Nonparametric Density Estimation – k-nearest neighbor (kNN)

Different Approaches - More Detail

Pattern Classification
- Statistical Approach
 - Basic concepts:
 - Bayes decision rule (NN, LR, LDA)
 - Parametric learning (ML, DL)
 - Non-Parametric learning (KNN)
- Syntactic Approach
 - Basic concepts:
 - Distance
 - Agglomerative method
- Unsupervised
 - Basic concepts:
 - Bayesian decision rule
 - Discriminative
 - Supervised vs. unsupervised
- Unsupervised
 - Distance
 - Agglomerative method
 - k-means
 - Winner-take-all
 - Kohonen maps

Dimensionality Reduction
- Fisher’s linear discriminant (LDA)
- K-L transform (PCA)

Performance Evaluation
- ROC curve
- TP, TN, FN, FP

Stochastic Methods
- Local optimization (GD)
- Global optimization (SA, GA)

Bayes Decision Rule (Recap)

$p(x) = \frac{p(x|\omega_1)p(\omega_1)}{p(x|\omega_1)p(\omega_1) + \sum_{\omega_i=2}^{\omega} p(x|\omega_i)p(\omega_i)}$

$g(x) = -\ln p(x|\omega_1) + \ln p(\omega_1)$

Maximum Posterior Probability
- For a given x, if $p(\omega_1 | x) > p(\omega_2 | x)$, then x belongs to class 1, otherwise, 2.

Likelihood Ratio
- If $p(x|\omega_1) > p(x|\omega_2)$ then decide ω_1, that is
 $p(x|\omega_1) > p(x|\omega_2)$
 $p(x|\omega_2) < p(x|\omega_1)$

Discriminant Function
- The classifier will assign a feature vector x to class ω_j if
 $g_j(x) > g_2(x)$

Three cases

Estimate Gaussian, Two-modal Gaussian
Dimensionality reduction
Performance evaluation and ROC curve
Motivation

• Estimate the density functions without the assumption that the pdf has a particular form

\[p(x|\omega_j) = \frac{p(x|\omega_j)p(\omega_j)}{p(x)} \]

*Problem with Parzen Windows

• Discontinuous window function -> Gaussian
• The choice of h
• Still another one: fixed volume

\[p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \phi \left(\frac{x-x_i}{h} \right) \]

kNN (k-Nearest Neighbor)

• To estimate \(p(x) \) from \(n \) samples, we can center a cell at \(x \) and let it grow until it contains \(k_n \) samples, and \(k_n \) can be some function of \(n \)
• Normally, we let

\[k_n = \sqrt{n} \]
kNN in Classification

Given \(c \) training sets from \(c \) classes, the total number of samples is

\[n = \sum n_c \]

* Given a point \(x \) at which we wish to determine the statistics, we find the hypersphere of volume \(V \) which just encloses \(k \) points from the combined set. If within that volume, \(k_m \) of those points belong to class \(m \), then we estimate the density for class \(m \) by

\[p(x | \omega_m) = \frac{k_m}{n V} \]

\[p(\omega_m | x) = \frac{n}{n V} \cdot \frac{k_m}{k} \cdot \frac{V}{n V} \]

kNN Classification Rule

The decision rule tells us to look in a neighborhood of the unknown feature vector for \(k \) samples. If within that neighborhood, more samples lie in class \(i \) than any other class, we assign the unknown as belonging to class \(i \).

Problems

What kind of distance should be used to measure “nearest”
- Euclidean metric is a reasonable measurement

Computation burden
- Massive storage burden
- Need to compute the distance from the unknown to all the neighbors
Computational Complexity of kNN

- In both space (storage space) and time (search time)
- Algorithms reducing the computational burden
 - Computing partial distances
 - Prestructuring
 - Editing the stored prototypes

Method 1 - Partial Distance

- Calculate the distance using some subset r of the full d dimensions. If this partial distance is too large, we don’t need to compute further
- What we know about the subspace is indicative of the full space

$$D_r(x, h) = \left(\sum (x_i - h_i)^2 \right)^{1/2}$$

Method 2 - Prestructuring

- Prestructure samples in the training set into a search tree where samples are selectively linked
- Distances are calculated between the testing sample and a few stored “root” samples, and then consider only the samples linked to it
- Closest distance no longer guaranteed.
Method 3 – Editing/Pruning/Condensing

- Eliminate “useless” samples during training
 - For example, eliminate samples that are surrounded by training points of the same category label
- Leave the decision boundaries unchanged

Discussion

- Combining three methods
- Other concerns
 - The choice of k
 - The choice of metrics

Distance (Metrics) Used by kNN

- Properties of metrics
 - Nonnegativity (D(a,b) >= 0)
 - Reflexivity (D(a,b) = 0 iff a=b)
 - Symmetry (D(a,b) = D(b,a))
 - Triangle inequality (D(a,b) + D(b,c) >= D(a,c))
- Different metrics
 - Minkowski metric
 - Manhattan distance (city block distance)
 - Euclidean distance
 - When k is inf, maximum of the projected distances onto each of the d coordinate axes
Visualizing the Distances

FIGURE 4.19. Each colored surface consists of points a distance 1.0 from the origin, measuring different values for k in the Minkowski metric; k is printed in red. Thus, the white surfaces correspond to the \(L_0 \) norm (Manhattan distance), the light gray sphere corresponds to the \(L_1 \) norm (Dischord distance), the dark gray ones correspond to the \(L_2 \) norm, and the pink has corresponds to the \(L_\infty \) norm. From Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.