| THE UNIVERSITY OF |
| :---: | :---: |
| KNOXVILLE |\quad AICIIP

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Motivation
- Estimate the density functions without the
assumption that the pdf has a particular form
AIVSLIPARCM
$P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
For a training set of n samples, k of them fall into the hypervolume V,

$$
p(x)=p_{n}(x)=\frac{k_{n} / n}{V_{n}}
$$

\qquad
\qquad

\qquad
\qquad number of samples fall within a hypercube of volume V_{n} \qquad
Let R be a d-dimensional hypercube, whose edges are h_{n}
The window function \qquad
\qquad
\qquad

1 TENNESSEE 6 \qquad

| *Problem |
| :--- | :--- |
| AICIIP |
| Hypercube - why should a point just inside the |
| hypercube contribute the same as a point very |
| near to x, while a point just outside the hypercube |
| contributes nothing? |
| - Use a continuous window function |
| |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
functs) in thaiance (spread) of the smoothing kernel (window is
\qquad
\qquad
$*$
*Comparison

*Another Problem
How to choose h ?
A large h will result in a great deal of smoothing and loss
of resolution
A very small h will tend to degenerate the estimator into a
collection of n sharp peaks, each centered at a sampling
point
Solution: h should depend on the number of samples. If
only a few samples are available, we require a large h and
considerable smoothing, whereas if many points are
available, we can use a smaller h without the danger of
degenerating into separate peaks.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

*The Choice of \mathbf{h}	AICIIP RiLSLIRCH
*We make h a function of n	
$h=\frac{1}{\sqrt{n}}$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

*Problem with Parzen Windows AICIP*incilDiscontinuous window function -> GaussianThe choice of h	
-	12

