ECE 471/571 - Lecture 14
Gradient Descent

General Approach to Learning

- Optimization methods
 - Newton's method
 - Gradient descent
 - Exhaustive search through the solution space
- Objective functions
 - Maximum a-posteriori probability
 - Maximum likelihood estimate
 - Fisher's linear discriminant
 - Principal component analysis
 - k-nearest neighbor
 - Perceptron

Specify a model (objective function) and estimate its parameters
Use optimization methods to find the parameters
- 1^{st} derivative = 0
- Gradient descent
- Exhaustive search through the solution space
Newton-Raphson Method

Used to find solution to equations

According to Taylor series:
\[f(x + \Delta x) = f(x) + \Delta x f'(x) \]
\[f(x) + \Delta x f'(x) = 0 \Rightarrow \Delta x = -\frac{f(x)}{f'(x)} \]
\[\Rightarrow x^{k+1} = x^k - \frac{f(x)}{f'(x)} \]

Newton-Raphson Method vs. Gradient Descent

- **Newton-Raphson method**
 - Used to find solution to equations
 - Find \(x \) for \(f(x) = 0 \)
 - The approach
 - Step 1: select initial \(x_0 \)
 - Step 2:
 \[x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} \]
 - Step 3: if \(|x^{k+1} - x^k| < \epsilon_1\), then stop; else \(x^k = x^{k+1} \) and go back step 2.

- **Gradient descent**
 - Used to find optima, i.e. solutions to derivatives
 - Find \(x^* \) such that \(f(x^*) < f(x) \)
 - The approach
 - Step 1: select initial \(x_0 \)
 - Step 2:
 \[x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} = x^k - \epsilon f'(x^k) \]
 - Step 3: if \(|x^{k+1} - x^k| < \epsilon_2\), then stop; else \(x^k = x^{k+1} \) and go back step 2.

On the Learning Rate

\[x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)} = x^k - \epsilon f'(x^k) \]
Geometric Interpretation

Gradient of tangent is 2