 and 1.

2

Apply the chain rule, and note that @g
@z = [1� g(z)]g(z), we have:

@

@✓1
g(✓Tx(i) + b) =

@g(✓Tx(i) + b)

@(✓Tx(i) + b)

@(✓Tx(i) + b)

@✓1

=
⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)

@(✓1x
(i)
1 + ✓2x

(i)
2 + b)

@✓1

=
⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)1

Plug this to Equation 6, we have:

�✓1 = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)1 (7)

where

g(✓Tx(i) + b) =
1

1 + exp(�✓Tx(i) � b)
(8)

Similar derivations should lead us to:

�✓2 = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b)x(i)2 (9)

�b = 2
⇥
g(✓Tx(i) + b)� y(i)

⇤⇥
1� g(✓Tx(i) + b)

⇤
g(✓Tx(i) + b) (10)

Now, we have the stochastic gradient descent algorithm to learn the decision function h(x; ✓, b):

1. Initialize the parameters ✓, b at random,

2. Pick a random example {x(i), y(i)},

3. Compute the partial derivatives ✓1, ✓2 and b by Equations 7, 9 and 10,

4. Update parameters using Equations 3, 4 and 5, then back to step 2.

We can stop stochastic gradient descent when the parameters do not change or the number of iteration
exceeds a certain upper bound. At convergence, we will obtain a function h(x; ✓, b) which can be used to
predict whether I like a new movie x or not: h > 0.5 means I will like the movie, otherwise I do not like
the movie. The values of x’s that cause h(x; ✓, b) to be 0.5 is the “decision boundary.” We can plot this
“decision boundary” to have:

The green line is the “decision boundary.” Any point lying above the decision boundary is a movie that I
should watch, and any point lying below the decision boundary is a movie that I should not watch. With

4

4 Using past data to learn the decision function

We will use the past data to learn ✓, b to approximate y. In particular, we want to obtain ✓, b such that:

h(x(1); ✓, b) ⇡ y(1), where x(1) is Mary’s and John’s ratings for 1st movie, “Lord of the Rings II”

h(x(2); ✓, b) ⇡ y(2), where x(2) is Mary’s and John’s ratings for 2nd movie

...

h(x(m); ✓, b) ⇡ y(m), where x(m) is Mary’s and John’s ratings for m-th movie

To find the values of ✓ and b we can try to minimize the following objective function, which is the sum of
di↵erences between the decision function h and the label y:

J(✓, b) =
�
h(x(1); ✓, b)� y(1)

�2
+

�
h(x(2); ✓, b)� y(2)

�2
+ ...+

�
h(x(m); ✓, b)� y(m)

�2

=
mX

i=1

�
h(x(i); ✓, b)� y(i)

�2

5 Using stochastic gradient descent to minimize a function

To minimize the above function, we can iterate through the examples and slowly update the parameters ✓
and b in the direction of minimizing each of the small objective

�
h(x(i); ✓, b) � y(i)

�2
. Concretely, we can

update the parameters in the following manner:

✓1 = ✓1 � ↵�✓1 (3)

✓2 = ✓2 � ↵�✓2 (4)

b = b� ↵�b (5)

where ↵ is a small non-negative scalar. A large ↵ will give aggressive updates whereas a small ↵ will give
conservative updates. Such algorithm is known as stochastic gradient descent (or SGD) and ↵ is known as
the learning rate.

Now the question of finding the optimal parameters amounts to finding �✓’s and �b such that they are
in the descent direction. In the following, as our objective function is composed of function of functions,
we use the the chain rule to compute the derivatives. Remember that the chain rule says that if g is a
function of z(x) then its derivative is as follows:

@g

@x
=

@g

@z

@z

@x

This chain rule is very useful when taking the derivative of a function of functions.
Thanks to the chain rule, we know that a good descent direction for any objective function is its

gradient. Therefore, at example x(i), we can compute the partial derivative:

�✓1 =
@

@✓1

✓
h(x(i); ✓, b)� y(i)

◆2

= 2

✓
h(x(i); ✓, b)� y(i)

◆
@

@✓1
h(x(i); ✓, b)

= 2

✓
g(✓Tx(i) + b)� y(i)

◆
@

@✓1
g(✓Tx(i) + b) (6)

3

this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:

5

http://ai.stanford.edu/~quocle/tutorial2.pdf

http://ai.stanford.edu/~quocle/tutorial2.pdf

day month year documentname/initials 10

Why Deeper? - Another Example

28

this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:

5

this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:

5

this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:

5

Is it possible to combine these two decision functions into one final decision function for the original data?
The answer turns out to be yes and I’ll show you how.

7 A decision function of decision functions

Let’s suppose, as stated above, the two decision functions are h1(x; (✓1, ✓2), b1) and h2(x; (✓3, ✓4), b2). For
every example x(i), we can then compute h1(x(i); (✓1, ✓2), b1) and h2(x(i); (✓3, ✓4), b2)

If we lay out the data in a table, it would look like the first table that we saw:

Movie name Output by Output by Susan likes?

decision function h1 decision function h2

Lord of the Rings II h1(x(1)) h2(x(2)) No
...

Star Wars I h1(x(n)) h2(x(n)) Yes

Gravity h1(x(n+1)) h2(x(n+1)) ?

Now, once again, the problem becomes finding a new parameter set to weigh these two decision functions to
approximate y. Let’s call these parameters !, c, and we want to find them such that h((h1(x), h2(x));!, c)
can approximate the label y. This can be done, again, by stochastic gradient descent.

In summary, we can find the decision function for Susan by following two steps:

1. Partition the data into two sets. Each set can be simply classified by a linear decision. Then use the
previous sections to find the decision function for each set,

2. Use the newly-found decision functions and compute the decision values for each example. Then
treat these values as input to another decision function. Use stochastic gradient descent to find the
final decision function.

A graphical way to visualize the above process is the following figure:

What you just saw is a special architecture in machine learning known as “neural networks.” This instance
of neural networks has one hidden layer, which has two “neurons.” The first neuron computes values for
function h1 and the second neuron computes values for function h2. The sigmoid function that maps real
value to bounded values between 0, 1 is also known as “the nonlinearity” or the “activation function.”
Since we are using sigmoid, the activation function is also called “sigmoid activation function.” In the
future, you may encounter other kinds of activation functions. The parameters inside the network, such
as ✓,! are called “weights” where as b, c are called “biases.”

If you have a more complex function that you want to approximate, you may want to have a deeper
network, maybe one that looks like this:

6

Is it possible to combine these two decision functions into one final decision function for the original data?
The answer turns out to be yes and I’ll show you how.

7 A decision function of decision functions

Let’s suppose, as stated above, the two decision functions are h1(x; (✓1, ✓2), b1) and h2(x; (✓3, ✓4), b2). For
every example x(i), we can then compute h1(x(i); (✓1, ✓2), b1) and h2(x(i); (✓3, ✓4), b2)

If we lay out the data in a table, it would look like the first table that we saw:

Movie name Output by Output by Susan likes?

decision function h1 decision function h2

Lord of the Rings II h1(x(1)) h2(x(2)) No
...

Star Wars I h1(x(n)) h2(x(n)) Yes

Gravity h1(x(n+1)) h2(x(n+1)) ?

Now, once again, the problem becomes finding a new parameter set to weigh these two decision functions to
approximate y. Let’s call these parameters !, c, and we want to find them such that h((h1(x), h2(x));!, c)
can approximate the label y. This can be done, again, by stochastic gradient descent.

In summary, we can find the decision function for Susan by following two steps:

1. Partition the data into two sets. Each set can be simply classified by a linear decision. Then use the
previous sections to find the decision function for each set,

2. Use the newly-found decision functions and compute the decision values for each example. Then
treat these values as input to another decision function. Use stochastic gradient descent to find the
final decision function.

A graphical way to visualize the above process is the following figure:

What you just saw is a special architecture in machine learning known as “neural networks.” This instance
of neural networks has one hidden layer, which has two “neurons.” The first neuron computes values for
function h1 and the second neuron computes values for function h2. The sigmoid function that maps real
value to bounded values between 0, 1 is also known as “the nonlinearity” or the “activation function.”
Since we are using sigmoid, the activation function is also called “sigmoid activation function.” In the
future, you may encounter other kinds of activation functions. The parameters inside the network, such
as ✓,! are called “weights” where as b, c are called “biases.”

If you have a more complex function that you want to approximate, you may want to have a deeper
network, maybe one that looks like this:

6

this decision boundary, it seems that “Gravity” is slightly on the negative side, which means I should not
watch it.

By the way, here is a graphical illustration of the decision function h we just built (“M” and “J” indicate
the input data which is the ratings from Mary and John respectively):

This network means that to compute the value of the decision function, we need the multiply Mary’s rating
with ✓1, John’s rating with ✓2, then add two values and b, then apply the sigmoid function.

6 The limitations of linear decision function

In the above case, I was lucky because the the examples are linearly separable: I can draw a linear decision
function to separate the positive and the negative instances.

My friend Susan has di↵erent movie tastes. If we plot her data, the graph will look rather di↵erent:

Susan likes some of the movies that Mary and John rated poorly. The question is how we can come up
with a decision function for Susan. From looking at the data, the decision function must be more complex
than the decision we saw before.

My experience tells me that one way to solve a complex problem is to decompose it into smaller
problems that we can solve. We know that if we throw away the “weird” examples from the bottom left
corner of the figure, the problem is simple. Similarly, if we throw the “weird” examples on the top right
figure, the problem is again also simple. In the figure below, I solve for each case using our algorithm and
the decision functions look like this:

5

