¥ TENNESSEE ATCTP
KNOXVILLE RESEARCH

ECE 599/692 — Deep Learning

Lecture 12 — GAN — Design Ideas

Hairong Qi, Gonzalez Family Professor
Electrical Engineering and Computer Science
University of Tennessee, Knoxville
hitp://www. utk.edu/faculty/gi

Email: hqi@utk.edu

AICIP
Outline RESEARCH

Lecture 11: GAN — Introduction and theoretic analysis
Lecture 12: Design ideas

Lecture 13: Conditional GAN

Lecture 14: Implementation
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Case Study 1: Conditional Adversarial
Autoencoder for Age
Progression/Regression

Zhifei Zhang, Yang Song, Hairong Qi, “Conditional adversarial
autoencoder for age progression/regression,” CVPR, 2017
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Autoencoder - CAAE
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min DTSffw’w (z,G(E(),1)) +yTV(G(E(z),1))
[ HE.-p(z) [log D2 (27)]
Donz
L By (o log(1 = D:(E(2)))]
D on image ' FEe 1~paara (x.1) 108 Dimg (2, 1)] |
] FE s inpaara(x.1) [108(1 = Dimg(G(E(2),1)))] ’/5
where T'V(-) denotes the total variation which is effective
in removing the ghosting artifacts. The coefficients A and y
balance the smoothness and high resolution.
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Case Study 2: Decoupled Learning for Conditional
Adversarial Networks

Zhifei Zhang, Yang Song, and Hairong Qi, “Decoupled learning for conditional
adversarial networks,” WACV, 2018
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Motivation:
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The conditional adversarial networks applied in existing works mainly consists of two parts:

1) the encoding-decoding nets (ED)
2) the GANSs, which are tied in the parts of decoder and generator.

Therefore, the reconstruction loss and adversarial loss interact/compete with each other,
potentially causing unstable results as shown above.

Existing works have to introduce a weighting factor (e.g., the values in the figure) to balance
the effect of the two losses. How to adaptively set an appropriate weight or completely
remove the necessity of the weighting factor is a problem unexplored.
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Main Idea:

Decouple the interaction between the reconstruction loss and adversarial loss in

+  ED+GAN: the traditional structure

«  ED//GAN: the proposed structure(decoupled learning)
» Encand Dec: the encoder and decoder networks

* G and D: the generator and discriminator

«  Black arrows: feedforward path

*  Red arrows: backpropagation of reconstruction loss

«  Blue arrows: backpropagation of adversarial loss
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Approach:

Real/
Fake

The objective function:

pnin Loonst (Enc, Dec) + m(gnﬁmm(G) + n;gnﬁmn(D)-

There are no weighting parameters between the losses in the objective function,
which relaxes the manual tuning.
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Experimental Results:
Compare ED+GAN and ED//GAN:

®] Tuble 2. NRDS with different weight settings and their s1.
0001 | 001 | 0.

o1 T
ED+GAN | 1172 | 1143 | 1163 | 0731 | 0215
ED+GAN2 | .1066 | .1143 | .1268 | .1267 | .0099
ED/GAN | 1432 | 1434 | 1458 | .1466 | .0017

ED+GAN2 denote the structure with batch normalization

ED+GAN is sensitive to weight
variation. By contrast, ED/GAN
is robust to weight variation,
relaxing the weight tuning.
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Experimental Results:

Adapt CAAE [Zhang et al., 2017] to ED//GAN:
110~ 11072 1:1 ED/GAN
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EDYGAN ED//GAN
Method |iG=r T 1102 [T
NRDS | 2527 | 249 | 2430 | 2547 |
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Case Study 3: Cross-domain Face
Composite and Synthesis from Limited
Facial Patches

Yang Song, Zhifei Zhang, Hairong Qi, “Cross domain face composition and
synthesis from limited facial parts,” AAAI Conference on Artificial Intelligence
(AAAI), New Orleans, LA, February 2018.
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Transformation Network

Assumption:

Whole Face and Sketch are lie on two manifolds;

The mapping from sketch domain () to face domain (1) is
modeled by F;

The mapping from face domain (I) to Sketch domain ()
is modeled by f:

The face/sketch patches lie outside the manifold.
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Transformation Network
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Uni-directional transformation vs. Bi-directional
transformation network
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Training Stage

Training Stage: learn face2sketch mapping f
and sketch2face mapping F in a bidirectional
fashion

;HFI% Lady + Arec,
1
Lree =Y (loz — 2%l + zs — akl1), ()
Lady = Eyeq [log D(w)] — Egzez(log D(zz,zs)], (2)

zsES

Q= {(J:ZA 22) ;. (24, 22) ;. (27, 78) . (.1'2“1"',-),}
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Testing Stage: Given a patch P, the mapping f and
F trained on whole face/sketch will guide the patch to
converge to a whole sketch/face. In order to keep the
identity, the given patch area is kept as constant at
each iteration.

8 ko (1 - M) +pz,
o§  f (2F),
dD(z%, z¥)

zk ok — ,
i S S P) I’§
F zkt  F (2%).
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Data Collection

« Paired Dataset:

— 1,577 face/sketch pairs from the datasets CUHK [24 ],
CUFSF [28 ], AR [13 ], FERET [17 ], and IIITD

« Unpaired Dataset:
— Image Crawl from google image search engineering
— Transformation based on pre-trained network.
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Classfake

FCGAN

Case Study 4
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AC-GAN and FC-GAN
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Chengcheng Li, Zi Wang, Hairong Qi, “Fast-converging conditional generative

adversarial networks for image synthesis,” IEEE International Conference on

Image Processing (ICIP), October 2018.
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(b) AC-GAN 20 epochs () AC-GAN 50 epochs

(a) AC-GAN 10 epochs
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(f) FC-GAN 50 epochs

(e) FC-GAN 20 epochs

(d) FC-GAN 10 epochs
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Most slides are taken from student presentations at AICIP
group meetings, including mainly those from Zhifei Zhang,
Yang Song and Chengcheng Li.
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