ECE471-571 - Pattern Recognition		
Lecture 6 - Dimensionality Reduction Fisher's Linear Discriminant		
Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi Email: hqi@utk.edu		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The Curse of Dimensionality - 1st AICIIP
Aspect
The number of training samples
What would the probability density function look
like if the dimensionality is very high?
■or a 7-dimensional space, where each variable could
have 20 possible values, then the 7-d histogram
contains 20^{7} cells. To distribute a training set of some
reasonable size (1000) among this many cells is to
leave virtually all the cells empty
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
In theory, the higher the dimensionality, the less e \qquad opposite is often true. Why? \qquad approximately true

- When increasing the dimensionality, we may be overfitting the training set.

Problem. excellent performance on the training set, poor performance on new data points which are in fact
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dimensionality Reduction	AICIP RLISLAIRCH
- Fisher's linear discriminant	
- Best discriminating the data	
- Principal component analysis (PCA)	
- Best representing the data	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
For two-class cases, projection of data from d-dimension onto a line
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
A matrix \mathbf{S} is positive definite if $y=\mathbf{x}^{\top} \mathbf{S} \mathbf{x}>0$ for all R^{d} except 0
\qquad
\qquad
Eigenvalue and eigenvecto
\boldsymbol{x} is \mathbf{x} is not zero, and $\mathbf{A x}=\lambda \mathbf{x}$ \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

