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ECE 599/692 — Deep Learning

Lecture 8 — CNN: Advanced Topics

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
http://www.eecs.utk.edu/faculty/qi

Email: hgi@utk.edu
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Lecture 3: Core ideas of CNN
Receptive field
Pooling
Shared weight
Derivation of BP in CNN
Lecture 4: Practical issues

The learning slowdown problem
Quadratic cost funcion
Cross-entropy + sigmoid
Log-ikelihood + softmax
Overfitting and regularization
L2 vs. L1 normaization
Dropout
Ariicial expanding the training set
Weight initialization
How to choose hyper-parameters
Learning rate, early stopping, learming schedule, regularization parameter, mini-batch size.
Grid search
Others

Momentum-based GD

Lecture 5: The representative power of NN
Lecture 6: Variants of CNN
From LeNet to AlexNet to GoogleNet to VGG to ResNet
Lecture 7: Implementation on VGGNet
TENNELeeture 8: Random thoughts 2
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Trend
Unsupervised learning
Attention is all you need
Alternatives to CNN
Graph network
Capsule network
The forever battle between globalness and localness

How to find a research topic?
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* The slides on global vs. local are from a group
presentation slide set by Yang Song
* The slides on person re-id are from Alireza

Rahimpour
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The Local Mean Operation
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Global vs. Local: RESEARCH

The Non-Local Mean (NLM) Operator

[Buades and Morel, CVPR 2005]

Yi = jer w(i 4)g(j)
w(i, j) = %6_ TOEAE
C(i) = X jer wlis j)

G: noise image
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How to do it in deep RESEARCH
networks?

* In sequential data, long-range dependency is formulated
by recurrent operations, e.g., LSTM.

* In image data, long-distance dependency is mainly
modeled by repeated Conv. layers progressively.
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1. Dilated convolution

[Chen et al. TPAMI 2018]

lllustration of dilated convolution (1D) Illustration of dilated convolution (2D)

Output feature.

Convolution
kerel = 3

smﬂde:li T |_ R BN
e !
o] A i AT oBn e

(a) Sparse feature extraction T R R
e |
i, TS
a2 , Pros: the same kernel size with larger receptive field
(insert 1 zero) “rate =2

A 2 A
TENNESSEE 8
AICIP
Apbe |
Some recent developments RESEARCH

2. Deformable CNN

[Dai et al. ICCV 2017]

RSN
conv offsets
@ ®) © @ offset field
Figure 1: Illustration of the sampling locations in 3 x 3 e ‘
standard and deformable convolutions. (a) regular sam- i > )
pling grid (green points) of standard convolution. (b) de- B ot .

formed sampling locations (dark blue points) with aug-
mented offsets (light blue arrows) in deformable convolu-

tion. (c)(d) are special cases of (b), showing that the de- Pt feature map output feature map
formable i izes various i ) .
for scale, (anisotropic) aspect ratio and rotation. Figure 2: of 3x3
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3. Squeeze-and-Excitation
Network (SENet)
[SENet:cvpr:2018]
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discriminative power — A revisit to
variants of CNN models
AlexNet
GooglLeNet
VGGNet
ResNet
SENet
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Trend

Unsupervised learning
Attention is all you need
Alternatives to CNN
Graph network
Capsule network
The forever battle between globalness and localness
How to find a research topic?
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Random Thoughts

* Trend
— Unsupervised learning
— Attention is all you need
— Person re-identification
— Attention
— A new cost function
— Alternatives to CNN
— Graph network
— Capsule network
— The forever battle between globalness and localness

* How to find a research topic?
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Person re-identification is the problem of matching the same individuals across
multiple cameras, or across time within a single camera.

AICIP
Chall : RESEARCH
allenges:
—_'_ﬂ E . !
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(a) Cross-view lighting variations (b) Camera viewpoint changes
F s 3 ]
] g &
(c¢) Clothing similarity (d) Background clutter & occlusions
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O Matching Pair
O impostor

Probe Image Gallery Images

LI

Small 6= Distance & Large
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Motivation: RESEARCH

Attention: Focusing on specific parts of the input.
« Inspired by neuroscience.

» To reduce the computational burden of processing high dimensional inputs by

selecting to only process subsets of the input.
e.g., Large Medical Images. -~

» To allow the system to focus on distinct aspects of the input and thus improve the

generated output. “
TENNESSEE -
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Attention models in Deep Neural Networks

B— bird

Image:
HxWx3

The whole input volume is used to predict the output...
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Attention models in Deep Neural Networks

= bird
"
Image: .
HxWx3
The whole input volume is used to predict the output...
despite the fact that not all pixels are equally important
TENNESSEE 19
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Person Re-ID using Attention Mechanism RESEARCH

Motivation:

Humans do not focus their attention on an entire scene at once when they want to
identify another person.

Instead, they pay attention to different parts of the scene (e.g., the person’s face) td
extract the most discriminative information.

Our proposed model objective:

Being able to focus on a certain region of an image with high resolution
while perceiving the surrounding image in low resolution.
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Model Architecture RESEARCH
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+ We want the distance of the learned features of the same person to be less than the distance
between the images from different persons by a defined margin.

« Cost function for N triplet images N N raty (|2 - ra—\ (|2
PletImaget ;= LN A0 - X = [A0xe) - ACX) +als

where the term [z], = max(z, 0) denotes the standard hinge loss.
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Datasets:

+ The CUHKO1 dataset contains 971 persons captured from two camera views in a
campus environment. Each person has four images with two from each camera.

+ The CUHKO3 dataset contains 13164 images of 1360 identities. All pedestrians are
captured by six cameras, and each person's image is only taken from two camera

T NRRNERY
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Preliminary Results:

Comparison of performance of the proposed GAN to the state-of-the-art on
CUHKO1 dataset.

Method Rankl Rank5 Rankl0  Rank20

FPNN (1i2014,CVPR) 22.87 5820  73.46 86.31
SDALF (farenzena,2010,CVPR) 9.90 41.21 56.00 66.37
eSDC (zhao,2013,CVPR) 2284  43.89 57.67 69.84

KISSME (kostinger,2012,CVPR)  29.40  57.67 72.42 86.07
Partb-reid (cheng,2016,CVPR) 53.7 84.3 91.0 96.3
GAN-L 54.6 83.6 89.4 90.2

GAN 64.2 86.4 90.6 96.9
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Trend
Unsupervised learning
Attention is all you need
Alternatives to CNN
Graph network
Capsule network
The forever battle between globalness and localness

How to find a research topic? (from Ng)
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