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Outline
• Lecture 11: GAN – Introduction and theoretic analysis
• Lecture 12: Design ideas
• Lecture 13: Conditional GAN
• Lecture 14: Implementation
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Case Study 1: Conditional Adversarial
Autoencoder for Age
Progression/Regression
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Zhifei Zhang, Yang Song, Hairong Qi, “Conditional adversarial
autoencoder for age progression/regression,” CVPR, 2017

http://www.eecs.utk.edu/faculty/qi


day month year documentname/initials 2

Conditional Adversarial 
Autoencoder - CAAE
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Figure 3. Structure of the proposed CAAE network for age progression/regression. The encoder E maps the input face to a vector z
(personality). Concatenating the label l (age) to z, the new latent vector [z, l] is fed to the generator G. Both the encoder and the generator
are updated based on the L2 loss between the input and output faces. The discriminator Dz imposes the uniform distribution on z, and the
discriminator Dimg forces the output face to be photo-realistic and plausible for a given age label.

neural network is adopted as the encoder. The convolu-
tion of stride 2 is employed instead of pooling (e.g., max
pooling) because strided convolution is fully differentiable
and allows the network to learn its own spacial downsam-
pling [20]. The output of encoder E(x) = z preserves the
high-level personal feature of the input face x. The out-
put face conditioned on certain age can be expressed by
G(z, l) = x̂, where l denotes the one-hot age label. Unlike
existing GAN-related works, we incorporate an encoder to
avoid random sampling of z because we need to generate
a face with specific personality which is incorporated in z.
In addition, two discriminator networks are imposed on E
and G, respectively. The Dz regularizes z to be uniform
distributed, smoothing the age transformation. The Dimg

forces G to generate photo-realistic and plausible faces for
arbitrary z and l. The effectiveness of the two discrimina-
tors will be further discussed in Secs. 4.3 and 4.4, respec-
tively.

4.2. Objective Function

The real face images are supposed to lie on the face man-
ifold M, so the input face image x 2 M. The encoder E
maps the input face x to a feature vector, i.e., E(x) = z 2
Rn, where n is the dimension of the face feature. Given
z and conditioned on certain age label l, the generator G
generates the output face x̂ = G(z, l) = G(E(x), l). Our
goal is to ensure the output face x̂ lies on the manifold while
sharing the personality and age with the input face x (during
training). Therefore, the input and output faces are expected
to be similar as expressed in Eq. 2, where L(·, ·) denotes L2

norm.
min
E,G

L (x,G(E(x), l)) (2)

Simultaneously, the uniform distribution is imposed on z
through Dz – the discriminator on z. We denote the distri-
bution of the training data as pdata(x), then the distribution
of z is q(z|x). Assuming p(z) is a prior distribution, and
z⇤ ⇠ p(z) denotes the random sampling process from p(z).
A min-max objective function can be used to train E and
Dz ,

min
E

max
Dz

Ez⇤⇠p(z) [logDz(z
⇤)] +

Ex⇠pdata(x) [log(1�Dz(E(x)))]
(3)

By the same token, the discriminator on face image, Dimg ,
and G with condition l can be trained by

min
G

max
Dimg

Ex,l⇠pdata(x,l) [logDimg(x, l)] +

Ex,l⇠pdata(x,l) [log(1�Dimg(G(E(x), l)))]
(4)

Finally the objective function becomes

min
E,G

max
Dz,Dimg

�L (x,G(E(x), l)) + �TV (G(E(x), l))

+Ez⇤⇠p(z) [logDz(z
⇤)]

+Ex⇠pdata(x) [log(1�Dz(E(x)))]

+Ex,l⇠pdata(x,l) [logDimg(x, l)]

+Ex,l⇠pdata(x,l) [log(1�Dimg(G(E(x), l)))] ,

(5)

where TV (·) denotes the total variation which is effective
in removing the ghosting artifacts. The coefficients � and �
balance the smoothness and high resolution.

Note that the age label is resized and concatenated to the
first convolutional layer of Dimg to make it discriminative
on both age and human face. Sequentially updating the net-
work by Eqs. 2, 3, and 4, we could finally learn the manifold
M as illustrated in Fig. 4.
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Case Study 2: Decoupled Learning for Conditional 
Adversarial Networks

Zhifei Zhang, Yang Song, and Hairong Qi, “Decoupled learning for conditional 
adversarial networks,” WACV, 2018
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The conditional adversarial networks applied in existing works mainly consists of two parts:
1) the encoding-decoding nets (ED)
2) the GANs, which are tied in the parts of decoder and generator. 

Therefore, the reconstruction loss and adversarial loss interact/compete with each other, 
potentially causing unstable results as shown above.
Existing works have to introduce a weighting factor (e.g., the values in the figure) to balance 
the effect of the two losses. How to adaptively set an appropriate weight or completely 
remove the necessity of the weighting factor is a problem unexplored.

Motivation:

9

Main Idea:

• ED+GAN: the traditional structure
• ED//GAN: the proposed structure(decoupled learning)
• Enc and Dec: the encoder and decoder networks
• G and D: the generator and discriminator 
• Black arrows: feedforward path
• Red arrows: backpropagation of reconstruction loss
• Blue arrows: backpropagation of adversarial loss

Decouple the interaction between the reconstruction loss and adversarial loss in 
backpropagation, avoiding the competition that may cause instability.
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Approach:

There are no weighting parameters between the losses in the objective function, 
which relaxes the manual tuning. 

The objective function:
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Compare ED+GAN and ED//GAN:

ED
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AN
2E

D
+G

AN
ED
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ED+GAN is sensitive to weight 
variation. By contrast, ED//GAN 
is robust to weight variation, 
relaxing the weight tuning.

Experimental Results:

12

Experimental Results:
Adapt CAAE [Zhang et al., 2017] to ED//GAN:
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Case Study 3: Cross-domain Face 
Composite and Synthesis from Limited 
Facial Patches

13

Yang Song, Zhifei Zhang, Hairong Qi, “Cross domain face composition and 
synthesis from limited facial parts,” AAAI Conference on Artificial Intelligence 
(AAAI), New Orleans, LA, February 2018.

The Recursive Bidirectional 
Transformation Network

Assumption:
Whole Face and Sketch are lie on two manifolds;
The mapping from sketch domain (S) to face domain (I) is 
modeled by F;
The mapping from face domain (I) to Sketch domain (S) 
is modeled by f;
The face/sketch patches lie outside the manifold.

Transformation Network

Uni-directional transformation vs. Bi-directional 
transformation network
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Training Stage 
Training Stage: learn face2sketch mapping f 
and sketch2face mapping F in a bidirectional 
fashion.

Objective Function:

Testing Stage: Given a patch PI , the mapping f and
F trained on whole face/sketch will guide the patch to 
converge to a whole sketch/face. In order to keep the
identity, the given patch area is kept as constant at
each iteration.

Data Collection

• Paired Dataset:
– 1,577 face/sketch pairs from the datasets CUHK [24 ], 

CUFSF [28 ], AR [13 ], FERET [17 ], and IIITD
• Unpaired Dataset:

– Image Crawl from google image search engineering
– Transformation based on pre-trained network.
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Case Study 4: FCGAN

22

Chengcheng Li, Zi Wang, Hairong Qi, “Fast-converging conditional generative 
adversarial networks for image synthesis,” IEEE International Conference on 
Image Processing (ICIP), October 2018.

AC-GAN and FC-GAN
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